1
|
Krishnan S, Dong C, Ratigan H, Morales-Rodriguez D, Cherian C, Sheffield M. A contextual fear conditioning paradigm in head-fixed mice exploring virtual reality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625482. [PMID: 39651122 PMCID: PMC11623582 DOI: 10.1101/2024.11.26.625482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Contextual fear conditioning is a classical laboratory task that tests associative memory formation and recall. Techniques such as multi-photon microscopy and holographic stimulation offer tremendous opportunities to understand the neural underpinnings of these memories. However, these techniques generally require animals to be head-fixed. There are few paradigms that test contextual fear conditioning in head-fixed mice, and none where the behavioral outcome following fear conditioning is freezing, the most common measure of fear in freely moving animals. To address this gap, we developed a contextual fear conditioning paradigm in head-fixed mice using virtual reality (VR) environments. We designed an apparatus to deliver tail shocks (unconditioned stimulus, US) while mice navigated a VR environment (conditioned stimulus, CS). The acquisition of contextual fear was tested when the mice were reintroduced to the shock-paired VR environment the following day. We tested three different variations of this paradigm and, in all of them, observed an increased conditioned fear response characterized by increased freezing behavior. This was especially prominent during the first trial in the shock-paired VR environment, compared to a neutral environment where the mice received no shocks. Our results demonstrate that head-fixed mice can be fear conditioned in VR, discriminate between a feared and neutral VR context, and display freezing as a conditioned response, similar to freely behaving animals. Furthermore, using a two-photon microscope, we imaged from large populations of hippocampal CA1 neurons before, during, and following contextual fear conditioning. Our findings reconfirmed those from the literature on freely moving animals, showing that CA1 place cells undergo remapping and show narrower place fields following fear conditioning. Our approach offers new opportunities to study the neural mechanisms underlying the formation, recall, and extinction of contextual fear memories. As the head-fixed preparation is compatible with multi-photon microscopy and holographic stimulation, it enables long-term tracking and manipulation of cells throughout distinct memory stages and provides subcellular resolution for investigating axonal, dendritic, and synaptic dynamics in real-time.
Collapse
|
2
|
Ryoke R, Hashimoto T, Kawashima R. Multiple Stressors Induce Amygdalohippocampal Volume Reduction in Adult Male Rats as Detected by Longitudinal Structural Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100334. [PMID: 38974933 PMCID: PMC11225185 DOI: 10.1016/j.bpsgos.2024.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 07/09/2024] Open
Abstract
Background Traumatic events can cause long-lasting and uncontrollable fear and anxiety. Posttraumatic stress disorder is an intractable mental disorder, and neurobiological mechanisms using animal models are expected to help development of posttraumatic stress disorder treatment. In this study, we combined multiple stress (MS) and longitudinal in vivo magnetic resonance imaging to reveal the effects of long-lasting anxiety-like behaviors on adult male rat brains. Methods Twelve male Wistar rats (8 weeks old) were exposed to the MS of 1-mA footshocks and forced swimming, while 12 control rats were placed in a plastic cage. Contextual fear conditioning with 0.1-mA footshocks in a context different from the MS was conducted 15 days after the MS for both groups. Three retention tests were administered after 24 hours and 9 and 16 days. Two magnetic resonance imaging scans were conducted, one on the day before MS induction and one the day after the third retention test, with a 32-day interval. Results The MS group showed greater freezing responses than the control group in all retention tests. Whole-brain voxel-based morphometry analyses revealed reduced gray matter volume in the anterior amygdalohippocampal area in MS group rats compared with control rats. These volume changes were negatively associated with freezing time in the third retention test in the MS group. Conclusions These results suggest that individual variability in the amygdalohippocampal area may be related to long-lasting fear responses after severe stress.
Collapse
Affiliation(s)
- Rie Ryoke
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Teruo Hashimoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Battaglia S, Avenanti A, Vécsei L, Tanaka M. Neural Correlates and Molecular Mechanisms of Memory and Learning. Int J Mol Sci 2024; 25:2724. [PMID: 38473973 DOI: 10.3390/ijms25052724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Memory and learning are essential cognitive processes that enable us to obtain, retain, and recall information [...].
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
El Matine R, Kreutzmann JC, Fendt M. Chronic unilateral inhibition of GABA synthesis in the amygdala increases specificity of conditioned fear in a discriminative fear conditioning paradigm in rats. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110732. [PMID: 36792003 DOI: 10.1016/j.pnpbp.2023.110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Neural activity in the amygdala is critical for fear learning. In anxiety disorder patients, bilateral hyperactivity of the amygdala can be observed. This hyperactivation is often associated with the facilitation of fear learning and/or over-generalization of conditioned fear. In contrast, hypoactivity of the amygdala, e.g. by pharmacological interventions, attenuates or blocks fear learning. To date, little is known about how neural excitability of the amygdala affects specificity or generalization of fear. Therefore, the present study utilized chronic inhibition of GABA synthesis in the amygdala to increase excitability and investigated the effect on the specificity of fear learning. In rats, unilateral cannulas aiming at the amygdala were implanted. The cannulas were connected to subcutaneously implanted osmotic mini pumps that delivered either the GABA synthesis inhibitor L-allylglycine or its inactive enantiomer D-allylglycine. Following one week of chronic GABA synthesis manipulation, the rats were submitted to a discriminative fear conditioning protocol. In addition, anxiety-like behavior in the light-dark box was measured. Our data show that chronic unilateral L-AG infusions into the amygdala improve the specificity of learned fear, support safety learning, and reduce fear generalization and anxiety. This data demonstrates that moderately increased amygdala excitability can be beneficial for the specificity of fear learning and highlights the potential application for therapeutic interventions.
Collapse
Affiliation(s)
- Rami El Matine
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Judith C Kreutzmann
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
6
|
Nishimura KJ, Poulos A, Drew MR, Rajbhandari AK. Know thy SEFL: Fear sensitization and its relevance to stressor-related disorders. Neurosci Biobehav Rev 2022; 142:104884. [PMID: 36174795 DOI: 10.1016/j.neubiorev.2022.104884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
Extreme stress can cause long-lasting changes in affective behavior manifesting in conditions such as post-traumatic stress disorder (PTSD). Understanding the biological mechanisms that govern trauma-induced behavioral dysregulation requires reliable and rigorous pre-clinical models that recapitulate multiple facets of this complex disease. For decades, Pavlovian fear conditioning has been a dominant paradigm for studying the effects of trauma through an associative learning framework. However, severe stress also causes long-lasting nonassociative fear sensitization, which is often overlooked in Pavlovian fear conditioning studies. This paper synthesizes recent research on the stress-enhanced fear learning (SEFL) paradigm, a valuable rodent model that can dissociate associative and nonassociative effects of stress. We discuss evidence that the SEFL paradigm produces nonassociative fear sensitization that is distinguishable from Pavlovian fear conditioning. We also discuss key biological variables, such as age and sex, neural circuit mechanisms, and crucial gaps in knowledge. We argue that nonassociative fear sensitization deserves more attention within current PTSD models and that SEFL provides a valuable complement to Pavlovian conditioning research on trauma-related pathology.
Collapse
Affiliation(s)
- Kenji J Nishimura
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | - Andrew Poulos
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, Albany, USA, 12222
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | | |
Collapse
|
7
|
Zhou G, Olofsson JK, Koubeissi MZ, Menelaou G, Rosenow J, Schuele SU, Xu P, Voss JL, Lane G, Zelano C. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog Neurobiol 2021; 201:102027. [PMID: 33640412 DOI: 10.1016/j.pneurobio.2021.102027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden; Emotional Brain Institute, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China; Guangdong-Hong Kong-Macao Greater Bay Area Research Institute for Neuroscience and Neurotechnologies, Kwun Tong, Hong Kong, China
| | - Joel L Voss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Kim CH, Kim S, Kim SH, Roh J, Jin H, Song B. Role of densin-180 in mouse ventral hippocampal neurons in 24-hr retention of contextual fear conditioning. Brain Behav 2020; 10:e01891. [PMID: 33064361 PMCID: PMC7749528 DOI: 10.1002/brb3.1891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Densin-180 interacts with postsynaptic molecules including calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) but its function in learning and memory process has been unclear. METHODS To investigate a role of hippocampal densin-180 in contextual fear conditioning (CFC) learning and memory processes, knockdown (KD) of densin-180 in hippocampal subareas was applied. RESULTS First, ventral hippocampal (vHC) densin-180 KD impaired single-trial CFC (stCFC) memory one day later. stCFC caused freezing behaviors to reach the peak about one hour later in both control and KD mice, but then freezing was disappeared at 2 hr postshock in KD mice. Second, stCFC caused an immediate and transient reduction of vHC densin-180 in control mice, which was not observed in KD mice. Third, stCFC caused phosphorylated-T286 (p-T286) CaMKIIα to change similarly to densin-180, but p-T305 CaMKIIα was increased 1 hr later in control mice. In KD mice, these effects were gone. Moreover, both basal levels of p-T286 and p-T305 CaMKIIα were reduced without change in total CaMKIIα in KD mice. Fourth, we found double-trial CFC (dtCFC) memory acquisition and retrieval kinetics were different from those of stCFC in vHC KD mice. In addition, densin-180 in dorsal hippocampal area appeared to play its unique role during the very early retrieval period of both CFC memories. CONCLUSION This study shows that vHC densin-180 is necessary for stCFC memory formation and retrieval and suggests that both densin-180 and p-T305 CaMKIIα at 1 ~ 2 hr postshock are important for stCFC memory formation. We conclude that roles of hippocampal neuronal densin-180 in CFC are temporally dynamic and differential depending on the pattern of conditioning stimuli and its location along the dorsoventral axis of hippocampal formation.
