1
|
|
2
|
Shantsila A, Lip GYH. Malignant Hypertension Revisited-Does This Still Exist? Am J Hypertens 2017; 30:543-549. [PMID: 28200072 DOI: 10.1093/ajh/hpx008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022] Open
Abstract
Malignant or accelerated hypertension is the most severe form of hypertension, defined clinically by very high blood pressure (diastolic above 130 mm Hg) accompanied by bilateral retinal hemorrhages and/or exudates, with or without papilledema. The aim of this review is to discuss if malignant hypertension still poses a clinically relevant entity and to highlight the diagnostic challenges of this form of hypertension. The substantial improvement in prognosis in patients with malignant hypertension over the last decades is well documented, but there is no strong evidence to suggest a significant change in its incidence. In fact, with the growing population and improving life expectancy, malignant hypertension is likely to become even more prevalent worldwide, especially in the developing countries with less advanced health care services. Despite simple diagnostic criteria of malignant hypertension, the diagnoses may be difficult in many patients. Malignant hypertension patients often have the diagnosis established only when the target organ damage occur. Furthermore, retrospective diagnosis is problematic, as malignant hypertensive retinopathy gradually resolves over a relatively short period of time, while persistent target organ damage will, however, lead to the development of complications and much poorer prognosis than in nonmalignant hypertension patients. Certainly, malignant hypertension still poses a clinically relevant and challenging form of hypertension and its possibility should be always considered during the assessment of patients with poorly controlled hypertension.
Collapse
Affiliation(s)
- Alena Shantsila
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Watkins HA, Chakravarthy M, Abhayawardana RS, Gingell JJ, Garelja M, Pardamwar M, McElhinney JMWR, Lathbridge A, Constantine A, Harris PWR, Yuen TY, Brimble MA, Barwell J, Poyner DR, Woolley MJ, Conner AC, Pioszak AA, Reynolds CA, Hay DL. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties. J Biol Chem 2016; 291:11657-75. [PMID: 27013657 PMCID: PMC4882435 DOI: 10.1074/jbc.m115.688218] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/20/2016] [Indexed: 01/28/2023] Open
Abstract
Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.
Collapse
Affiliation(s)
- Harriet A Watkins
- From the School of Biological Sciences, the Maurice Wilkins Centre for Molecular Biodiscovery, and
| | | | | | - Joseph J Gingell
- From the School of Biological Sciences, the Maurice Wilkins Centre for Molecular Biodiscovery, and
| | | | - Meenakshi Pardamwar
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - James M W R McElhinney
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Alex Lathbridge
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Arran Constantine
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Paul W R Harris
- the Maurice Wilkins Centre for Molecular Biodiscovery, and the School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Tsz-Ying Yuen
- the Maurice Wilkins Centre for Molecular Biodiscovery, and the School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Margaret A Brimble
- the Maurice Wilkins Centre for Molecular Biodiscovery, and the School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - James Barwell
- the School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - David R Poyner
- the School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Michael J Woolley
- the School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alex C Conner
- the School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Augen A Pioszak
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Christopher A Reynolds
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom,
| | - Debbie L Hay
- From the School of Biological Sciences, the Maurice Wilkins Centre for Molecular Biodiscovery, and
| |
Collapse
|
4
|
Barrick CJ, Lenhart PM, Dackor RT, Nagle E, Caron KM. Loss of receptor activity-modifying protein 3 exacerbates cardiac hypertrophy and transition to heart failure in a sex-dependent manner. J Mol Cell Cardiol 2011; 52:165-74. [PMID: 22100352 DOI: 10.1016/j.yjmcc.2011.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
