1
|
Tsuruda T, Kato J, Kuwasako K, Kitamura K. Adrenomedullin: Continuing to explore cardioprotection. Peptides 2019; 111:47-54. [PMID: 29577955 DOI: 10.1016/j.peptides.2018.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Adrenomedullin (AM), a peptide isolated from an extract of human pheochromocytoma, comprises 52 amino acids with an intramolecular disulfide bond and amidation at the carboxy-terminus. AM is present in various tissues and organs in rodents and humans, including the heart. The peptide concentration increases with cardiac hypertrophy, acute myocardial infarction, and overt heart failure in the plasma and the myocardium. The principal function of AM in the cardiovascular system is the regulation of the vascular tone by vasodilation and natriuresis via cyclic adenosine monophosphate-dependent or -independent mechanism. In addition, AM may possess unique properties that inhibit aldosterone secretion, oxidative stress, apoptosis, and stimulation of angiogenesis, resulting in the protection of the structure and function of the heart. The AM receptor comprises a complex between calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 2 or 3, and the AM-CLR/RAMP2 system is essential for heart development during embryogenesis. Small-scale clinical trials have proven the efficacy and safety of recombinant AM peptide therapy for heart failure. Gene delivery and a modified AM peptide that prolongs the half-life of the native peptide could be an innovative method to improve the efficacy and benefit of AM in clinical settings. In this review, we focus on the pathophysiological roles of AM and its receptor system in the heart and describe the advances in AM and proAM-derived peptides as diagnostic biomarkers as well as the therapeutic application of AM and modified AM for cardioprotection.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Johji Kato
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kenji Kuwasako
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
2
|
Benditt DG, Chen LY. Peptides in Postural Orthostatic Tachycardia Syndrome. J Am Coll Cardiol 2012; 60:321-3. [DOI: 10.1016/j.jacc.2012.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
3
|
Krzemiński K, Cybulski G, Nazar K. Relationships between plasma adrenomedullin concentration and systolic time intervals during static handgrip in patients with heart failure. Clin Physiol Funct Imaging 2009; 29:114-22. [PMID: 19207415 DOI: 10.1111/j.1475-097x.2008.00842.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our previous study showed elevation of plasma adrenomedullin (ADM) during static handgrip in patients with heart failure (HF). It is hypothesized that ADM increases with left ventricle dysfunction during handgrip and thus plays a compensatory role. In the present study pre-ejection period (PEP) and left ventricular ejection time (LVET) were used to assess cardiac performance in 24 male HF patients (II/III class NYHA) during two 3-min bouts of handgrip at 30% of maximal voluntary contraction (MVC) performed alternately with each hand without any break between the bouts. Plasma ADM, noradrenaline (NA), adrenaline (A), heart rate (HR), blood pressure (BP) and stroke volume (SV) were determined. During handgrip plasma ADM, NA, A, HR, BP, PEP/LVET increased, PEP was prolonged and LVET shortened. The increases in plasma ADM correlated with changes in: PEP (r = -0.881), LVET (r = 0.713), PEP/LVET (r = -0.769), SV (r = 0.836), diastolic BP (r = 0.700), total peripheral resistance (TPR) (r = 0.718) and noradrenaline (r = 0.756). The study demonstrated that in HF patients changes in plasma ADM during handgrip are related to cardiac performance.