Collapse
Affiliation(s)
- Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Seoyul Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Jongtae Roh
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Harin Jin
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Bokyung Song
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
9
|
McCarthy M, Raval AP. The peri-menopause in a woman's life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflammation 2020; 17:317. [PMID: 33097048 PMCID: PMC7585188 DOI: 10.1186/s12974-020-01998-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
The peri-menopause or menopausal transition—the time period that surrounds the final years of a woman’s reproductive life—is associated with profound reproductive and hormonal changes in a woman’s body and exponentially increases a woman’s risk of cerebral ischemia and Alzheimer’s disease. Although our understanding of the exact timeline or definition of peri-menopause is limited, it is clear that there are two stages to the peri-menopause. These are the early menopausal transition, where menstrual cycles are mostly regular, with relatively few interruptions, and the late transition, where amenorrhea becomes more prolonged and lasts for at least 60 days, up to the final menstrual period. Emerging evidence is showing that peri-menopause is pro-inflammatory and disrupts estrogen-regulated neurological systems. Estrogen is a master regulator that functions through a network of estrogen receptors subtypes alpha (ER-α) and beta (ER-β). Estrogen receptor-beta has been shown to regulate a key component of the innate immune response known as the inflammasome, and it also is involved in regulation of neuronal mitochondrial function. This review will present an overview of the menopausal transition as an inflammatory event, with associated systemic and central nervous system inflammation, plus regulation of the innate immune response by ER-β-mediated mechanisms.
Collapse
Affiliation(s)
- Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, 1420 NW 9th Avenue, Neurology Research Building, Room # 203H, Miami, FL, 33136, USA. .,Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
10
|
Post-exposure environment modulates long-term developmental ethanol effects on behavior, neuroanatomy, and cortical oscillations. Brain Res 2020; 1748:147128. [PMID: 32950485 DOI: 10.1016/j.brainres.2020.147128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to ethanol has a wide range of anatomical, cellular, physiological and behavioral impacts that can last throughout life. In humans, this cluster of effects is termed fetal alcohol spectrum disorder and is highly prevalent in western cultures. The ultimate expression of the effects of developmental ethanol exposure however can be influenced by post-exposure experience. Here we examined the effects of developmental binge exposure to ethanol (postnatal day 7) in C57BL/6By mice on a specific cohort of inter-related long-term outcomes including contextual memory, hippocampal parvalbumin-expressing neuron density, frontal cortex oscillations related to sleep-wake cycling including delta oscillation amplitude and sleep spindle density, and home-cage behavioral activity. When assessed in adults that were raised in standard housing, all of these factors were altered by early ethanol exposure compared to saline controls except home-cage activity. However, exposure to an enriched environment and exercise from weaning to postnatal day 90 reversed most of these ethanol-induced impairments including memory, CA1 but not dentate gyrus PV+ cell density, delta oscillations and sleep spindles, and enhanced home-cage behavioral activity in Saline- but not EtOH-treated mice. The results are discussed in terms of the inter-dependence of diverse developmental ethanol outcomes and potential mechanisms of post-exposure experiences to regulate those outcomes.
Collapse
|
11
|
Kreutzmann JC, Fendt M. Chronic inhibition of GABA synthesis in the infralimbic cortex facilitates conditioned safety memory and reduces contextual fear. Transl Psychiatry 2020; 10:120. [PMID: 32332716 PMCID: PMC7182568 DOI: 10.1038/s41398-020-0788-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Accurate discrimination between danger and safety cues is essential for survival. Recent findings in humans indicate that patients suffering from anxiety disorders cannot reliably use safety cues in order to inhibit fear responses. However, the neuroanatomical pathways of conditioned safety are still unclear. Aim of the present study was to investigate whether chronic inhibition of GABA synthesis in the infralimbic (IL) cortex, a critical region for fear inhibition, would lead to enhanced conditioned safety memory. Male Sprague Dawley rats were equipped with osmotic mini-pumps attached to an infusion cannula aimed at the IL. Mini-pumps were either filled with the glutamate decarboxylase (GAD) inhibitor L-allylglycine (L-AG) or the inactive enantiomer D-allylglycine (D-AG). Previous studies demonstrated that chronic infusions of L-AG lead to lower GABA levels and overall enhanced neural activity. The effect of IL disinhibition on conditioned safety was investigated utilizing the acoustic startle response. Chronic disinhibition of the IL facilitated conditioned safety memory, along with reduced contextual fear and lower corticosterone levels. The present findings suggest that the IL is a key brain region for conditioned safety memory. Because anxiety disorder patients are often not capable to use safety cues to inhibit unnecessary fear responses, the present findings are of clinical relevance and could potentially contribute to therapy optimization.
Collapse
Affiliation(s)
- Judith C. Kreutzmann
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Jang Y, Lee JH, Lee MJ, Kim SJ, Ju X, Cui J, Zhu J, Lee YL, Namgung E, Sung HWJ, Lee HW, Ryu MJ, Oh E, Chung W, Kweon GR, Choi CW, Heo JY. Schisandra Extract and Ascorbic Acid Synergistically Enhance Cognition in Mice Through Modulation of Mitochondrial Respiration. Nutrients 2020; 12:nu12040897. [PMID: 32218327 PMCID: PMC7230947 DOI: 10.3390/nu12040897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive decline is observed in aging and neurodegenerative diseases, including Alzheimer’s disease (AD) and dementia. Intracellular energy produced via mitochondrial respiration is used in the regulation of synaptic plasticity and structure, including dendritic spine length and density, as well as for the release of neurotrophic factors involved in learning and memory. To date, a few synthetic agents for improving mitochondrial function have been developed for overcoming cognitive impairment. However, no natural compounds that modulate synaptic plasticity by directly targeting mitochondria have been developed. Here, we demonstrate that a mixture of Schisandra chinensis extract (SCE) and ascorbic acid (AA) improved cognitive function and induced synaptic plasticity-regulating proteins by enhancing mitochondrial respiration. Treatment of embryonic mouse hippocampal mHippoE-14 cells with a 4:1 mixture of SCE and AA increased basal oxygen consumption rate. We found that mice injected with the SCE-AA mixture showed enhanced learning and memory and recognition ability. We further observed that injection of the SCE-AA mixture in mice significantly increased expression of postsynaptic density protein 95 (PSD95), an increase that was correlated with enhanced brain-derived neurotrophic factor (BDNF) expression. These results demonstrate that a mixture of SCE and AA improves mitochondrial function and memory, suggesting that this natural compound mixture could be used to alleviate AD and aging-associated memory decline.
Collapse
Affiliation(s)
- Yunseon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jae Hyeon Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Xianshu Ju
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jianchen Cui
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jiebo Zhu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Yu Lim Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eunji Namgung
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Han Wool John Sung
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
| | - Hong Won Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea;
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea
- Correspondence: (C.W.C.); (J.Y.H.); Tel.: +82-31-888-6131 (C.W.C.); +82-42-580-8222 (J.Y.H.)