Sex differences exist in the hypertrophic response, cardiac remodeling, and transition to heart failure of hypertensive patients, and while some of these differences are likely influenced by estrogen, the genetic pathways downstream of estrogen that impact on cardioprotection have yet to be fully elucidated. We have previously shown that the cardioprotective effects of adrenomedullin (AM), an emerging clinical biomarker for cardiovascular disease severity, vary with sex in mouse models. AM signaling during cardiovascular stress is strongly modulated by receptor activity-modifying protein 3 (RAMP3) via its interaction with the G protein-coupled receptor calcitonin receptor-like receptor (CLR). Like AM, RAMP3 expression is potently regulated by estrogen, and so we sought to determine the consequences of genetic Ramp3 loss on cardiac adaptation to chronic hypertension, with a particular focus on characterizing potential sex differences. We generated and bred RAMP3(-/-) mice to RenTgMK mice that consistently display severe angiotensin II-mediated CV disease and compared CV disease progression in RenTgMK to that of RenTgMK:RAMP3(-/-) offspring. As expected, RAMP3 gene expression was higher in cardiovascular tissues of RenTgMK mice and more strongly up-regulated in female RenTgMK mice relative to wildtype controls. RAMP3 loss did not affect the development of hypertension or the presence and severity of perivascular and interstitial fibrosis in the left ventricle (LV). However, echocardiography revealed that while RenTgMK mice developed concentric cardiac hypertrophy with sustained systolic function, male RenTgMK:RAMP3(-/-) mice showed evidence of LV chamber dilatation and depressed systolic function, suggestive of cardiac decompensation. Consistent with these measures of heart failure, male RenTgMK:RAMP3(-/-) mice had increased cardiac apoptosis and elevated activation of Akt. These phenotypes were not present in female RenTgMK:RAMP3(-/-) mice. Collectively, these data demonstrate a sex-dependant, cardioprotective role of RAMP3 in the setting of chronic hypertension.
Collapse
Affiliation(s)
- Cordelia J Barrick
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
5
|
Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Takei Y, Kato J. Shared and separate functions of the RAMP-based adrenomedullin receptors. Peptides 2011; 32:1540-50. [PMID: 21645567 DOI: 10.1016/j.peptides.2011.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 11/25/2022]
Abstract
Adrenomedullin (AM) is a novel hypotensive peptide that exerts a variety of strongly protective effects against multiorgan damage. AM-specific receptors were first identified as heterodimers composed of calcitonin-receptor-like receptor (CLR), a G protein coupled receptor, and one of two receptor activity-modifying proteins (RAMP2 or RAMP3), which are accessory proteins containing a single transmembrane domain. RAMPs are required for the surface delivery of CLR and the determination of its phenotype. CLR/RAMP2 (AM₁ receptor) is more highly AM-specific than CLR/RAMP3 (AM₂ receptor). Although there have been no reports showing differences in intracellular signaling via the two AM receptors, in vitro studies have shed light on their distinct trafficking and functionality. In addition, the tissue distributions of RAMP2 and RAMP3 differ, and their gene expression is differentially altered under pathophysiological conditions, which is suggestive of the separate roles played by AM₁ and AM₂ receptors in vivo. Both AM and the AM₁ receptor, but not the AM₂ receptor, are crucial for the development of the fetal cardiovascular system and are able to effectively protect against various vascular diseases. However, AM₂ receptors reportedly play an important role in maintaining a normal body weight in old age and may be involved in immune function. In this review article, we focus on the shared and separate functions of the AM receptor subtypes and also discuss the potential for related drug discovery. In addition, we mention their possible function as receptors for AM2 (or intermedin), an AM-related peptide whose biological functions are similar to those of AM.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Wootten DL, Simms J, Hay DL, Christopoulos A, Sexton PM. Receptor activity modifying proteins and their potential as drug targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:53-79. [PMID: 20691959 DOI: 10.1016/s1877-1173(10)91003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The receptor activity modifying proteins (RAMPs) are a family of membrane proteins that interact with some G protein-coupled receptors (GPCRs) to regulate their function. RAMPs can alter GPCR pharmacology and can regulate their signaling as well as trafficking to and from the cell surface. GPCRs have been successfully exploited as drug targets for many years. RAMPs therefore provide a new avenue for drug development, offering opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. RAMPs could be directly targeted themselves or advantage could be taken of the unique RAMP/GPCR interfaces for generating more selective drugs.
