1
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
2
|
Volkman SK, Lozovsky E, Barry AE, Bedford T, Bethke L, Myrick A, Day KP, Hartl DL, Wirth DF, Sawyer SA. Genomic heterogeneity in the density of noncoding single-nucleotide and microsatellite polymorphisms in Plasmodium falciparum. Gene 2006; 387:1-6. [PMID: 17005334 PMCID: PMC2593462 DOI: 10.1016/j.gene.2006.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/06/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
The density and distribution of single-nucleotide polymorphisms (SNPs) across the genome has important implications for linkage disequilibrium mapping and association studies, and the level of simple-sequence microsatellite polymorphisms has important implications for the use of oligonucleotide hybridization methods to genotype SNPs. To assess the density of these types of polymorphisms in P. falciparum, we sampled introns and noncoding DNA upstream and downstream of coding regions among a variety of geographically diverse parasites. Across 36,229 base pairs of noncoding sequence representing 41 genetic loci, a total of 307 polymorphisms including 248 polymorphic microsatellites and 39 SNPs were identified. We found a significant excess of microsatellite polymorphisms having a repeat unit length of one or two, compared to those with longer repeat lengths, as well as a nonrandom distribution of SNP polymorphisms. Almost half of the SNPs localized to only three of the 41 genetic loci sampled. Furthermore, we find significant differences in the frequency of polymorphisms across the two chromosomes (2 and 3) examined most extensively, with an excess of SNPs and a surplus of polymorphic microsatellites on chromosome 3 as compared to chromosome 2 (P=0.0001). Furthermore, at some individual genetic loci we also find a nonrandom distribution of polymorphisms between coding and flanking noncoding sequences, where completely monomorphic regions may flank highly polymorphic genes. These data, combined with our previous findings of nonrandom distribution of SNPs across chromosome 2, suggest that the Plasmodium falciparum genome may be a mosaic with regard to genetic diversity, containing chromosomal regions that are highly polymorphic interspersed with regions that are much less polymorphic.
Collapse
Affiliation(s)
- Sarah K. Volkman
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA USA
| | - Elena Lozovsky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA USA
| | - Alyssa E. Barry
- Department of Medical Parasitology, New York University School of Medicine, New York, NY USA
| | - Trevor Bedford
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA USA
| | - Lara Bethke
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA USA
| | - Alissa Myrick
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA USA
| | - Karen P. Day
- Department of Medical Parasitology, New York University School of Medicine, New York, NY USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA USA
| | - Dyann F. Wirth
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA USA
- *Address for Correspondence 665 Huntington Avenue, I-703, Boston, MA 02115 USA, Tel: 617 432 4629, Fax: 617 432 4766,
| | | |
Collapse
|
3
|
Barry AE, Leliwa-Sytek A, Man K, Kasper JM, Hartl DL, Day KP. Variable SNP density in aspartyl-protease genes of the malaria parasite Plasmodium falciparum. Gene 2006; 376:163-73. [PMID: 16784823 DOI: 10.1016/j.gene.2006.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 02/14/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
An analysis of the diversity of the aspartyl proteases of Plasmodium falciparum, known as plasmepsins (PMs), was completed in view of their possible role as drug targets. DNA sequence polymorphisms were identified in nine pm genes including their non-coding (introns and 5' flanking) sequences. All genes contained at least one single nucleotide polymorphism (SNP). Extensive microsatellite diversity was observed predominantly in non-coding sequences. All but one non-synonymous polymorphism (a conservative substitution) were mapped to the surface of the predicted protein, contradicting a possible role in enzymatic activity. The distribution of SNPs was found to be non-random among pm genes, with pm6 and pm10 having significantly higher SNP densities, suggesting they were under selection. For pm6 the majority of the SNPs were in introns and some of these may contribute to splice site variation. SNPs were found at a high density in both the coding and non-coding sequences of pm10. Recombination was important in generating additional diversity at this locus. Although direct selection for pm10 mutations could not be ruled out, the presence of balancing selection and a high density of SNPs in non-coding sequence led us to propose that another gene under selection may be influencing the diversity in the region. By sequencing short DNA tags in a 200 kb region flanking pm10 we show that a cluster of antigen genes, known to be under diversifying selection, may contribute to the observed diversity. We discuss the importance of diversity and local selection effects when choosing drug targets for intervention strategies.