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.J.); (J.H.L.); (M.J.L.); (S.J.K.); (X.J.); (J.C.); (J.Z.); (Y.L.L.); (E.N.); (H.W.J.S.); (H.W.L.); (M.J.R.); (G.R.K.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: (C.W.C.); (J.Y.H.); Tel.: +82-31-888-6131 (C.W.C.); +82-42-580-8222 (J.Y.H.)
| |
Collapse
|
13
|
Brito I, Britto LRG, Ferrari EAM. Retrieval of contextual aversive memory and induction of Zenk expression in the hippocampus of pigeons. Brain Res Bull 2019; 153:341-349. [PMID: 31586459 DOI: 10.1016/j.brainresbull.2019.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/08/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
The hippocampus has a fundamental role in many learning and memory processes, which include the formation and retrieval of context-fear associations, as evidenced by studies in rodents and birds. The present paper has analyzed contextual memory and Zenk expression in the hippocampus of the pigeon after fear conditioning. Pigeons were trained under four conditions: with 3 tone-shock associations (Paired), with shock and tone presented randomly (Unpaired), with exposure to the experimental chamber without stimulation (Control) and with only daily handling (Naive). The testing was conducted 24 h after training. All sessions were digitally recorded. The level of freezing expressed by the Paired and Unpaired groups differed significantly from that of the control group during both training and test sessions. Pigeons from the Paired group revealed a significantly greater density of Zenk positive nuclei in the ventromedial region of the hippocampus than did the Unpaired, Control and Naive groups. These data suggest that Zenk-mediated processes of synaptic plasticity in the hippocampus are induced during the retrieval of conditioned fear memory in the pigeon.
Collapse
Affiliation(s)
- Ivana Brito
- School of Arts, Sciences and Humanities, São Paulo University, São Paulo, Brazil.
| | | | | |
Collapse
|
14
|
Spadoni AD, Huang M, Simmons AN. Emerging Approaches to Neurocircuits in PTSD and TBI: Imaging the Interplay of Neural and Emotional Trauma. Curr Top Behav Neurosci 2019; 38:163-192. [PMID: 29285732 PMCID: PMC8896198 DOI: 10.1007/7854_2017_35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) commonly co-occur in general and military populations and have a number of overlapping symptoms. While research suggests that TBI is risk factor for PTSD and that PTSD may mediate TBI-related outcomes, the mechanisms of these relationships are not well understood. Neuroimaging may help elucidate patterns of neurocircuitry both specific and common to PTSD and TBI and thus help define the nature of their interaction, refine diagnostic classification, and may potentially yield opportunities for targeted treatments. In this review, we provide a summary of some of the most common and the most innovative neuroimaging approaches used to characterize the neural circuits associated with PTSD, TBI, and their comorbidity. We summarize the state of the science for each disorder and describe the few studies that have explicitly attempted to characterize the neural substrates of their shared and dissociable influence. While some promising targets in the medial frontal lobes exist, there is not currently a comprehensive understanding of the neurocircuitry mediating the interaction of PTSD and TBI. Future studies should exploit innovative neuroimaging approaches and longitudinal designs to specifically target the neural mechanisms driving PTSD-TBI-related outcomes.
Collapse
Affiliation(s)
- Andrea D Spadoni
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | - Mingxiong Huang
- Radiology and Research Services, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Alan N Simmons
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
AlOkda AM, Nasr MM, Amin SN. Between an ugly truth and a perfect lie: Wiping off fearful memories using beta-adrenergic receptors antagonists. J Cell Physiol 2018; 234:5722-5727. [PMID: 30417468 DOI: 10.1002/jcp.27441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/27/2018] [Indexed: 11/06/2022]
Abstract
Psychiatric disorders such as anxiety, phobias, and post-traumatic stress disorder are considered of high global prevalence. Currently, a therapeutic approach to treat these disorders using beta-blockers, which antagonize the beta-adrenergic receptors (B1, B2, and B3) is being studied. This approach claims that beta-blockers, such as propranolol, inhibit fear memory reconsolidation. However, there are several studies refuting such claims by discrediting their experimental design and pointing out both the drugs pharmacokinetic properties and confounding factors. In this review, we explore the different effects of central beta-adrenergic agonists and antagonists on the fear memory consolidation providing mixed-evidence, limitations, and future directions.
Collapse
Affiliation(s)
| | - Mostafa M Nasr
- Biomedical Sciences Program, Zewail City of Science and Technology, Egypt
| | - Shaimaa N Amin
- Department of Medical Physiology, Kasr Al Ainy Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
16
|
Lewin M, Ilina M, Betz J, Masiello K, Hui M, Wilson DA, Saito M. Developmental Ethanol-Induced Sleep Fragmentation, Behavioral Hyperactivity, Cognitive Impairment and Parvalbumin Cell Loss are Prevented by Lithium Co-treatment. Neuroscience 2017; 369:269-277. [PMID: 29183826 DOI: 10.1016/j.neuroscience.2017.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023]
Abstract
Developmental ethanol exposure is a well-known cause of lifelong cognitive deficits, behavioral hyperactivity, emotional dysregulation, and more. In healthy adults, sleep is thought to have a critical involvement in each of these processes. Our previous work has demonstrated that some aspects of cognitive impairment in adult mice exposed at postnatal day 7 (P7) to ethanol (EtOH) correlate with slow-wave sleep (SWS) fragmentation (Wilson et al., 2016). We and others have also previously demonstrated that co-treatment with LiCl on the day of EtOH exposure prevents many of the anatomical and physiological impairments observed in adults. Here we explored cognitive function, diurnal rhythms (activity, temperature), SWS, and parvalbumin (PV) and perineuronal net (PNN)-positive cell densities in adult mice that had received a single day of EtOH exposure on P7 and saline-treated littermate controls. Half of the animals also received a LiCl injection on P7. The results suggest that developmental EtOH resulted in adult behavioral hyperactivity, cognitive impairment, and reduced SWS compared to saline controls. Both of these effects were reduced by LiCl treatment on the day of EtOH exposure. Finally, developmental EtOH resulted in decreased PV/PNN-expressing cells in retrosplenial (RS) cortex and dorsal CA3 hippocampus at P90. As with sleep and behavioral activity, LiCl treatment reduced this decrease in PV expression. Together, these results further clarify the long-lasting effects of developmental EtOH on adult behavior, physiology, and anatomy. Furthermore, they demonstrate the neuroprotective effects of LiCl co-treatment on this wide range of developmental EtOH's long-lasting consequences.
Collapse
Affiliation(s)
- M Lewin
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Sackler Neuroscience Graduate Program, NYU School of Medicine, New York, NY, United States
| | - M Ilina
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - J Betz
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - K Masiello
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - M Hui
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - D A Wilson
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States.
| | - M Saito
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
17
|
Andrade TGCSD, Silva JVDS, Batistela MF, Frei F, Sant'Ana AB. Interaction between estradiol and 5-HT 1A receptors in the median raphe nucleus on acquisition of aversive information and association to the context in ovariectomized rats. Neurobiol Stress 2017. [PMID: 28626786 PMCID: PMC5470534 DOI: 10.1016/j.ynstr.2017.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The median raphe nucleus (MRN) is related to stress resistance and defensive responses, a crucial source of serotonergic neurons that project to prosencephalic structures related to stress and anxiety. Estrogen receptors were identified in this mesencephalic structure. It is possible that the estrogen action is related to serotonin effect on somatodendritic 5-HT1A receptors, inhibiting the function of serotonergic neurons and thus preventing of the stress effect and inducing anxiolysis. So, in order to evaluate these aspects, female Wistar rats were ovariectomized and 21 days later were given a direct microinjection of estradiol benzoate (EB) (1200 ng) into the MRN, preceded by microinjections of saline or WAY100.635 (100 ng), a 5-HT1A receptor antagonist. Immediately after the two microinjections, the ovariectomized rats were conditioned with an aversive event (foot shock) session in a Skinner box. Twenty-four hours later, they were exposed to the same context in a test session for 5 min for behavioral assessment: freezing, rearing, locomotion, grooming, and autonomic responses (fecal boluses and micturition). EB microinjection in the MRN prior to the exposure of animals to the foot shocks in the conditioning session did not alter their behavior in this session, but neutralized the association of the aversive experience to the context: there was a decrease in the expression of freezing and an increased rearing activity in the test session. This effect was reversed by prior microinjection of WAY100.635. In conclusion, EB acted on serotonergic neurons in the MRN of the ovariectomized rats, impairing the association of the aversive experience to the context, by co-modulating the functionality of somatodendritic 5-HT1A.