Collapse
Affiliation(s)
- Denise L Wootten
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
7
|
Bell D, Zhao Y, McCoy FP, Devine A, McDermott BJ. Expression of the Counter-Regulatory Peptide Intermedin is Augmented in the Presence of Oxidative Stress in Hypertrophied Cardiomyocytes. Cell Physiol Biochem 2008; 21:409-20. [DOI: 10.1159/000129633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2008] [Indexed: 12/19/2022] Open
|
8
|
Parameswaran N, Spielman WS. RAMPs: the past, present and future. Trends Biochem Sci 2006; 31:631-8. [PMID: 17010614 DOI: 10.1016/j.tibs.2006.09.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/03/2006] [Accepted: 09/18/2006] [Indexed: 11/15/2022]
Abstract
The discovery of receptor-activity-modifying proteins (RAMPs) as accessory proteins required for the appropriate localization and function of certain G-protein coupled receptors (GPCRs) produced a paradigm shift in our understanding of GPCR regulation. Three RAMPs have now been demonstrated to be crucial for various aspects of the life cycle of calcitonin-like receptor (CLR) including endoplasmic reticulum-to-Golgi translocation, internalization and recycling. Although the RAMP-CLR interaction was the first to be identified, other GPCRs belonging to both the class B and C families of GPCRs also seem to be regulated by RAMPs. The recent advances in our knowledge of the cellular and biochemical regulation of RAMPs and how they in turn regulate the life cycle of GPCRs could lead to therapeutic advances in several diseases.
Collapse
|
9
|
Yanagawa B, Nagaya N. Adrenomedullin: molecular mechanisms and its role in cardiac disease. Amino Acids 2006; 32:157-64. [PMID: 16583314 DOI: 10.1007/s00726-005-0279-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 12/03/2005] [Indexed: 10/24/2022]
Abstract
Adrenomedullin (AM) is a potent, long-lasting vasoactive peptide originally isolated from human pheochromocytoma. Since its discovery, serum and tissue AM expression have been shown to be increased in experimental models and in patients with cardiac hypertrophy, myocardial infarction and end-stage heart failure with several beneficial effects. Considerable evidence exists for a wide range of autocrine, paracrine and endocrine mechanisms for AM which include vasodilatory, anti-apoptotic, angiogenic, anti-fibrotic, natriuretic, diuretic and positive inotropic. Thus, through regulation of body fluid or direct cardiac mechanisms, AM has additive and beneficial effects in the context of heart disease. Notable molecular mechanisms of AM include cyclic adenosine monophosphate, guanosine-3',5'-monophosphate, PI3K/Akt and MAPK-ERK-mediated cascades. Given the endogenous and multifunctional nature of AM, we consider this molecule to have great potential in the treatment of cardiovascular diseases. In agreement, early experimental and preliminary clinical studies suggest that AM is a new and promising therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- B Yanagawa
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan
| | | |
Collapse
|
10
|
Pan CS, Jiang W, Wu SY, Zhao J, Pang YZ, Tang CS, Qi YF. Potentiated response to adrenomedullin in myocardia and aortas in spontaneously hypertensive rat. Basic Res Cardiol 2006; 101:193-203. [PMID: 16450076 DOI: 10.1007/s00395-005-0583-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
Adrenomedullin (AM) is a multifunctional regulatory peptide, and endogenous AM is an important factor in regulating cardiovascular and renal homeostasis as a potent cardio-reno-protective factor. To illustrate the protective mechanism of adrenomedullin (AM) on the cardiovascular system by observing (1) the changes in mRNA and protein levels of AM and its receptor-calcitonin receptor-like receptor (CL) and receptor activity-modifying proteins (RAMPs)-in myocardia and aortas of spontaneously hypertensive rats (SHRs) and (2) the response of cardiovascular tissue to AM. The AM content and cyclic adenosine monophosphate (cAMP) production in myocardia and aortas were measured in SHRs and Wistar Kyoto (WKY) rats (11-week-old) by radioimmunoassay (RIA). The mRNA levels of brain natriuretic peptide (BNP), AM, CL, RAMP1, -2, -3 were determined by semi-quantitative RTPCR. Protein levels of CL, RAMP1, -2, -3 were assayed by