1
|
Quilles JC, Espada CR, Orsine LA, Defina TA, Almeida L, Holetz F, Cruz AK. A short ncRNA modulates gene expression and affects stress response and parasite differentiation in Leishmania braziliensis. Front Cell Infect Microbiol 2025; 15:1513908. [PMID: 39981380 PMCID: PMC11841412 DOI: 10.3389/fcimb.2025.1513908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
The protozoan parasite Leishmania spp. is a causative agent of leishmaniasis, a disease that affects millions of people in more than 80 countries worldwide. Apart from its medical relevance, this organism has a genetic organization that is unique among eukaryotes. Studies of the mechanisms regulating gene expression in Leishmania led us to investigate noncoding RNAs (ncRNAs) as regulatory elements. We previously identified differentially expressed (DE) ncRNAs in Leishmania braziliensis with potential roles in the parasite biology and development. Herein, we present a functional analysis of one such DE ncRNA, the 147-nucleotide-long transcript ncRNA97, which is preferentially expressed in amastigotes, the replicative form within mammalian phagocytes. By RT-qPCR the ncRNA97 was detected in greater quantities in the nucleus under physiological conditions and in the cytoplasm under nutritional stress. Interestingly, the transcript is protected at the 5' end but is not processed by the canonical trypanosomatid trans-splicing mechanism, according to the RNA circularization assay. ncRNA97 knockout (KO) and addback (AB) transfectants were generated and subjected to phenotypic analysis, which revealed that the lack of ncRNA97 impairs the starvation response and differentiation to the infective form. Comparative transcriptomics of ncRNA97KO and parental cells revealed that transcripts encoding amastigote-specific proteins were affected. This pioneering work demonstrates that ncRNAs contribute to the developmental regulatory mechanisms of Leishmania.
Collapse
Affiliation(s)
- José C. Quilles
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline R. Espada
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lissur A. Orsine
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tânia A. Defina
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Letícia Almeida
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, PR, Brazil
| | - Angela K. Cruz
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
3
|
Rashidi S, Kalantar K, Nguewa P, Hatam G. Leishmanial selenoproteins and the host immune system: towards new therapeutic strategies? Trans R Soc Trop Med Hyg 2020; 114:541-544. [PMID: 32236439 DOI: 10.1093/trstmh/traa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Optimum levels of selenoproteins are essential for starting and managing the host immune responses against pathogens. According to the expression of selenoproteins in Leishmania parasites, and since high levels of selenoproteins lead to adverse effects on immune cells and their functions, Leishmania parasites might then express selenoproteins such as selenomethionine in their structure and/or secretions able to challenge the host immune system. Finally, this adaptation may lead to evasion of the parasite from the host immune system. The expression of selenoproteins in Leishmania parasites might then induce the development of infection. We therefore suggest these molecules as new therapeutic candidates for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology. c/ Irunlarrea 1, 31008 Pamplona, Spain
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
| |
Collapse
|
4
|
Freitas Castro F, Ruy PC, Nogueira Zeviani K, Freitas Santos R, Simões Toledo J, Kaysel Cruz A. Evidence of putative non-coding RNAs from Leishmania untranslated regions. Mol Biochem Parasitol 2017; 214:69-74. [PMID: 28385563 DOI: 10.1016/j.molbiopara.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
Abstract
Non-coding RNAs (ncRNAs) are regulatory elements present in a wide range of organisms, including trypanosomatids. ncRNAs transcribed from the untranslated regions (UTRs) of coding genes have been described in the transcriptomes of several eukaryotes, including Trypanosoma brucei. To uncover novel putative ncRNAs in two Leishmania species, we examined a L. major cDNA library and a L. donovani non-polysomal RNA library. Using a combination of computational analysis and experimental approaches, we classified 26 putative ncRNA in L. major, of these, 5 arising from intergenic regions and 21 from untranslated regions. In L. donovani, we classified 37 putative ncRNAs, of these, 7 arising from intergenic regions, and 30 from UTRs. Our results suggest, for the first time, that UTR-transcripts may be a common feature in the eukaryote Leishmania similarly to those previously shown in T. brucei and other eukaryotes.
Collapse
Affiliation(s)
- Felipe Freitas Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Patricia C Ruy
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Karina Nogueira Zeviani
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Ramon Freitas Santos
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Juliano Simões Toledo
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
5
|
de Almeida-Bizzo JH, Alves LR, Castro FF, Garcia JBF, Goldenberg S, Cruz AK. Characterization of the pattern of ribosomal protein L19 production during the lifecycle of Leishmania spp. Exp Parasitol 2014; 147:60-6. [DOI: 10.1016/j.exppara.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 08/16/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
|
6
|
Cassago A, Rodrigues EM, Prieto EL, Gaston KW, Alfonzo JD, Iribar MP, Berry MJ, Cruz AK, Thiemann OH. Identification of Leishmania selenoproteins and SECIS element. Mol Biochem Parasitol 2006; 149:128-34. [PMID: 16766053 DOI: 10.1016/j.molbiopara.2006.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 04/27/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
Selenoproteins result from the incorporation of selenocysteine (Sec-U) at an UGA-stop codon positioned within a gene's open reading frame and directed by selenocysteine insertion sequence (SECIS) elements. Although the selenocysteine incorporation pathway has been identified in a wide range of organisms it has not yet been reported in the Kinetoplastida Leishmania and Trypanosoma. Here we present evidence consistent with the presence of a selenocysteine biosynthetic pathway in Kinetoplastida. These include the existence of SECIS-containing coding sequences in Leishmania major and Leishmania infantum, the incorporation of (75)Se into Leishmania proteins, the occurrence of selenocysteine-tRNA (tRNA (sec) (uca)) in both Leishmania and Trypanosoma and in addition the finding of all genes necessary for selenocysteine synthesis such as SELB, SELD, PSTK and SECp43. As in other eukaryotes, the Kinetoplastids have no identifiable SELA homologue. To our knowledge this is the first report on the identification of selenocysteine insertion machinery in Kinetoplastida, more specifically in Leishmania, at the sequence level.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA, Protozoan/genetics
- Leishmania/genetics
- Leishmania/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protozoan Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- Selenoproteins/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- A Cassago
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-590 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|