Collapse
Affiliation(s)
| | | | | | - Fernando Frei
- UNESP - Univ Estadual Paulista, FCL, Department of Biological Science, Avenida Dom Antonio, 2100, 19.806-900 Assis, São Paulo, Brazil
| | | |
Collapse
|
18
|
Effects of standardized Ginkgo biloba extract on the acquisition, retrieval and extinction of conditioned suppression: Evidence that short-term memory and long-term memory are differentially modulated. Physiol Behav 2016; 165:55-68. [PMID: 27378507 DOI: 10.1016/j.physbeh.2016.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/28/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023]
Abstract
Studies in our laboratory have characterized the putative neuromodulatory effects of a standardized extract of the green leaves of Ginkgo biloba (EGb), which comprises a formulation of 24% ginkgo-flavoglycosides and 6% ginkgo-terpenoid lactones, on conditioned suppression. This model comprises a suitable animal model for investigating the behavioral changes and pharmacological mechanisms that underlie fear memory and anxiety. The characterization of the effects on distinct stages of fear memory or fear extinction will help illustrate both the beneficial and harmful effects. Three hundred adult male Wistar rats were randomly assigned to 30 groups according to the treatment as follows: i-ii) control groups (CS-US and CSno-US); iii) vehicle group (12% Tween®80); and iv-vi) EGb groups (250, 500 and 1000mgkg(-1)); or experimental procedures designed to assess the effects of EGb treatment prior to the acquisition (n=20 per group) and retrieval of conditioned fear (n=10 per group) or prior to the extinction training (n=10 per group) and extinction retention test (n=10 per group). Furthermore, to better understand the effects of acute EGb treatment on fear memory, we conducted two additional analyses: the acquisition of within- and between-session extinction of fear memory (short- and long-term memory, respectively). No difference was identified between the control and treatment groups during the retention test (P>0.05), with the exception of the CSno-US group in relation to all groups (P<0.05). A between-session analysis indicated that EGb at 250mgkg(-1) facilitated the acquisition of extinction fear memory, which was verified by the suppression ration in the first trial of extinction training (SR=0.39) and the extinction retention test session (SR=0.53, P<0.05), without impairments in fear memory acquisition, which were evaluated during the retention test (SR=0.79). Moreover, EGb administered at 1000mgkg(-1) prior to conditioning did not enhance the long-term extinction memory, i.e., it did not prevent the return of extinguished fear memory in the extinction retention test, in which the spontaneous recovery of fear was demonstrated (SR=0.63, P<0.05); however, it significantly facilitated short-term memory as verified by data from the within-session extinction (1 to 8-10 trials) during the retention test (SR=0.73 to SR=0.59; P<0.05) and the extinction retention test (SR=0.63 to SR=0.41; P<0.05). Moreover, spontaneous recovery was identified in response to a higher dose of EGb when administered prior to extinction training (SR=0.75, P<0.05) and the extinction retention test (SR=0.70; P<0.05). At dose of 500mgkg(-1) EGb reduced the suppression ratio when administered prior to the retention test (SR=0.57) and extinction training (SR=0.55; P<0.05) without preventing the acquisition of fear memory, which suggests that EGb has anti-anxiety effects. Taken together, the current findings suggest that EGb differentially modulates short- and long-term memory, as well as anxiety-like behavior. The actions of EGb may provide information regarding the beneficial effects in the prevention and treatment of neurocognitive impairments and anxiety disorders. Additional analyses are necessary to facilitate an understanding of these effects; however, previous data from our group suggest that GABAergic, serotoninergic and glutamatergic receptors are potential targets of the effects of EGb on conditioned suppression.
Collapse
|
19
|
Wilson DA, Masiello K, Lewin MP, Hui M, Smiley JF, Saito M. Developmental ethanol exposure-induced sleep fragmentation predicts adult cognitive impairment. Neuroscience 2016; 322:18-27. [PMID: 26892295 DOI: 10.1016/j.neuroscience.2016.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/05/2023]
Abstract
Developmental ethanol (EtOH) exposure can lead to long-lasting cognitive impairment, hyperactivity, and emotional dysregulation among other problems. In healthy adults, sleep plays an important role in each of these behavioral manifestations. Here we explored circadian rhythms (activity, temperature) and slow-wave sleep (SWS) in adult mice that had received a single day of EtOH exposure on postnatal day 7 and saline littermate controls. We tested for correlations between slow-wave activity and both contextual fear conditioning and hyperactivity. Developmental EtOH resulted in adult hyperactivity within the home cage compared to controls but did not significantly modify circadian cycles in activity or temperature. It also resulted in reduced and fragmented SWS, including reduced slow-wave bout duration and increased slow-wave/fast-wave transitions over 24-h periods. In the same animals, developmental EtOH exposure also resulted in impaired contextual fear conditioning memory. The impairment in memory was significantly correlated with SWS fragmentation. Furthermore, EtOH-treated animals did not display a post-training modification in SWS which occurred in controls. In contrast to the memory impairment, sleep fragmentation was not correlated with the developmental EtOH-induced hyperactivity. Together these results suggest that disruption of SWS and its plasticity are a secondary contributor to a subset of developmental EtOH exposure's long-lasting consequences.
Collapse
Affiliation(s)
- D A Wilson
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| | - K Masiello
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - M P Lewin
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States; Sackler Neuroscience Graduate Program, NYU School of Medicine, New York, NY, United States
| | - M Hui
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - J F Smiley
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States
| | - M Saito
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
20
|
The learning of fear extinction. Neurosci Biobehav Rev 2015; 47:670-83. [PMID: 25452113 DOI: 10.1016/j.neubiorev.2014.10.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 11/23/2022]
Abstract
Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD.
Collapse
|
21
|
Childhood maltreatment is associated with altered frontolimbic neurobiological activity during wakefulness in adulthood. Dev Psychopathol 2015. [PMID: 26198818 DOI: 10.1017/s0954579415000589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Childhood maltreatment can disturb brain development and subsequently lead to adverse socioemotional and mental health problems across the life span. The long-term association between childhood maltreatment and resting-wake brain activity during adulthood is unknown and was examined in the current study. Forty-one medically stable and medication-free military veterans (M = 29.31 ± 6.01 years, 78% male) completed a battery of clinical assessments and had [18F]-fluorodeoxyglucose positron emission tomography neuroimaging scans during quiet wakefulness. After statistically adjusting for later-life trauma and mental health problems, childhood maltreatment was negatively associated with brain activity within a priori defined regions that included the left orbital frontal cortex and left hippocampus. Childhood maltreatment was significantly associated with increased and decreased brain activity within six additional whole-brain clusters that included the frontal, parietal-temporal, cerebellar, limbic, and midbrain regions. Childhood maltreatment is associated with altered neural activity in adulthood within regions that are involved in executive functioning and cognitive control, socioemotional processes, autonomic functions, and sleep/wake regulation. This study provides support for taking a life span developmental approach to understanding the effects of early-life maltreatment on later-life neurobiology, socioemotional functioning, and mental health.
Collapse
|
22
|
Hamilton GF, Majdak P, Miller DS, Bucko PJ, Merritt JR, Krebs CP, Rhodes JS. Evaluation of a C57BL/6J × 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis. Brain Plast 2015; 1:83-95. [PMID: 28989863 PMCID: PMC5627510 DOI: 10.3233/bpl-150011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and “hybrid vigor”). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice (n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice (n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior.
Collapse
Affiliation(s)
- G F Hamilton
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P Majdak
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D S Miller
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P J Bucko
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J R Merritt
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - C P Krebs
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J S Rhodes
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Tipps ME, Raybuck JD, Buck KJ, Lattal KM. Delay and trace fear conditioning in C57BL/6 and DBA/2 mice: issues of measurement and performance. ACTA ACUST UNITED AC 2014; 21:380-93. [PMID: 25031364 PMCID: PMC4105718 DOI: 10.1101/lm.035261.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strain comparison studies have been critical to the identification of novel genetic and molecular mechanisms in learning and memory. However, even within a single learning paradigm, the behavioral data for the same strain can vary greatly, making it difficult to form meaningful conclusions at both the behavioral and cellular level. In fear conditioning, there is a high level of variability across reports, especially regarding responses to the conditioned stimulus (CS). Here, we compare C57BL/6 and DBA/2 mice using delay fear conditioning, trace fear conditioning, and a nonassociative condition. Our data highlight both the significant strain differences apparent in these fear conditioning paradigms and the significant differences in conditioning type within each strain. We then compare our data to an extensive literature review of delay and trace fear conditioning in these two strains. Finally, we apply a number of commonly used baseline normalization approaches to compare how they alter the reported differences. Our findings highlight three major sources of variability in the fear conditioning literature: CS duration, number of CS presentations, and data normalization to baseline measures.