Western blotting. SHRs had severe hypertension, and the tail-blood pressure was 76.7% higher, the ratio of heart weight to body weight (heart coefficient) 45.5% higher, and the BNP gene expression 4.5-fold higher than that of WKY rats (all p < 0.01). The AM-ir content in plasma, myocardia and aortas of SHRs increased by 42.5%, 68.3% and 80.4%, respectively (all p < 0.01) compared with WKY rats. Furthermore, the mRNA levels of AM, CL, RAMP1, RAMP2 and RAMP3 were elevated by 46% (p < 0.01), 62% (p < 0.05), 51.2% (p < 0.01), 41% (p < 0.01) and 54% (p < 0.01), respectively, in myocardia and by 72%, 87%, 155%, 53% and 74% (all p < 0.01), respectively, in aortas. The elevated mRNA level of CL, RAMP1 RAMP2 and RAMP3 correlated positively with that of AM mRNA in hypertrophic myocardia (r= 0.943, 0.621, 0.688 and 0.633, respectively, all p < 0.01) and aortas (r = 0.762, 0.892, 0.828 and 0.736, respectively, all p < 0.01). The protein levels of CL, RAMP1, RAMP2 and RAMP3 in myocardia and aortas of SHRs were increased compared with that of WKY rats. The response to AM was potentiated in myocardia and aortas in SHRs, and the production of cAMP was increased by 47% and 65% (both p < 0.01), respectively. AM-stimulated cAMP generation in myocardia and aortas was blocked by both AM(22-52), the specific antagonist of AM, and calcitonin gene-related peptide (CGRP)(8-37), the antagonist of the CGRP1 receptor. In myocardia and aortas of SHRs, the gene expressions and protein levels of AM, CL, RAMP1, RAMP2 and RAMP3 were increased, and the response to AM was potentiated. AM-stimulated cAMP generation in myocardia and aortas was blocked by both AM(22-52) and CGRP(8-37). The results suggest that the changes of AM and its receptors in cardiovascular tissue, and the increased response of cardiovascular tissue to AM might importantly impact the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Ch Shui Pan
- Institute of Cardiovascular Diseases, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Ribatti D, Nico B, Spinazzi R, Vacca A, Nussdorfer GG. The role of adrenomedullin in angiogenesis. Peptides 2005; 26:1670-5. [PMID: 16112409 DOI: 10.1016/j.peptides.2005.02.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/12/2005] [Accepted: 02/15/2005] [Indexed: 01/14/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide originally isolated from human pheochromocytoma. It was initially demonstrated to have profound effects in vascular cell biology, since AM protects endothelial cells from apoptosis, promotes angiogenesis and affects vascular tone and permeability. This review article summarizes the literature data concerning the relationship between AM and angiogenesis and describes the relationship between vascular endothelial growth factor, hypoxia and AM and tumor angiogenesis. Finally, the role of AM as a potential target of antiangiogenic therapy is discussed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, Piazza Giulio Cesare, 11, Policlinico, I-70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
12
|
Nishikimi T, Asakawa H, Iida H, Matsushita Y, Shibasaki I, Tadokoro K, Mori Y, Mori H, Mochizuki Y, Okamura Y, Miyoshi S, Kangawa K, Matsuoka H. Different secretion patterns of two molecular forms of cardiac adrenomedullin in pressure- and volume-overloaded human heart failure. J Card Fail 2005; 10:321-7. [PMID: 15309699 DOI: 10.1016/j.cardfail.2003.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In the final step of production of adrenomedullin (AM), an inactive intermediate form of glycine-extended AM (AM-glycine) is converted to the active mature form of adrenomedullin (AM-mature) by enzymatic amidation. Recent studies have revealed that AM-mature and AM-glycine circulate in human plasma. In this study, we investigated the differences of the concentrations of cardiac AM between pressure-overloaded (PO) heart failure (HF) and volume-overloaded (VO)-HF in humans. METHODS AND RESULTS We measured AM-mature and AM-glycine by immunoradiometric assays in pericardial fluid and plasma in 38 patients who underwent valve replacement surgery (PO-HF: aortic stenosis, n=14; VO-HF: aortic or mitral regurgitation, n=24). Stable coronary artery disease with normal left ventricular function served as the control (n=24). Plasma