Collapse
Affiliation(s)
- K Krzemiński
- Department of Applied Physiology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
4
|
Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther 2006; 111:909-27. [PMID: 16616959 DOI: 10.1016/j.pharmthera.2006.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Adrenomedullin (AM) is a vasodilator peptide that originally isolated from pheochromocytoma tissue. However, the mRNA is expressed in the normal adrenal gland, heart, kidney and blood vessels. The human AM gene is located in the short arm of chromosome 11 and is composed of 4 exons. There are 2 single nucleotide polymorphisms in introns 1 and 3, and the 3'-end of the AM gene is flanked by a microsatellite marker of cytosine-adenine repeats that is associated with an increased risk of developing hypertension and diabetic nephropathy. AM gene expression is promoted by various stimuli, including inflammation, hypoxia, oxidative stress, mechanical stress and activation of the renin-angiotensin and sympathetic nervous systems. The AM gene promoter region possessed binding site for several transcription factors, including nuclear factor for interleukin-6 expression (NF-IL6) and activator protein 2 (AP-2). Further, plasma AM levels are increased in patients with various cardiovascular diseases, including hypertension, heart failure and renal failure. These findings suggest that AM plays a role in the development of or response to cardiovascular disease. Indeed, experimental and clinical studies have demonstrated that systemic infusion of AM may have a therapeutic effect on myocardial infarction, heart failure and renal failure. Further, vasopeptidase inhibitors which augment the bioactivity of endogenous AM may benefit patients with hypertension and arteriosclerosis. Finally, the angiogenic and cytoprotective properties of AM may have utility in revascularization and infarcted myocardium and ischemic limbs. Because of the potential clinical benefits of AM, indications for use and optimal dosing strategies should be established.
Collapse
Affiliation(s)
- Toshihiko Ishimitsu
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | |
Collapse
|
5
|
Pfeil U, Paddenberg R, Kummer W. Mitochondrial regulation of hypoxia-induced increase of adrenomedullin mRNA in HL-1 cells. Biochem Biophys Res Commun 2006; 343:885-92. [PMID: 16564497 DOI: 10.1016/j.bbrc.2006.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/08/2006] [Indexed: 11/29/2022]
Abstract
Hypoxia upregulates the expression of the cardioprotective peptide adrenomedullin in cardiomyocytes. We characterized this pathway in murine HL-1 cardiomyocytes. Inhibition of mitochondrial complexes I, III, and IV largely, but not completely, reduced hypoxic adrenomedullin mRNA increase in gas-impermeable culture plates. Complex III inhibition was also effective in permeable culture plates, so that this effect is unlikely due to intracellular oxygen redistribution, whereas complex I blockade was ineffective in permeable plates. Complex II does not participate in this effect, as shown by chemical and siRNA inactivation. ROS scavenging by nitroblue tetrazolium and general flavoprotein inhibition by diphenyleniodonium nearly abrogated the hypoxic adrenomedullin mRNA increase. Thus, ROS production by flavoproteins is crucial for hypoxic upregulation of adrenomedullin mRNA in murine HL-1 cardiomyocytes. These ROS originate both from the mitochondrial complex III and from additional, presumably extramitochondrial, sources. Mitochondrial oxygen consumption appears to have impact on oxygen availability at these extramitochondrial sensors.
Collapse
Affiliation(s)
- Uwe Pfeil
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
| | | | | |
Collapse
|
6
|
Ribatti D, Nico B, Spinazzi R, Vacca A, Nussdorfer GG. The role of adrenomedullin in angiogenesis. Peptides 2005; 26:1670-5. [PMID: 16112409 DOI: 10.1016/j.peptides.2005.02.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/12/2005] [Accepted: 02/15/2005] [Indexed: 01/14/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide originally isolated from human pheochromocytoma. It was initially demonstrated to have profound effects in vascular cell biology, since AM protects endothelial cells from apoptosis, promotes angiogenesis and affects vascular tone and permeability. This review article summarizes the literature data concerning the relationship between AM and angiogenesis and describes the relationship between vascular endothelial growth factor, hypoxia and AM and tumor angiogenesis. Finally, the role of AM as a potential target of antiangiogenic therapy is discussed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, Piazza Giulio Cesare, 11, Policlinico, I-70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
7
|
Qi YF, Dong LW, Pan CS, Zhang J, Geng B, Zhao J, Tang CS. Adrenomedullin induces heme oxygenase-1 gene expression and cGMP formation in rat vascular smooth muscle cells. Peptides 2005; 26:1257-63. [PMID: 15949644 DOI: 10.1016/j.peptides.2005.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/14/2005] [Accepted: 01/19/2005] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (ADM) is a potent vasodilatory peptide. It regulates blood pressure by increasing cyclic adenosine monophosphate (cAMP) and guanosine-3',5'-monophosphate (cGMP). We sought to investigate the effect of ADM on heme oxygenase-1 (HO-1) gene expression and cGMP formation in cultured rat vascular smooth muscle cells (VSMCs). ADM treatment, 10(-9) and 10(-8) mol/L, increased cGMP production, and it increased the intracellular cGMP content of platelets coincubated with VSMCs. It increased cGMP content by 158.8% and 273.5%, respectively; increased HO-1 activity by 49.5% and 87%, respectively; augmented HO-1 protein levels by 66% and 126%, respectively; upregulated the steady-state level of HO-1 mRNA by 73% and 159%, respectively, and increased HO-1 mRNA transcription synthesis by four- and seven-fold, respectively. These results suggest that ADM induces HO-1 gene expression and cGMP formation in rat VSMCs.