Collapse
Affiliation(s)
- Megan E Tipps
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Kari J Buck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA Portland Alcohol Research Center, Portland VA Medical Center, Portland, Oregon 97239, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
24
|
Ganella DE, Kim JH. Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. Br J Pharmacol 2014; 171:4556-74. [PMID: 24527726 DOI: 10.1111/bph.12643] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 01/15/2023] Open
Abstract
Anxiety disorders pose one of the biggest threats to mental health in the world, and they predominantly emerge early in life. However, research of anxiety disorders and fear-related memories during development has been largely neglected, and existing treatments have been developed based on adult models of anxiety. The present review describes animal models of anxiety disorders across development and what is currently known of their pharmacology. To summarize, the underlying mechanisms of intrinsic 'unlearned' fear are poorly understood, especially beyond the period of infancy. Models using 'learned' fear reveal that through development, rats exhibit a stress hyporesponsive period before postnatal day 10, where they paradoxically form odour-shock preferences, and then switch to more adult-like conditioned fear responses. Juvenile rats appear to forget these aversive associations more easily, as is observed with the phenomenon of infantile amnesia. Juvenile rats also undergo more robust extinction, until adolescence where they display increased resistance to extinction. Maturation of brain structures, such as the amygdala, prefrontal cortex and hippocampus, along with the different temporal recruitment and involvement of various neurotransmitter systems (including NMDA, GABA, corticosterone and opioids) are responsible for these developmental changes. Taken together, the studies described in this review highlight that there is a period early in development where rats appear to be more robust in overcoming adverse early life experience. We need to understand the fundamental pharmacological processes underlying anxiety early in life in order to take advantage of this period for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Despina E Ganella
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
25
|
Wang ME, Fraize NP, Yin L, Yuan RK, Petsagourakis D, Wann EG, Muzzio IA. Differential roles of the dorsal and ventral hippocampus in predator odor contextual fear conditioning. Hippocampus 2013; 23:451-66. [PMID: 23460388 DOI: 10.1002/hipo.22105] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2013] [Indexed: 01/15/2023]
Abstract
The study of fear memory is important for understanding various anxiety disorders in which patients experience persistent recollections of traumatic events. These memories often involve associations of contextual cues with aversive events; consequently, Pavlovian classical conditioning is commonly used to study contextual fear learning. The use of predator odor as a fearful stimulus in contextual fear conditioning has become increasingly important as an animal model of anxiety disorders. Innate fear responses to predator odors are well characterized and reliable; however, attempts to use these odors as unconditioned stimuli in fear conditioning paradigms have proven inconsistent. Here we characterize a contextual fear conditioning paradigm using coyote urine as the unconditioned stimulus. We found that contextual conditioning induced by exposure to coyote urine produces long-term freezing, a stereotypic response to fear observed in mice. This paradigm is context-specific and parallels shock-induced contextual conditioning in that it is responsive to extinction training and manipulations of predator odor intensity. Region-specific lesions of the dorsal and ventral hippocampus indicate that both areas are independently required for the long-term expression of learned fear. These results in conjunction with c-fos immunostaining data suggest that while both the dorsal and ventral hippocampus are required for forming a contextual representation, the ventral region also modulates defensive behaviors associated with predators. This study provides information about the individual contributions of the dorsal and ventral hippocampus to ethologically relevant fear learning.
Collapse
Affiliation(s)
- Melissa E Wang
- Neuroscience Graduate Group, Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kubo Y, Yanagawa Y, Matsumoto M, Hiraide S, Kobayashi M, Togashi H. Toll-like receptor 7-mediated enhancement of contextual fear memory in mice. Pharmacol Biochem Behav 2012; 102:495-501. [PMID: 22750061 DOI: 10.1016/j.pbb.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 02/06/2023]
Abstract
Toll-like receptor (TLR) 7 recognizes viral single-stranded RNA and triggers production of the type I interferons (IFNs) IFN-α and IFN-β. Imiquimod, a synthetic TLR7 ligand, induces production of type I IFNs and is used clinically as an antiviral and antitumor drug. In the present study, we examined the effect of imiquimod on conditioned and innate fear behaviors in mice. Imiquimod was administered 2, 4, or 15 h before contextual fear conditioning. Imiquimod treatment 4 or 15 h before fear conditioning significantly enhanced context-dependent freezing behavior. This imiquimod-induced enhancement of fear-related behaviors was observed 120 h after fear conditioning. In contrast, imiquimod failed to enhance context-dependent freezing behavior in TLR7 knockout mice. Imiquimod had no significant effect on pain threshold or on innate fear-related behavior, as measured by the elevated plus-maze. The levels of type I IFN mRNA in the brain were significantly increased at 2 h after imiquimod treatment. Imiquimod also increased interleukin (IL)-1β mRNA expression in the brain at 4 h following administration, while mRNA expression of F4/80, a macrophage marker, was unaffected by imiquimod treatment. Our findings suggest that TLR7-mediated signaling enhances contextual fear memory in mice, possibly by inducing the expression of type I IFNs and IL-1β in the brain.
Collapse
Affiliation(s)
- Yasunori Kubo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Deficits in emotional learning and memory in an animal model of schizophrenia. Behav Brain Res 2012; 233:35-44. [PMID: 22569573 DOI: 10.1016/j.bbr.2012.04.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 04/05/2012] [Accepted: 04/28/2012] [Indexed: 11/23/2022]
Abstract
Alterations in N-methyl-D-aspartate (NMDA) receptor function have been linked to numerous behavioral deficits and neurochemical alterations. Recent investigations have begun to explore the role of NMDA receptor function on principally inhibitory neurons and their role in network function. One of the prevailing models of schizophrenia proposes a reduction in NMDA receptor function on inhibitory interneurons and the resulting disinhibition may give rise to aspects of the disorder. Studies using NMDA receptor antagonists such as PCP and ketamine have induced schizophrenia-like behavioral deficits in animal model systems as well as changes in inhibitory circuits. The current study investigated whether the administration of a subanesthetic dose of ketamine (8 mg/kg subcutaneously), that disrupts sensorimotor gating, also produces impairments in a Pavlovian emotional learning and memory task. We utilized both standard delay and trace cued and contextual fear conditioning (CCF) paradigms to examine if ketamine produces differential effects when the task is more difficult and relies on connectivity between specific brain regions. Rats administered ketamine displayed no significant deficits in cued or contextual fear following the delay conditioning protocol. However, ketamine did produce a significant impairment in the more difficult trace conditioning protocol. Analyses of tissue from the hippocampus and amygdala indicated that the administration of ketamine produced an alteration in GABA receptor protein levels differentially depending on the task. These data indicate that 8 mg/kg of ketamine impairs learning in the more difficult emotional classical conditioning task and may be related to altered signaling in GABAergic systems.
Collapse
|
28
|
Luyten L, Casteels C, Vansteenwegen D, van Kuyck K, Koole M, Van Laere K, Nuttin B. Micro-positron emission tomography imaging of rat brain metabolism during expression of contextual conditioning. J Neurosci 2012; 32:254-63. [PMID: 22219287 PMCID: PMC6621336 DOI: 10.1523/jneurosci.3701-11.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/13/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022] Open
Abstract
Using (18)F-fluorodeoxyglucose microPET imaging, we investigated the neurocircuitry of contextual anxiety versus control in awake, conditioned rats (n = 7-10 per group). In addition, we imaged a group expressing cued fear. Simultaneous measurements of startle amplitude and freezing time were used to assess conditioning. To the best of our knowledge, no neuroimaging studies in conditioned rats have been conducted thus far, although visualizing and quantifying the metabolism of the intact brain in behaving animals is clearly of interest. In addition, more insight into the neurocircuitry involved in contextual anxiety may stimulate the development of new treatments for anxiety disorders. Our main finding was hypermetabolism in a cluster comprising the bed nucleus of the stria terminalis (BST) in rats expressing contextual anxiety compared with controls. Analysis of a subset of rats showing the best behavioral results (n = 5 per subgroup) confirmed this finding. We also observed hypermetabolism in the same cluster in rats expressing contextual anxiety compared with rats expressing cued fear. Our results provide novel evidence for a role of the BST in the expression of contextual anxiety.
Collapse
Affiliation(s)
- Laura Luyten
- Division of Experimental Neurosurgery and Neuroanatomy, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
29
|
Contextual conditioning in rats as an animal model for generalized anxiety disorder. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2011; 11:228-44. [PMID: 21302154 DOI: 10.3758/s13415-011-0021-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Animal models of psychiatric disorders are important translational tools for exploring new treatment options and gaining more insight into the disease. Thus far, there is no systematically validated animal model for generalized anxiety disorder (GAD), a severely impairing and difficult-to-treat disease. In this review, we propose contextual conditioning (CC) as an animal model for GAD. We argue that this model has sufficient face validity (there are several symptom similarities), predictive validity (it responds to clinically effective treatments), and construct validity (the underlying mechanisms are comparable). Although the refinement and validation of an animal model is a never-ending process, we want to give a concise overview of the currently available evidence. We suggest that the CC model might be a valuable preclinical tool to enhance the development of new treatment strategies and our understanding of GAD.