AM-mature (VO-HF: +59%, PO-HF: +65%, P<.05) and AM-glycine (VO-HF: +43%, PO-HF: +50%, P<0.05) were similarly higher in the 2 HF groups than in the control group. Interestingly, pericardial fluid AM-mature was markedly higher than that in plasma (control: +789%, VO-HF: +1050%, PO-HF: +1745%, all P<.001). Pericardial fluid AM-mature was higher in VO-HF (+106%, P<.01) than in controls and they were further increased in PO-HF (+243%, P<.05). Pericardial fluid molecular forms of AM correlated with left ventricular systolic pressure, but not with left ventricular end-diastolic volume index in PO-HF. In contrast, they correlated with left ventricular end-diastolic volume index, but not with left ventricular systolic pressure in VO-HF. CONCLUSION These results suggest that cardiac AM is differently regulated from plasma AM and that cardiac AM production is upregulated in both types of HF in response to each different stimulus.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Hypertension and Cardiorenal Medicine and Department of Thoracic Surgery, Dokkyo University School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Our conceptual understanding of the molecular architecture of G-protein coupled receptors (GPCRs) has transformed over the last decade. Once considered as largely independent functional units (aside from their interaction with the G-protein itself), it is now clear that a single GPCR is but part of a multifaceted signaling complex, each component providing an additional layer of sophistication. Receptor activity-modifying proteins (RAMPs) provide a notable example of proteins that interact with GPCRs to modify their function. They act as pharmacological switches, modifying GPCR pharmacology for a particular subset of receptors. However, there is accumulating evidence that these ubiquitous proteins have a broader role, regulating signaling and receptor trafficking. This article aims to provide the reader with a comprehensive appraisal of RAMP literature and perhaps some insight into the impact that their discovery has had on those who study GPCRs.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | | | | |
Collapse
|
14
|
Nagaya N, Mori H, Murakami S, Kangawa K, Kitamura S. Adrenomedullin: angiogenesis and gene therapy. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1432-7. [PMID: 15886352 DOI: 10.1152/ajpregu.00662.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adrenomedullin (AM) is a potent, long-lasting vasodilator peptide that was originally isolated from human pheochromocytoma. AM signaling is of particular significance in endothelial cell biology since the peptide protects cells from apoptosis, promotes angiogenesis, and affects vascular tone and permeability. The angiogenic effect of AM is mediated by activation of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2, and focal adhesion kinase in endothelial cells. Both AM and its receptor, calcitonin receptor-like receptor, are upregulated through a hypoxia-inducible factor-1-dependent pathway under hypoxic conditions. Thus AM signaling plays an important role in the regulation of angiogenesis in hypoxic conditions. Recently, we have developed a nonviral vector, gelatin. Positively charged gelatin holds negatively charged plasmid DNA in its lattice structure. DNA-gelatin complexes can delay gene degradation, leading to efficient gene transfer. Administration of AM DNA-gelatin complexes induces potent angiogenic effects in a rabbit model of hindlimb ischemia. Thus gelatin-mediated AM gene transfer may be a new therapeutic strategy for the treatment of tissue ischemia. Endothelial progenitor cells (EPCs) play an important role in endothelial regeneration. Interestingly, EPCs phagocytose ionically linked DNA-gelatin complexes in coculture, which allows nonviral gene transfer into EPCs. AM gene transfer into EPCs inhibits cell apoptosis and induces proliferation and migration, suggesting that AM gene transfer strengthens the therapeutic potential of EPCs. Intravenous administration of AM gene-modified EPCs regenerate pulmonary endothelium, resulting in improvement of pulmonary hypertension. These results suggest that in vivo and in vitro transfer of AM gene using gelatin may be applicable for intractable cardiovascular disease.