Collapse
MESH Headings
- Adrenomedullin
- Animals
- Carbon Monoxide/metabolism
- Cells, Cultured
- Cyclic GMP/biosynthesis
- Gene Expression/drug effects
- Heme Oxygenase (Decyclizing)/biosynthesis
- Heme Oxygenase (Decyclizing)/genetics
- Heme Oxygenase-1
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Peptides/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Yong-Fen Qi
- Institute of Cardiovascular Research, Peking University First Hospital, Beijing 100034, PR China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Hamid SA, Baxter GF. Adrenomedullin: regulator of systemic and cardiac homeostasis in acute myocardial infarction. Pharmacol Ther 2005; 105:95-112. [PMID: 15670621 DOI: 10.1016/j.pharmthera.2004.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During and following acute myocardial infarction, a variety of endogenous mediators are elevated, one of which is adrenomedullin (AM). AM is a multifunctional peptide that has been identified as having a putative beneficial role following an ischemic insult at both systemic and local levels. Classically described as a potent vasodilator, natriuretic, and diuretic agent, experimental infarct models also demonstrate AM to exhibit antiproliferative and antiapoptotic functions in the myocardium, counterregulating the effects of mediators such as angiotensin-II and endothelin-1. Less well documented are the angiogenic and inflammatory modulating potentials of AM, which may also contribute toward reducing adverse ventricular remodeling. The review examines clinical and experimental studies, looking at the effects of AM and cellular mechanisms that could be involved in mediating cardioprotective effects and ultimately optimizing left ventricular remodeling. Finally, the possibility of enhancing endogenous actions of AM by pharmacological intervention is considered.
Collapse
Affiliation(s)
- Shabaz A Hamid
- Department of Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | |
Collapse
|
9
|
Tenhunen O, Szokodi I, Ruskoaho H. Posttranscriptional activation of BNP gene expression in response to increased left ventricular wall stress: role of calcineurin and PKC. ACTA ACUST UNITED AC 2005; 128:187-96. [PMID: 15837527 DOI: 10.1016/j.regpep.2004.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the molecular mechanisms for load-induced activation of BNP gene expression, increased wall stress was imposed on isolated isovolumetrically beating adult rat hearts by distension of a fluid filled balloon within the left ventricle. The wall stress for 2 h resulted in a 1.6-fold increase in the expression of BNP gene and a 2.0-fold increase of the c-fos gene. The inhibition of transcription by actinomycin D significantly decreased the baseline BNP mRNA levels but the wall stretch-induced increase of the gene expression remained unaffected. In contrast, the protein synthesis inhibitor cycloheximide increased baseline BNP mRNA levels and abolished the load-induced activation of gene expression. Furthermore, we studied the effects of protein kinase C (PKC), calcineurin and protein phosphatase 2A (PP2A) inhibition to characterize the role of intracellular pathways in the stretch-induced gene expression in the left ventricle. The expression of BNP and c-fos genes were not influenced by calcineurin, PP2A and PKC inhibition. In conclusion, we showed that the stretch-induced activation of BNP gene expression by increased left ventricular wall stress is independent of transcriptional mechanisms and dependent on protein synthesis. Moreover, our results suggest that the load-induced activation of BNP gene expression is independent of calcineurin, PKC and PP2A.
Collapse
Affiliation(s)
- Olli Tenhunen
- Department of Pharmacology and Toxicology, Faculty of Medicine, Biocenter Oulu, University of Oulu, Finland
| | | | | |
Collapse
|