1
|
Song T, Li L, Wu S, Liu Y, Guo C, Wang W, Dai L, Zhang T, Wu H, Su B. Peripheral Blood Genetic Biomarkers for the Early Diagnosis of Hepatocellular Carcinoma. Front Oncol 2021; 11:583714. [PMID: 33777736 PMCID: PMC7991745 DOI: 10.3389/fonc.2021.583714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has high mortality. Biomarkers related to HCC, such as alpha-fetoprotein, and imaging technology, such as ultrasound and computed tomography, have been used to screen and monitor HCC, but HCC is still difficult to diagnose effectively in the early stage due to the low sensitivity of the above mentioned traditional methods. There is an urgent need for noninvasive biomarkers to facilitate the screening and early diagnosis of HCC. With the advancement of next-generation sequencing, genetic biomarkers are becoming the core of cancer diagnosis. Genetic biomarkers such as peripheral blood circulating tumor DNA, microRNAs, long noncoding RNAs, circular RNAs, and exosomes have become the focus of early HCC diagnostics. HCC genetic biomarkers have been implemented in clinical practice. In this review, we describe the available literature on peripheral blood genetic biomarkers in the diagnosis of early HCC.
Collapse
Affiliation(s)
- Ting Song
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China.,Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, China
| | - Li Li
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Shaobo Wu
- Center of Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences (CAMS), Chengdu, China
| | - Yan Liu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Caiping Guo
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
2
|
Yan YY, Guo QR, Wang FH, Adhikari R, Zhu ZY, Zhang HY, Zhou WM, Yu H, Li JQ, Zhang JY. Cell-Free DNA: Hope and Potential Application in Cancer. Front Cell Dev Biol 2021; 9:639233. [PMID: 33693004 PMCID: PMC7938321 DOI: 10.3389/fcell.2021.639233] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Cell-free DNA (cfDNA) is easily accessible in peripheral blood and can be used as biomarkers for cancer diagnostics, prognostics, and therapeutics. The applications of cfDNA in various areas of cancer management are attracting attention. In this review article, we discuss the potential relevance of using cfDNA analysis in clinical oncology, particularly in cancer screening, early diagnosis, therapeutic evaluation, monitoring disease progression; and determining disease prognosis.
Collapse
Affiliation(s)
- Yan-yan Yan
- School of Medicine, Shanxi Datong University, Datong, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Feng-hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur, Nepal
| | - Zhuang-yan Zhu
- School of Medicine, Shanxi Datong University, Datong, China
| | - Hai-yan Zhang
- School of Medicine, Shanxi Datong University, Datong, China
| | - Wen-min Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Avenida da Universidade, Taipa, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jian-ye Zhang
- School of Medicine, Shanxi Datong University, Datong, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Rath PP, Gourinath S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins 2020; 88:1361-1375. [PMID: 32506560 DOI: 10.1002/prot.25955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Years of evolution have kept actin conserved throughout various clades of life. It is an essential protein starring in many cellular processes. In a primitive eukaryote named Entamoeba histolytica, actin directs the process of phagocytosis. A finely tuned coordination between various actin-binding proteins (ABPs) choreographs this process and forms one of the virulence factors for this protist pathogen. The ever-expanding world of ABPs always has space to accommodate new and varied types of proteins to the earlier existing repertoire. In this article, we report the identification of 390 ABPs from Entamoeba histolytica. These proteins are part of diverse families that have been known to regulate actin dynamics. Most of the proteins are primarily uncharacterized in this organism; however, this study aims to annotate the ABPs based on their domain arrangements. A unique characteristic about some of the ABPs found is the combination of domains present in them unlike any other reported till date. Calponin domain-containing proteins formed the largest group among all types with 38 proteins, followed by 29 proteins with the infamous BAR domain in them, and 23 proteins belonging to actin-related proteins. The other protein families had a lesser number of members. Presence of exclusive domain arrangements in these proteins could guide us to yet unknown actin regulatory mechanisms prevalent in nature. This article is the first step to unraveling them.
Collapse
|
4
|
Hur D, Hong S. Cloning and characterization of a fish specific gelsolin family gene, ScinL, in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 164:89-98. [PMID: 23159325 DOI: 10.1016/j.cbpb.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
Scinderin like (ScinL) gene is a unique gelsolin family gene found only in fish. In this study ScinL gene was cloned in olive flounder for the first time and characterized its expression and function. Flounder ScinL cDNA consists of 2911 nucleotides encoding a putative protein of 720 amino acids (79.4 kDa). In phylogenetic analysis, flounder ScinL is closely related to ScinL of zebra fish, anableps, and fugu with the similarity of 51-72%. Fish ScinLs are positioned between gelsolin and scinderin of other species. Flounder ScinL protein has the highly conserved actin and PIP2 binding sites, Ca(2+) coordination site, and a C-terminal latch helix preventing the activation of ScinL protein in the absence of Ca(2+). Putative binding sites for NFAT and AP-1 were found in 5' flanking region. Constitutive ScinL expression was found in most organs and the expression level was higher in gill, head kidney, trunk kidney, spleen and skin than muscle, stomach, intestine and brain. In Q-PCR analysis ScinL and CYP1A1 gene expression were significantly upregulated by BaP in head kidney in vivo and in vitro, and in macrophage cells. Upregulated ScinL expression by BaP was blocked by EGTA, indicating a calcium dependent regulation of ScinL expression.