Collapse
|
30
|
Henrich-Noack P, Krautwald K, Reymann KG, Wetzel W. Effects of transient global ischaemia on freezing behaviour and activity in a context-dependent fear conditioning task – Implications for memory investigations. Brain Res Bull 2011; 85:346-53. [DOI: 10.1016/j.brainresbull.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
|
31
|
Luyten L, van Kuyck K, Vansteenwegen D, Nuttin B. Electrolytic lesions of the bed nucleus of the stria terminalis disrupt freezing and startle potentiation in a conditioned context. Behav Brain Res 2011; 222:357-62. [PMID: 21497171 DOI: 10.1016/j.bbr.2011.03.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 11/15/2022]
Abstract
Expression of contextual anxiety in a previously shocked context is a widely used model of anxiety, with the main behavioral measures being freezing or startle amplitude. There is extensive evidence that the bed nucleus of the stria terminalis (BST) is involved in several anxiety paradigms, e.g., BST lesions disrupt contextual freezing. Surprisingly, studies investigating the effect on startle potentiation in a conditioned context are still lacking in the literature. In the present study, we found that post-training bilateral electrolytic lesions in the BST completely disrupted the expression of contextual anxiety, as quantified with combined measurements of startle amplitude and freezing.
Collapse
Affiliation(s)
- Laura Luyten
- Laboratory of Experimental Functional Neurosurgery, Department of Neurosciences, K.U. Leuven, Minderbroedersstraat 19 bus 1033, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
32
|
Anxiolytic-like effects of the neurokinin 1 receptor antagonist GR-205171 in the elevated plus maze and contextual fear-potentiated startle model of anxiety in gerbils. Behav Pharmacol 2011; 20:584-95. [PMID: 19675456 DOI: 10.1097/fbp.0b013e32832ec594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gerbils show a neurokinin (NK)1 receptor pharmacological profile, which is similar to that observed in humans, and thus have become a commonly used species to test efficacy of NK1 receptor antagonists. The aim of this study was to determine whether systemic administration of the NK1 receptor antagonist GR-205171 produced anxiolytic-like effects in the elevated plus maze and in a novel contextual conditioned fear test using fear-potentiated startle (FPS). On the elevated plus maze, treatment with GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing produced anxiolytic-like effects in an increasing dose-response manner as measured by the percentage of open arm time and percentage of open arm entries. For contextual fear conditioning, gerbils were given 10 unsignaled footshocks (0.6 mA) at a 2-min variable interstimulus interval in a distinctive training context. Twenty-four hours after training, gerbils received treatment of GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing in which startle was elicited in the same context in which they were trained. Contextual FPS was defined as an increase in startle over pretraining baseline values. All drug dose levels (0.3, 1.0, and 5.0 mg/kg) significantly attenuated contextual FPS when compared with the vehicle control group. A control group, which received testing in a different context, showed little FPS. These findings support other evidence for anxiolytic activity of NK1 receptor antagonists and provide a novel conditioned fear test that may be an appropriate procedure to test other NK1 antagonists for preclinical anxiolytic activity in gerbils.
Collapse
|
33
|
Foster JA, Burman MA. Evidence for hippocampus-dependent contextual learning at postnatal day 17 in the rat. Learn Mem 2010; 17:259-66. [PMID: 20427514 DOI: 10.1101/lm.1755810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully developed until PD 23. Alternatively, the hippocampus may be functional prior to PD 23, but unable to cooperate with the amygdala for fearful learning. The current experiments investigate this by separating the phases of conditioning across developmental stages. Rats were allowed to learn about the context on one day and to form the fearful association on another. Rats exposed to the context on PD 17 exhibited significant fear only when trained and tested a week later (PD 23, 24), but not on consecutive days (PD 18, 19), demonstrating that rats can learn about a context as early as PD 17. Further experiments clarify that it is associative mechanisms that are developing between PD 18 and 23. Finally, the hippocampus was lesioned prior to training to ensure the task is being solved in a hippocampus-dependent manner. These data provide compelling evidence that the hippocampus is functional for contextual learning as early as PD 17, however, its connection to the amygdala or other relevant brain structures may not yet be fully developed.
Collapse
Affiliation(s)
- Jennifer A Foster
- Program in Neuroscience, Bates College, Lewiston, Maine 04240-6028, USA
| | | |
Collapse
|
34
|
Retrograde amnesia for fear-potentiated startle in rats after complete, but not partial, hippocampal damage. Neuroscience 2010; 167:974-84. [PMID: 20226233 DOI: 10.1016/j.neuroscience.2010.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 11/22/2022]
Abstract
We assessed the involvement of the hippocampus in recall of learned fear of a discrete visual stimulus using a fear-potentiated startle (FPS) procedure. Recall was measured by an increase in acoustic startle in the presence of a light that was paired with footshock. In Experiment 1, rats either received sham, dorsal, ventral, or complete (dorsal and ventral) NMDA-induced damage of the hippocampus following FPS acquisition. During the post-surgery retention test, only the rats with complete hippocampal damage showed a significant FPS deficit. In Experiment 2, we examined whether recent and remote memory for FPS would be differentially affected by complete hippocampal damage. Rats received sham or complete hippocampal damage 1- or 4-wk after FPS acquisition. During the retention test, sham rats exhibited significant FPS, whereas rats with hippocampal damage showed a large FPS deficit that was equivalent for recent and remote memories. In Experiment 3, we found that rats with complete hippocampal damage induced before conditioning showed levels of FPS that did not significantly differ from sham rats. Combined, these findings suggest that extensive damage to the hippocampus causes retrograde amnesia for a memory involving a light-shock association that is not temporally graded. The same damage does not cause anterograde amnesia in the same memory task. Partial damage of the hippocampus, whether of the dorsal or ventral region, was insufficient to cause retrograde amnesia. Thus, the hippocampus normally has a critical and long-lasting role enabling recall of fear conditioning to a discrete visual stimulus. In the absence of the hippocampus other memory systems support new learning.
Collapse
|
35
|
Daniels WMU, Pitout IL, Afullo TJO, Mabandla MV. The effect of electromagnetic radiation in the mobile phone range on the behaviour of the rat. Metab Brain Dis 2009; 24:629-41. [PMID: 19823925 DOI: 10.1007/s11011-009-9164-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/26/2009] [Indexed: 11/26/2022]
Abstract
Electromagnetic radiation (EMR) is emitted from electromagnetic fields that surround power lines, household appliances and mobile phones. Research has shown that there are connections between EMR exposure and cancer and also that exposure to EMR may result in structural damage to neurons. In a study by Salford et al. (Environ Health Perspect 111:881-883, 2003) the authors demonstrated the presence of strongly stained areas in the brains of rats that were exposed to mobile phone EMR. These darker neurons were particularly prevalent in the hippocampal area of the brain. The aim of our study was to further investigate the effects of EMR. Since the hippocampus is involved in learning and memory and emotional states, we hypothesised that EMR will have a negative impact on the subject's mood and ability to learn. We subsequently performed behavioural, histological and biochemical tests on exposed and unexposed male and female rats to determine the effects of EMR on learning and memory, emotional states and corticosterone levels. We found no significant differences in the spatial memory test, and morphological assessment of the brain also yielded non-significant differences between the groups. However, in some exposed animals there were decreased locomotor activity, increased grooming and a tendency of increased basal corticosterone levels. These findings suggested that EMR exposure may lead to abnormal brain functioning.
Collapse
Affiliation(s)
- Willie M U Daniels
- Department of Human Physiology, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| | | | | | | |
Collapse
|
36
|
Effect of estradiol benzoate microinjection into the median raphe nucleus on contextual conditioning. Behav Brain Res 2009; 204:112-6. [DOI: 10.1016/j.bbr.2009.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
|
37
|
Almada RC, Borelli KG, Albrechet-Souza L, Brandão ML. Serotonergic mechanisms of the median raphe nucleus–dorsal hippocampus in conditioned fear: Output circuit involves the prefrontal cortex and amygdala. Behav Brain Res 2009; 203:279-87. [DOI: 10.1016/j.bbr.2009.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/13/2009] [Indexed: 12/30/2022]
|
38
|
Burman MA, Murawski NJ, Schiffino FL, Rosen JB, Stanton ME. Factors governing single-trial contextual fear conditioning in the weanling rat. Behav Neurosci 2009; 123:1148-52. [PMID: 19824781 PMCID: PMC4075732 DOI: 10.1037/a0016733] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although contextual fear conditioning emerges later in development than explicit-cue fear conditioning, little is known about the stimulus parameters and biological substrates required at early ages. The authors adapted methods for investigating hippocampus function in adult rodents to identify determinants of contextual fear conditioning in developing rats. Experiment 1 examined the duration of exposure required by weanling rats at postnatal day (PND) 23 to demonstrate contextual fear conditioning. This experiment demonstrated that 30 s of context exposure is sufficient to support conditioning. Furthermore, preexposure enhanced conditioning to an immediate footshock, the context preexposure facilitation effect (CPFE), but had no effect on contextual conditioning to a delayed shock. Experiment 2 demonstrated that N-methyl-D-aspartate (NMDA) receptor inactivation during preexposure impairs contextual learning at PND 23. Thus, the conjuctive representations underlying the CPFE are NMDA-dependent as early as PND23 in the rat.
