1
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Mochizuki K, Inaoka DK, Mazet M, Shiba T, Fukuda K, Kurasawa H, Millerioux Y, Boshart M, Balogun EO, Harada S, Hirayama K, Bringaud F, Kita K. The ASCT/SCS cycle fuels mitochondrial ATP and acetate production in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148283. [PMID: 32763239 PMCID: PMC7402102 DOI: 10.1016/j.bbabio.2020.148283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/03/2022]
Abstract
Acetate:succinate CoA transferase (ASCT) is a mitochondrial enzyme that catalyzes the production of acetate and succinyl-CoA, which is coupled to ATP production with succinyl-CoA synthetase (SCS) in a process called the ASCT/SCS cycle. This cycle has been studied in Trypanosoma brucei (T. brucei), a pathogen of African sleeping sickness, and is involved in (i) ATP and (ii) acetate production and proceeds independent of oxygen and an electrochemical gradient. Interestingly, knockout of ASCT in procyclic form (PCF) of T. brucei cause oligomycin A-hypersensitivity phenotype indicating that ASCT/SCS cycle complements the deficiency of ATP synthase activity. In bloodstream form (BSF) of T. brucei, ATP synthase works in reverse to maintain the electrochemical gradient by hydrolyzing ATP. However, no information has been available on the source of ATP, although ASCT/SCS cycle could be a potential candidate. Regarding mitochondrial acetate production, which is essential for fatty acid biosynthesis and growth of T. brucei, ASCT or acetyl-CoA hydrolase (ACH) are known to be its source. Despite the importance of this cycle, direct evidence of its function is lacking, and there are no comprehensive biochemical or structural biology studies reported so far. Here, we show that in vitro–reconstituted ASCT/SCS cycle is highly specific towards acetyl-CoA and has a higher kcat than that of yeast and bacterial ATP synthases. Our results provide the first biochemical basis for (i) rescue of ATP synthase-deficient phenotype by ASCT/SCS cycle in PCF and (ii) a potential source of ATP for the reverse reaction of ATP synthase in BSF. First biochemical and structural characterization of mitochondrial ASCT/SCS cycle It is essential for mitochondrial acetate/ATP production and T. brucei BSF growth. TbASCT/SCS cycle shows higher kcat than that of yeast and bacterial ATP synthases. Detailed comparative biochemical analysis between ASCT and human SCOT Active site residue and X-CoA binding site determined by site-directed mutagenesis
Collapse
Affiliation(s)
- Kota Mochizuki
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan.
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan.
| | - Keisuke Fukuda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Hana Kurasawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Yoann Millerioux
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Germany
| | - Emmanuel O Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Department of Biochemistry, Ahmadu Bello University, Nigeria
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Department of Host - Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| |
Collapse
|
3
|
van Weelden SWH, van Hellemond JJ, Opperdoes FR, Tielens AGM. New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. J Biol Chem 2005; 280:12451-60. [PMID: 15647263 DOI: 10.1074/jbc.m412447200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated whether substrate availability influences the type of energy metabolism in procyclic Trypanosoma brucei. We show that absence of glycolytic substrates (glucose and glycerol) does not induce a shift from a fermentative metabolism to complete oxidation of substrates. We also show that glucose (and even glycolysis) is not essential for normal functioning and proliferation of pleomorphic procyclic T. brucei cells. Furthermore, absence of glucose did not result in increased degradation of amino acids. Variations in availability of glucose and glycerol did result, however, in adaptations in metabolism in such a way that the glycosome was always in redox balance. We argue that it is likely that, in procyclic cells, phosphoglycerate kinase is located not only in the cytosol, but also inside glycosomes, as otherwise an ATP deficit would occur in this organelle. We demonstrate that procyclic T. brucei uses parts of the Krebs cycle for purposes other than complete degradation of mitochondrial substrates. We suggest that citrate synthase plus pyruvate dehydrogenase and malate dehydrogenase are used to transport acetyl-CoA units from the mitochondrion to the cytosol for the biosynthesis of fatty acids, a process we show to occur in proliferating procyclic cells. The part of the Krebs cycle consisting of alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase was used for the degradation of proline and glutamate to succinate. We also demonstrate that the subsequent enzymes of the Krebs cycle, succinate dehydrogenase and fumarase, are most likely used for conversion of succinate into malate, which can then be used in gluconeogenesis.
Collapse
Affiliation(s)
- Susanne W H van Weelden
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | | | | |
Collapse
|
4
|
Hunger-Glaser I, Hemphill A, Shalaby T, Hänni M, Seebeck T. Nucleoside diphosphate kinase of Trypanosoma brucei. Gene 2000; 257:251-7. [PMID: 11080591 DOI: 10.1016/s0378-1119(00)00401-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a highly conserved, multifunctional enzyme. Its originally described function is the phosphorylation of nucleoside diphosphates to the corresponding triphosphates, using ATP as the phosphate donor and a high-energy phosphorylated histidine residue as the reaction intermediate. More recently, a host of additional functions of NDPK have been discovered. Some of these correlate with the capacity of NDPK to transphosphorylate other proteins, in a manner reminiscent of bacterial two-component systems. Other functions may be mediated by direct DNA-binding of NDPK. This study describes the identification of NDPK from the parasitic protozoon Trypanosoma brucei. The genome of this major disease agent contains a single gene for NDPK. The predicted amino acid sequence of the trypanosomal enzyme is highly conserved with respect to all other species. The protein is constitutively expressed and is present in procyclic and in bloodstream forms. Immunofluorescence and immuno-electron microscopy demonstrate that trypanosomal NDPK (TbNDPK) is predominantly localized in the cell nucleus. Histidine phosphorylation of TbNDPK is essentially resistant to the experimental compound LY266500, a potent inhibitor of histidine phosphorylation of trypanosomal succinyl coenzyme A synthase.
Collapse
Affiliation(s)
- I Hunger-Glaser
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Hunger-Glaser I, Brun R, Linder M, Seebeck T. Inhibition of succinyl CoA synthetase histidine-phosphorylation in Trypanosoma brucei by an inhibitor of bacterial two-component systems. Mol Biochem Parasitol 1999; 100:53-9. [PMID: 10376993 DOI: 10.1016/s0166-6851(99)00032-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent drug screenings for new antibacterial drugs directed against histidine phospho-relay signalling pathways in bacteria have resulted in compounds which potently inhibit the histidine kinase activity of bacterial two-component systems. The present study demonstrates that one of these compounds, LY266500, is also a potent inhibitor of histidine phosphorylation in the unicellular eukaryotic parasite Trypanosoma brucei, both in vitro and in whole cells. In vitro, it inhibits histidine phosphorylation of mitochondrial succinyl CoA synthetase. LY26650 does not interfere with the phosphotransfer from the histidine-phosphorylated protein to ADP. In standardized cell culture tests, LY266500 potently inhibits the proliferation of the human pathogens T. brucei rhodesiense and Leishmania donovani. Since the inhibitory activity in vivo is life-cycle stage specific and correlates well with the mitochondrial activity in the different stages, the effect of LY266500 is most likely due to its specific inhibition of the mitochondrial succinyl CoA synthetase.
Collapse
Affiliation(s)
- I Hunger-Glaser
- Institut für Allgemeine Mikrobiologie, University of Bern, Switzerland
| | | | | | | |
Collapse
|