Collapse
Affiliation(s)
- Deokhwe Hur
- Department of Marine Biotechnology, Gangneung Wonju National University, Gangneung 210-702, South Korea
| | | |
Collapse
|
5
|
A functional study of nucleocytoplasmic transport signals of the EhNCABP166 protein from Entamoeba histolytica. Parasitology 2012; 139:1697-710. [PMID: 22906852 DOI: 10.1017/s0031182012001199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
EhNCABP166 is an Entamoeba histolytica actin-binding protein that localizes to the nucleus and cytoplasm. Bioinformatic analysis of the EhNCABP166 amino acid sequence shows the presence of 3 bipartite nuclear localization signals (NLS) and a nuclear export signal (NES). The present study aimed to investigate the functionality of these signals in 3 ways. First, we fused each potential NLS to a cytoplasmic domain of ehFLN to determine whether the localization of this domain could be altered by the presence of the NLSs. Furthermore, the localization of each domain of EhNCABP166 was determined. Similarly, we generated mutations in the first block of bipartite signals from the domains that contained these signals. Additionally, we added an NES to 2 constructs that were then evaluated. We confirmed the intranuclear localization of EhNCABP166 using transmission electron microscopy. Fusion of each NLS resulted in shuttling of the cytoplasmic domain to the nucleus. With the exception of 2 domains, all of the evaluated domains localized within the nucleus. A mutation in the first block of bipartite signals affected the localization of the domains containing an NLS. The addition of an NES shifted the localization of these domains to the cytoplasm. The results presented here establish EhNCABP166 as a protein containing functional nuclear localization signals and a nuclear export signal.
Collapse
|
6
|
The domain structure of Entamoeba α-actinin2. Cell Mol Biol Lett 2010; 15:665-78. [PMID: 20865366 PMCID: PMC6275957 DOI: 10.2478/s11658-010-0035-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/10/2010] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica, a major agent of human amoebiasis, expresses two distinct forms of α-actinin, a ubiquitous actin-binding protein that is present in most eukaryotic organisms. In contrast to all metazoan α-actinins, in both isoforms the intervening rod domain that connects the N-terminal actin-binding domain with the C-terminal EF-hands is much shorter. It is suggested that these α-actinins may be involved in amoeboid motility and phagocytosis, so we cloned and characterised each domain of one of these α-actinins to better understand their functional role. The results clearly showed that the domains have properties very similar to those of conventional α-actinins.
Collapse
|
7
|
Campos-Parra A, Hernández-Cuevas N, Hernandez-Rivas R, Vargas M. EhNCABP166: A nucleocytoplasmic actin-binding protein from Entamoeba histolytica. Mol Biochem Parasitol 2010; 172:19-30. [DOI: 10.1016/j.molbiopara.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 01/06/2023]
|
8
|
Virel A, Backman L. Characterization of Entamoeba histolytica alpha-actinin. Mol Biochem Parasitol 2005; 145:11-7. [PMID: 16219372 DOI: 10.1016/j.molbiopara.2005.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/18/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
We have cloned, expressed and characterized a alpha-actinin-like protein of Entamoeba histolytica. Analysis of the primary structure reveals that the essential domains of the alpha-actinin protein family are conserved: an N-terminus actin-binding domain, a C-terminus calcium-binding domain and a central helical rod domain. However, the rod domain of this Entamoeba protein is considerably shorter than the rod domain in alpha-actinins of higher organisms. The cloned Entamoeba 63 kDa protein is recognized by conventional alpha-actinin antibodies as well as binds and cross-links filamentous actin and calcium ions in the same manner as alpha-actinins. Despite the shorter rod domain this protein has conserved the most important functions of alpha-actinins. Therefore, it is suggested that this 63 kDa protein is an atypical and ancestral alpha-actinin.
Collapse
Affiliation(s)
- Ana Virel
- Biochemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
9
|
Baldo ET, Moon EK, Kong HH, Chung DI. Acanthamoeba healyi: Molecular cloning and characterization of a coronin homologue, an actin-related protein. Exp Parasitol 2005; 110:114-22. [PMID: 15888293 DOI: 10.1016/j.exppara.2005.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 02/04/2005] [Accepted: 02/05/2005] [Indexed: 11/24/2022]
Abstract
Coronin, described in organisms from yeasts to humans, has been found to be involved in various actin-associated activities. It has yet to be described in Acanthamoeba, medically significant as the causative agent of granulomatous amebic encephalitis and amoebic keratitis and used extensively in actin-related studies. We isolated and characterized a cDNA encoding a coronin-like protein in A. healyi by sequence analysis and demonstrated intracellular localization of the gene product by transient transfection. Named Ahcoronin, the gene is composed of 454 amino acids which contain the characteristic WD repeats of coronin and coronin-like proteins. The C-terminal region of the gene was also predicted to have a high tendency of forming a coiled-coil, another structural characteristic of coronin. The gene showed a 50% homology to coronins. Ahcoronin occurs as a single copy and expressed as a transcript of approximately 1.4kb in A. healyi. Results of transfection showed that Ahcoronin was localized in the cell's periphery and in the leading edge consistent to that of actin. The fusion protein has also been observed to localize around phagocytic cups but was disassembled later during phagocytosis. Sequence analysis of Ahcoronin homologue of A. healyi showed numerous potential for further studies and is sure to contribute in the growing interest toward the properties and functions of coronin and coronin-like proteins.
Collapse
Affiliation(s)
- Eleonor T Baldo
- Department of Parasitology, Kyungpook National University School of Medicine, 101 Dongin-dong, Joong-gu, Taegu 700-422, Republic of Korea
| | | | | | | |
Collapse
|