Collapse
Affiliation(s)
- M A Burman
- University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
39
|
Morphological correlates of emotional and cognitive behaviour: insights from studies on inbred and outbred rodent strains and their crosses. Behav Pharmacol 2008; 19:403-34. [PMID: 18690101 DOI: 10.1097/fbp.0b013e32830dc0de] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Every study in rodents is also a behavioural genetic study even if only a single strain is used. Outbred strains are genetically heterogeneous populations with a high intrastrain variation, whereas inbred strains are based on the multiplication of a unique individual. The aim of the present review is to summarize findings on brain regions involved in three major components of rodent behaviour, locomotion, anxiety-related behaviour and cognition, by paying particular attention to the genetic context, genetic models used and interstrain comparisons. Recent trends correlating gene expression in inbred strains with behavioural data in databases, morpho-behavioural-haplotype analyses and problems arising from large-scale multivariate analyses are discussed. Morpho-behavioural correlations in multiple strains are presented, including correlations with projection neurons, interneurons and fibre systems in the striatum, midbrain, amygdala, medial septum and hippocampus, by relating them to relevant transmitter systems. In addition, brain areas differentially activated in different strains are described (hippocampus, prefrontal cortex, nucleus accumbens, locus ceruleus). Direct interstrain comparisons indicate that strain differences in behavioural variables and neuronal markers are much more common than usually thought. The choice of the appropriate genetic model can therefore contribute to an interpretation of positive results in a wider context, and help to avoid misleading interpretations of negative results.
Collapse
|
40
|
Hernández-Rabaza V, Llorens-Martín M, Velázquez-Sánchez C, Ferragud A, Arcusa A, Gumus HG, Gómez-Pinedo U, Pérez-Villalba A, Roselló J, Trejo JL, Barcia JA, Canales JJ. Inhibition of adult hippocampal neurogenesis disrupts contextual learning but spares spatial working memory, long-term conditional rule retention and spatial reversal. Neuroscience 2008; 159:59-68. [PMID: 19138728 DOI: 10.1016/j.neuroscience.2008.11.054] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 11/30/2022]
Abstract
Neurogenesis in the adult dentate gyrus (DG) of the hippocampus has been implicated in neural plasticity and cognition but the specific functions contributed by adult-born neurons remain controversial. Here, we have explored the relationship between adult hippocampal neurogenesis and memory function using tasks which specifically require the participation of the DG. In two separate experiments several groups of rats were exposed to fractionated ionizing radiation (two sessions of 7 Gy each on consecutive days) applied either to the whole brain or focally, aiming at a region overlying the hippocampus. The immunocytochemical assays showed that the radiation significantly reduced the expression of doublecortin (DCX), a marker for immature neurons, in the dorsal DG. Ultrastructural examination of the DG region revealed disruption of progenitor cell niches several weeks after the radiation. In the first experiment, whole-brain and focal irradiation reduced DCX expression by 68% and 43%, respectively. Whole-brain and focally-irradiated rats were unimpaired compared with control rats in a matching-to-place (MTP) working memory task performed in the T-maze and in the long-term retention of the no-alternation rule. In the second experiment, focal irradiation reduced DCX expression by 36% but did not impair performance on (1) a standard non-matching-to-place (NMTP) task, (2) a more demanding NMTP task with increasingly longer within-trial delays, (3) a long-term retention test of the alternation rule and (4) a spatial reversal task. However, rats irradiated focally showed clear deficits in a "purely" contextual fear-conditioning task at short and long retention intervals. These data demonstrate that reduced adult hippocampal neurogenesis produces marked deficits in the rapid acquisition of emotionally relevant contextual information but spares spatial working memory function, the long-term retention of acquired spatial rules and the ability to flexibly modify learned spatial strategies.
Collapse
Affiliation(s)
- V Hernández-Rabaza
- Biopsychology and Comparative Neuroscience Unit, Cavanilles Institute (ICBiBE), University of Valencia-General Foundation, Polígono de la Coma s/n, Paterna, 46980 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The neurotensin-1 receptor agonist PD149163 blocks fear-potentiated startle. Pharmacol Biochem Behav 2008; 90:748-52. [PMID: 18577396 DOI: 10.1016/j.pbb.2008.05.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 12/31/2022]
Abstract
Preliminary evidence suggests that the neuropeptide, neurotensin (NT) may regulate fear/anxiety circuits. We investigated the effects of PD149163, a NT1 receptor agonist, on fear-potentiated startle (FPS). Sprague Dawley rats were trained to associate a white light with a mild foot shock. In one experiment, animals were treated with either subcutaneous vehicle or PD149163 (0.01, 0.1 or 1.0 mg/kg) 24 h after training. Twenty minutes later their acoustic startle response in the presence or absence of the white light was tested. In a second experiment, saline and 1.0 mg/kg PD149163 were tested using a separate group of rats. In the first experiment, PD149163 produced a non-significant decrease in baseline acoustic startle at all three doses. As expected, saline-treated rats exhibited significant FPS. An ANOVA of percentage FPS revealed no significant effect of treatment group overall but the high dose group did not display FPS strongly suggesting an FPS effect at this dose. This finding was confirmed in the second experiment where the high dose of PD149163 reduced percent FPS relative to saline (P < 0.05). These data suggest that systemically administered NT1 agonists modulate the neural circuitry that regulates fear and anxiety to produce dose-dependent anxiolytic-like effects on FPS.
Collapse
|
42
|
Clark PJ, Brzezinska WJ, Thomas MW, Ryzhenko NA, Toshkov SA, Rhodes JS. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience 2008; 155:1048-58. [PMID: 18664375 DOI: 10.1016/j.neuroscience.2008.06.051] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/21/2008] [Accepted: 06/23/2008] [Indexed: 12/18/2022]
Abstract
The mammalian hippocampus continues to generate new neurons throughout life. Experiences such as exercise, anti-depressants, and stress regulate levels of neurogenesis. Exercise increases adult hippocampal neurogenesis and enhances behavioral performance on rotarod, contextual fear and water maze in rodents. To directly test whether intact neurogenesis is required for gains in behavioral performance from exercise in C57BL/6J mice, neurogenesis was reduced using focal gamma irradiation (3 sessions of 5 Gy). Two months after treatment, mice (total n=42 males and 42 females) (Irradiated or Sham), were placed with or without running wheels (Runner or Sedentary) for 54 days. The first 10 days mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. The last 14 days mice were tested on water maze (two trials per day for 5 days, then 1 h later probe test), rotarod (four trials per day for 3 days), and contextual fear conditioning (2 days), then measured for neurogenesis using immunohistochemical detection of BrdU and neuronal nuclear protein (NeuN) mature neuronal marker. Consistent with previous studies, in Sham animals, running increased neurogenesis fourfold and gains in performance were observed for the water maze (spatial learning and memory), rotarod (motor performance), and contextual fear (conditioning). These positive results provided the reference to determine whether gains in performance were blocked by irradiation. Irradiation reduced neurogenesis by 50% in both groups, Runner and Sedentary. Irradiation did not affect running or baseline performance on any task. Minimal changes in microglia associated with inflammation (using immunohistochemical detection of cd68) were detected at the time of behavioral testing. Irradiation did not reduce gains in performance on rotarod or contextual fear, however it eliminated gain in performance on the water maze. Results support the hypothesis that intact exercise-induced hippocampal neurogenesis is required for improved spatial memory, but not motor performance or contextual fear in C57BL/6J mice.