Collapse
Affiliation(s)
- Alyssa E Barry
- Peter Medawar Building for Pathogen Research and Zoology Department, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK.
| | | | | | | | | | | |
Collapse
|
4
|
Ferreira MU, Hartl DL. Plasmodium falciparum: worldwide sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-2 (MSP-2). Exp Parasitol 2006; 115:32-40. [PMID: 16797008 DOI: 10.1016/j.exppara.2006.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/06/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
We examined patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2) of Plasmodium falciparum, a major dimorphic malaria vaccine candidate antigen, by analyzing 448 msp-2 alleles from all continents. We describe several nucleotide replacements, insertion and deletion events, frameshift mutations, and proliferations of repeat units that generate the extraordinary diversity found in msp-2 alleles. We discuss the role of positive selection exerted by naturally acquired type- and variant-specific immunity in maintaining the observed levels of polymorphism and suggest that this is the most likely explanation for the significant excess of nonsynonymous nucleotide replacements found in dimorphic msp-2 domains. Hybrid sequences created by meiotic recombination between alleles of different dimorphic types were observed in few (3.1%) isolates, mostly from Africa. We found no evidence for an extremely ancient origin of allelic dimorphism at the msp-2 locus, predating P. falciparum speciation, in contrast with recent findings for other surface malarial antigens.
Collapse
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo (SP), Brazil.
| | | |
Collapse
|
5
|
Tanabe K, Sakihama N, Hattori T, Ranford-Cartwright L, Goldman I, Escalante AA, Lal AA. Genetic Distance in Housekeeping Genes Between Plasmodium falciparum and Plasmodium reichenowi and Within P. falciparum. J Mol Evol 2004; 59:687-94. [PMID: 15693624 DOI: 10.1007/s00239-004-2662-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The time to the most recent common ancestor of the extant populations of Plasmodium falciparum is controversial. The controversy primarily stems from the limited availability of sequences from Plasmodium reichenowi, a chimpanzee malaria parasite closely related to P. falciparum. Since the rate of nucleotide substitution differs in different loci and DNA regions, the estimation of genetic distance between P. falciparum and P. reichenowi should be performed using orthologous sequences that are evolving neutrally. Here, we obtained full-length sequences of two housekeeping genes, sarcoplasmic and endoplasmic reticulum Ca2+ -ATPase (serca) and lactate dehydrogenase (ldh), from 11 isolates of P. falciparum and 1 isolate of P. reichenowi and estimate the interspecific genetic distance (divergence) between the two species and intraspecific genetic distance (polymorphism) within P. falciparum. Interspecific distance and intraspecific distance at synonymous sites of interspecies-conserved regions of serca and ldh were 0.0672 +/- 0.0088 and 0.0011 +/- 0.0007, respectively, using the Nei and Gojobori method. Based on the ratio of interspecific distance to intraspecific distance, the time to the most recent common ancestor of P. falciparum was estimated to be (8.30 +/- 5.40) x 10(4) and (11.62 +/- 7.56) x 10(4) years ago, assuming the divergence time of the two parasite species to be 5 and 7 million years ago, respectively.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Biology, faculty of Engineering, Osaka Institute of Technology, Ohmiya 5-16-1, Asahi-ku, Osaka 535-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Over the past 35 years, the incidence of malaria has increased 2-3-fold. At present, it affects 300-500 million people and causes about 1 million deaths, primarily in Africa. The continuing upsurge has come from a coincidence of drug-resistant parasites, insecticide-resistant mosquitoes, global climate change and continuing poverty and political instability. An analogous rapid increase in malaria might have taken place about 10,000 years ago. Patterns of genetic variation in mitochondrial DNA support this model, but variation in nuclear genes gives an ambiguous message. Resolving these discrepancies has implications for the evolution of drug resistance and vaccine evasion.
Collapse
Affiliation(s)
- Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|