Collapse
Affiliation(s)
- Noritoshi Nagaya
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | |
Collapse
|
15
|
Bomberger JM, Parameswaran N, Hall CS, Aiyar N, Spielman WS. Novel Function for Receptor Activity-modifying Proteins (RAMPs) in Post-endocytic Receptor Trafficking. J Biol Chem 2005; 280:9297-307. [PMID: 15613468 DOI: 10.1074/jbc.m413786200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RAMPs (1-3) are single transmembrane accessory proteins crucial for plasma membrane expression, which also determine receptor phenotype of various G-protein-coupled receptors. For example, adrenomedullin receptors are comprised of RAMP2 or RAMP3 (AM1R and AM2R, respectively) and calcitonin receptor-like receptor (CRLR), while a CRLR heterodimer with RAMP1 yields a calcitonin gene-related peptide receptor. The major aim of this study was to determine the role of RAMPs in receptor trafficking. We hypothesized that a PDZ type I domain present in the C terminus of RAMP3, but not in RAMP1 or RAMP2, leads to protein-protein interactions that determine receptor trafficking. Employing adenylate cyclase assays, radioligand binding, and immunofluorescence microscopy, we observed that in HEK293 cells the CRLR-RAMP complex undergoes agonist-stimulated desensitization and internalization and fails to resensitize (i.e. degradation of the receptor complex). Co-expression of N-ethylmaleimide-sensitive factor (NSF) with the CRLR-RAMP3 complex, but not CRLR-RAMP1 or CRLR-RAMP2 complex, altered receptor trafficking to a recycling pathway. Mutational analysis of RAMP3, by deletion and point mutations, indicated that the PDZ motif of RAMP3 interacts with NSF to cause the change in trafficking. The role of RAMP3 and NSF in AM2R recycling was confirmed in rat mesangial cells, where RNA interference with RAMP3 and pharmacological inhibition of NSF both resulted in a lack of receptor resensitization/recycling after agonist-stimulated desensitization. These findings provide the first functional difference between the AM1R and AM2R at the level of post-endocytic receptor trafficking. These results indicate a novel function for RAMP3 in the post-endocytic sorting of the AM-R and suggest a broader regulatory role for RAMPs in receptor trafficking.
Collapse
Affiliation(s)
- Jennifer M Bomberger
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
16
|
Nishikimi T, Wang X, Akimoto K, Tadokoro K, Mori Y, Ishikawa Y, Ishimura K, Yoshihara F, Minamino N, Kangawa K, Matsuoka H. Alteration of renal adrenomedullin and its receptor system in the severely hypertensive rat: effect of diuretic. ACTA ACUST UNITED AC 2005; 124:89-98. [PMID: 15544845 DOI: 10.1016/j.regpep.2004.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 06/19/2004] [Accepted: 07/01/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We investigated the pathophysiological role of the renal adrenomedullin (AM) system, including the ligand, receptor, and amidating activity, in severe hypertensive rats. METHOD We studied three groups: control Wistar Kyoto rats (WKY), spontaneously hypertensive stroke-prone rats (SHR-SP), and diuretic-treated SHR-SP. We measured AM-mature, active form, and AM-total (active form+inactive form) in plasma and renal tissues, and mRNA levels of AM and AM receptor system components such as calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP) 2, and RAMP3 in renal tissues. RESULTS SHR-SP had higher blood pressure, plasma neurohumoral factors, and lower renal function than WKY. SHR-SP had higher AM-mature and AM-total levels in plasma and renal tissues than WKY. Although the plasma AM-mature/AM-total ratio was similar in the two groups, AM-mature/AM-total ratio in renal tissues was higher in SHR-SP than in WKY. In addition, mRNA levels of AM in the renal cortex and medulla and the mRNA levels of CRLR, RAMP2, and RAMP3 in the renal cortex were higher in SHR-SP than in WKY. Chronic diuretic treatment decreased blood pressure and improved kidney function and neurohumoral factors, with reductions in plasma and renal AM system. CONCLUSION Upregulation of circulating and renal AM system may modulate pathophysiology in SHR-SP.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Onitsuka H, Imamura T, Ito K, Kuwasako K, Yamakawa H, Hirano S, Kitamura K, Eto T. Differential gene expression of adrenomedullin receptors in pressure- and volume-overloaded heart--role of angiotensin II. Peptides 2004; 25:1107-14. [PMID: 15245869 DOI: 10.1016/j.peptides.2004.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/04/2004] [Indexed: 12/01/2022]
Abstract
Left ventricular (LV) adrenomedullin (AM) gene expression differs between pressure overload (POL) and volume overload (VOL) and angiotensin II could be a critical stimulator of AM gene expression in POL and VOL models. Calcitonin receptor-like receptor (CRLR) co-expressed with receptor activity modifying protein 2 (RAMP2) or RAMP3 functions as an AM receptor. Levels of CRLR, RAMP2 and RAMP3 mRNA that were significantly increased within 24 h returned to the basal level at 5 days after the imposition of POL in the present study. In contrast, mRNA levels of CRLR and RAMP2 gradually increased over 6 weeks after the imposition of VOL. Continuous infusion of angiotensin II stimulated LV AM gene and AM receptor gene expression independently of LV peak-systolic and LV end-diastolic pressure. The gene expression of LV AM receptors increased in different types of cardiac overload. The present study revealed an intimate association between the AM signaling system and angiotensin II.