Collapse
Affiliation(s)
- P J Clark
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
43
|
Quinn JJ, Wied HM, Ma QD, Tinsley MR, Fanselow MS. Dorsal hippocampus involvement in delay fear conditioning depends upon the strength of the tone‐footshock association. Hippocampus 2008; 18:640-54. [DOI: 10.1002/hipo.20424] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Perez-Villalba A, Mackintosh NJ, Canales JJ. Influence of massed and distributed context preexposure on contextual fear and Egr-1 expression in the basolateral amygdala. Physiol Behav 2008; 93:206-14. [PMID: 17900634 DOI: 10.1016/j.physbeh.2007.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 11/23/2022]
Abstract
Preexposure to the conditioning context can influence the expression of context-conditioned fear. We used behavioral and early growth response gene (egr-1) assays in rats to study the effects of massed and distributed context preexposure on context-conditioned fear. The results demonstrated that massed context preexposure impaired acquisition of contextual fear, an effect here referred to as delayed shock deficit. Spaced context preexposure produced similar inhibitory effects. Significantly, the introduction of a brief change of context prior to conditioning completely reversed the deficit induced by massed, but not by distributed, context preexposure. This reversibility was inversely related to the duration of the context shift. The acquisition of context-conditioned fear was associated with enhanced Egr-1 expression in the basolateral amygdala (BLA). No such increase was evident in animals undergoing distributed context preexposure or in those experiencing massed preexposure without change of context. Remarkably, a brief change of context prior to conditioning not only facilitated learning following massed preexposure but also elicited a significant elevation of Egr-1 protein levels in the BLA. The findings shown demonstrated that the inhibitory effects of massed and distributed context preexposure on conditioning could be dissociable both behaviorally and physiologically. We suggest that the delayed shock deficit associated with massed preexposure derives from perceptual fade-out or inattention and its reversal by a brief change of context from attentional recovery.
Collapse
Affiliation(s)
- A Perez-Villalba
- Laboratory of Biopsychology and Comparative Neuroscience, Cavanilles Institute (ICBiBE), University of Valencia, Polígono de la Coma s/n, Paterna-46980 Valencia-Spain.
| | | | | |
Collapse
|
45
|
Yee BK, Singer P, Chen JF, Feldon J, Boison D. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur J Neurosci 2007; 26:3237-52. [DOI: 10.1111/j.1460-9568.2007.05897.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Royo NC, LeBold D, Magge SN, Chen I, Hauspurg A, Cohen AS, Watson DJ. Neurotrophin-mediated neuroprotection of hippocampal neurons following traumatic brain injury is not associated with acute recovery of hippocampal function. Neuroscience 2007; 148:359-70. [PMID: 17681695 PMCID: PMC2579330 DOI: 10.1016/j.neuroscience.2007.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) causes selective hippocampal cell death which is believed to be associated with the cognitive impairment observed in both clinical and experimental settings. The endogenous neurotrophin-4/5 (NT-4/5), a TrkB ligand, has been shown to be neuroprotective for vulnerable CA3 pyramidal neurons after experimental brain injury. In this study, infusion of recombinant NT-4/5 increased survival of CA2/3 pyramidal neurons to 71% after lateral fluid percussion brain injury in rats, compared with 55% in vehicle-treated controls. The functional outcome of this NT-4/5-mediated neuroprotection was examined using three hippocampal-dependent behavioral tests. Injury-induced impairment was evident in all three tests, but interestingly, there was no treatment-related improvement in any of these measures. Similarly, injury-induced decreased excitability in the Schaffer collaterals was not affected by NT-4/5 treatment. We propose that a deeper understanding of the factors that link neuronal survival to recovery of function will be important for future studies of potentially therapeutic agents.
Collapse
Affiliation(s)
- N C Royo
- Department of Neurosurgery, 371A Stemmler Hall/6071, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Turnock M, Becker S. A neural network model of hippocampal-striatal-prefrontal interactions in contextual conditioning. Brain Res 2007; 1202:87-98. [PMID: 17889839 DOI: 10.1016/j.brainres.2007.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/20/2007] [Indexed: 11/26/2022]
Abstract
The hippocampus is thought to be critical for encoding contextually bound memories and setting the context for ongoing behavior. However, the mechanisms by which the hippocampal-cortical system controls behavior are poorly understood. We propose a computational model in which the hippocampus exerts contextual control over motivated behavior by gating prefrontal cortex inputs to the nucleus accumbens. The model integrates the episodic memory functions of the hippocampus, the prefrontal role in representing the motivational stimuli and cognitive control, and the role of striatal regions in conditioned learning within a single theoretical framework. Simulation results are consistent with the hypothesis that hippocampal-prefrontal interactions may act as the neural substrate that allows contextual cues to override conditioned responses at the level of the nucleus accumbens. Prefrontal and hippocampal input overrides the predominant CS-US association if the context is inconsistent, and promotes flexible selection of previously learned associations and behaviors. Simulated transection of the fornix, effectively eliminating hippocampal and prefrontal influence over the nucleus accumbens, abolishes normal contextual modulation of behavior. The model is consistent with a wide range of empirical data.
Collapse
Affiliation(s)
- Matthew Turnock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Building 34, Room 312, 1280 Main Street West, Hamilton, Canada ON L8S 4K1
| | | |
Collapse
|
48
|
Conejo NM, González-Pardo H, López M, Cantora R, Arias JL. Induction of c-Fos expression in the mammillary bodies, anterior thalamus and dorsal hippocampus after fear conditioning. Brain Res Bull 2007; 74:172-7. [PMID: 17683804 DOI: 10.1016/j.brainresbull.2007.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 04/27/2007] [Accepted: 06/12/2007] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to provide further evidence on the role of particular subdivisions of the mammillary bodies, anterior thalamus and dorsal hippocampus to contextual and auditory fear conditioning. We used c-Fos expression as a marker of neuronal activation to compare rats that received tone-footshock pairings in a distinctive context (conditioned group) to rats being exposed to both the context and the auditory CS without receiving footshocks (unconditioned group), and naïve rats that were only handled. Fos immunoreactivity was significantly increased only in the anterodorsal thalamic nucleus and the lateral mammillary nucleus of the conditioned group. However, the dorsal hippocampus showed the highest density of c-Fos positive nuclei in the naïve group as compared to the other groups. Together, our data support previous studies indicating a particular involvement of the mammillary bodies and anterior thalamus in fear conditioning.
Collapse
Affiliation(s)
- Nélida M Conejo
- Laboratory of Neuroscience, Faculty of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain.
| | | | | | | | | |
Collapse
|
49
|
Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 2007; 12:656-70. [PMID: 17264839 PMCID: PMC2442923 DOI: 10.1038/sj.mp.4001957] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to play a critical role in the synaptic plasticity underlying the acquisition and/or consolidation of certain forms of memory. Additionally, a role has been suggested for neurotrophin function within the hippocampus in protection from anxiety and depressive disorders. Understanding the function of this important gene in adult animals has been limited however, because standard knockouts are confounded by gene effects during development. There are no BDNF receptor-specific pharmacological agents, and infusions of neuropeptides or antibodies have other significant limitations. In these studies, we injected a lentivirus expressing Cre recombinase bilaterally into the dorsal hippocampus in adult mice floxed at the BDNF locus to facilitate the site-specific deletion of the BDNF gene in adult animals. Significant decreases in BDNF mRNA expression are demonstrated in the hippocampi of lenti-Cre-infected animals compared with control lenti-GFP-infected animals. Behaviorally, there were no significant effects of BDNF deletion on locomotion or baseline anxiety measured with startle. In contrast, hippocampal-specific BDNF deletions impair novel object recognition and spatial learning as demonstrated with the Morris water maze. Although there were no effects on the acquisition or expression fear, animals with BDNF deletions show significantly reduced extinction of conditioned fear as measured both with fear-potentiated startle and freezing. These data suggest that the cognitive deficits and impairment in extinction of aversive memory found in depression and anxiety disorders may be directly related to decreased hippocampal BDNF.
Collapse
Affiliation(s)
- SA Heldt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - L Stanek
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - JP Chhatwal
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - KJ Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
50
|
Moses SN, Winocur G, Ryan JD, Moscovitch M. Environmental complexity affects contextual fear conditioning following hippocampal lesions in rats. Hippocampus 2007; 17:333-7. [PMID: 17415748 DOI: 10.1002/hipo.20275] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Contextual fear conditioning has become a benchmark measure for hippocampal function, even though several studies report successful acquisition in hippocampal-damaged rodents. The current study examined whether environmental complexity may account for these discrepancies. We directly compared single-session contextual fear conditioning in rats in a simple vs. complex environment. Hippocampal lesions led to reduced fear conditioning in both contexts, as measured by freezing, but the effect was significantly greater in the complex context. As well, lesions led to generalized fear when the complex context was paired with shock, but not when the simple context was paired. We suggest that the representation of the simple context formed by rats with hippocampal lesions was adequate to support associative learning, but the representation of the complex context, which depended to a greater extent on relational learning, was not. The results were interpreted as consistent with theories of hippocampal function that emphasize its role in integrating multiple stimulus elements in a memory trace.
Collapse
Affiliation(s)
- Sandra N Moses
- Rotman Research Institute, Baycrest Centre, Toronto, Canada
| | | | | | | |
Collapse
|