1
|
Augusto I, Girard-Dias W, Schoijet A, Alonso GD, Portugal RV, de Souza W, Jimenez V, Miranda K. Quantitative assessment of the nanoanatomy of the contractile vacuole complex in Trypanosoma cruzi. Life Sci Alliance 2024; 7:e202402826. [PMID: 39074903 PMCID: PMC11287019 DOI: 10.26508/lsa.202402826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Trypanosoma cruzi uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle. Using TcrPDEC2 and TcVps34 overexpressing mutants, known to have low and high efficiency for osmotic responses, we described a structural phenotype for the CVC that matches their corresponding physiological responses. Quantitative tomography provided data on the volume of the CVC and spongiome connections. Changes in the adhesion plaque during the pulsation cycle were also quantified and a dense filamentous network was observed. Together, the results suggest that the adhesion plaque mediates fluid discharge from the central vacuole, revealing new aspects of the osmoregulatory system in T. cruzi.
Collapse
Affiliation(s)
- Ingrid Augusto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wendell Girard-Dias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Plataforma de Microscopia Eletrônica Rudolf Barth, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Alejandra Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Daniel Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodrigo V Portugal
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Programa de Biotecnologia, Universidade Federal do ABC, Santo André, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Veronica Jimenez
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Manaus, Brazil
| |
Collapse
|
2
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Rohloff P, Rodrigues CO, Docampo R. Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 2003; 126:219-30. [PMID: 12615321 DOI: 10.1016/s0166-6851(02)00277-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A regulatory volume decrease (RVD) in response to hyposmotic stress has been characterized in different life-cycle stages of Trypanosoma cruzi. Hyposmotic stress initially caused swelling, but this was rapidly reversed by a compensatory volume reversal that was essentially complete by 5 min. Volume recovery was associated with an amino acid efflux that accounted for approximately 50% of the regulatory volume decrease in all three life-cycle stages. The amino acid efflux was selective for neutral and anionic amino acids, but excluded cationic amino acids. Acidocalcisomes contained an amino acid pool over four times more concentrated than whole-cell levels, but about 90% of this was composed of Arg and Lys, so involvement of this pool in amino acid efflux was ruled out. Hyposmotic stress induced a rise in intracellular calcium that was dependent on influx of calcium across the plasma membrane, since chelation of extracellular calcium abolished the response. Influx of calcium was confirmed by demonstration of manganese-mediated quenching of intracellular fura-2 fluorescence and partial inhibition of the rise in calcium by calcium channel blockers. Manipulation of intra- and extracellular calcium levels had minor effects on the initial rate of amino acid efflux and no effect on the rate of volume recovery.
Collapse
Affiliation(s)
- Peter Rohloff
- Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | | | | |
Collapse
|
4
|
Blum JJ, Lehman JA, Horn JM, Gomez-Cambronero J. Phospholipase D (PLD) is present in Leishmania donovani and its activity increases in response to acute osmotic stress. J Eukaryot Microbiol 2001; 48:102-10. [PMID: 11249184 DOI: 10.1111/j.1550-7408.2001.tb00421.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here that the signaling molecule phospholipase D (PLD) is present in the parasitic protozoan Leishmania donovani. In vitro enzymatic activity is dependent on Ca2+ and Mg2+ ions, its basal activity is stimulated by phosphatidyl-inositol-4,5-bisphosphate (PIP2) and its pH optima are pH 8.0 and pH 6.0. PLD activity increases 3-fold about 5 min after an abrupt decrease in osmolality from 317 mOsm (isosmotic) to 155 mOsm and increases 1.5-fold in response to an abrupt increase in osmolality to 617 mOsM. Cells grown for > 24 h under the anisosmotic conditions showed only marginal changes in activity compared to the controls grown under isosmotic conditions, indicating an adaptation to long-term exposure to hypo- or hyper-osmolarity. Immunologically, two isoforms, PLD1 and PLD2, are present. An analysis of in vitro PLD activity in anti-PLD immunocomplexes revealed that either hypotonic (cell swelling) or hypertonic stress (cell shrinking) causes an increase in PLD1 activation but a reduction in PLD2 activity. The interplay between these two isoforms results in a predominance for PLD1 in the observed increase when measuring total PLD activity. Finally, the increase in enzymatic activity in acute hyposmotic shock is accompanied by tyrosyl phosphorylation of the PLD1 isoform, suggesting a role for protein tyrosine kinase in the control of PLD activity in response to osmotic stress.
Collapse
Affiliation(s)
- J J Blum
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|