Collapse
Affiliation(s)
- Hisamitsu Onitsuka
- First Department of Internal Medicine, Miyazaki Medical College, 5200 Kihara, Kiyotake, 889-1692, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Udawela M, Hay DL, Sexton PM. The receptor activity modifying protein family of G protein coupled receptor accessory proteins. Semin Cell Dev Biol 2004; 15:299-308. [PMID: 15125893 DOI: 10.1016/j.semcdb.2003.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Receptor diversity for the calcitonin peptide family is created by the interaction of two 7-transmembrane proteins--the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CL-R)--with the receptor activity modifying protein (RAMP) family. The discovery of heterodimeric complexes of these proteins heralded a new era in the study of G protein coupled receptors (GPCRs), whereby receptor phenotype is no longer governed by just the GPCR. In this article, recent advances in the study of RAMPs are discussed--from our current understanding of the molecular basis of RAMP-receptor interaction to a broader role for RAMPs outside the calcitonin receptor family.
Collapse
Affiliation(s)
- Madhara Udawela
- Molecular Pharmacology Group, Howard Florey Institute, The University of Melbourne, Gate 11, Royal Parade, Melbourne, Vic. 3010, Australia
| | | | | |
Collapse
|
19
|
Nishikimi T, Yoshihara F, Mori Y, Kangawa K, Matsuoka H. Cardioprotective effect of adrenomedullin in heart failure. Hypertens Res 2003; 26 Suppl:S121-7. [PMID: 12630822 DOI: 10.1291/hypres.26.s121] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many neurohumoral factors participate in the pathophysiology of heart failure, and adrenomedullin (AM) may be involved in their derangement. This work reviews the accumulating evidence in support of a compensatory role of AM in heart failure, and describes the possible mechanisms of this role. It has been established that plasma AM levels are increased in patients with heart failure in proportion to the severity of the disease. Furthermore, recent studies suggest that plasma AM level is an independent prognostic indicator of heart failure. Thus, AM may be not only a biochemical marker for evaluating the severity of heart failure, but also a prognostic indicator of this syndrome. In patients with heart failure, AM production is increased not only in the plasma, but also in the heart. AM secretion from the failing human heart is also increased, but this increase is small and responds slowly to the stimulus. This phenomenon may be explained by the fact that AM is secreted via a constitutive pathway and that AM is an autocrine and/or a paracrine factor in the heart. An experiment using cultured myocytes suggested that cytokines and mechanical stress are important stimuli for AM production in the heart. Regarding the action of AM in the heart, recent studies have suggested that AM exerts an inotropic action both in vitro and in vivo. AM also attenuates cardiac hypertrophy in myocytes and inhibits proliferation and collagen production in cardiac fibroblasts. These results suggest that AM may be an antifibrotic, antihypertrophic, and positive inotropic factor in the failing and hypertrophied heart. Because AM has many cardiorenal actions, AM administration may be useful for the treatment of heart failure. Indeed, acute administration of AM has been shown to improve the hemodynamics, renal function, and hormonal parameters in patients with heart failure. Moreover, recent studies have shown that AM gene therapy or long-term AM infusion significantly improved cardiac hypertrophy and fibrosis, and prolonged the survival time in an animal model of hypertension and heart failure. In conclusion, these findings suggest that AM plays a compensatory role in the pathophysiology of heart failure and that administration of AM may be a new and promising approach for the treatment of patients with this syndrome.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | | | | | | | | |
Collapse
|