1
|
Caron P, van der Linden J, van Attikum H. Bon voyage: A transcriptional journey around DNA breaks. DNA Repair (Amst) 2019; 82:102686. [PMID: 31476573 DOI: 10.1016/j.dnarep.2019.102686] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/20/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
DNA double-strand breaks (DSBs) affect chromatin integrity and impact DNA-dependent processes such as transcription. Several studies revealed that the transcription of genes located in close proximity to DSBs is transiently repressed. This is achieved through the establishment of either a transient repressive chromatin context or eviction of the RNA polymerase II complex from the damaged chromatin. While these mechanisms of transcription repression have been shown to affect the efficiency and accuracy of DSB repair, it became evident that the transcriptional state of chromatin before DSB formation also influences this process. Moreover, transcription can be initiated from DSB ends, generating long non-coding (lnc)RNAs that will be processed into sequence-specific double-stranded RNAs. These so-called DNA damage-induced (dd)RNAs dictate DSB repair by regulating the accumulation of DNA repair proteins at DSBs. Thus, a complex interplay between mechanisms of transcription activation and repression occurs at DSBs and affects their repair. Here we review our current understanding of the mechanisms that coordinate transcription and DSB repair to prevent genome instability arising from DNA breaks in transcribed regions.
Collapse
Affiliation(s)
- Pierre Caron
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands
| | - Janette van der Linden
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands.
| |
Collapse
|
2
|
Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J Virol 2011; 85:8569-81. [PMID: 21715506 DOI: 10.1128/jvi.00496-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The trimeric RNA polymerase complex (3P, for PA-PB1-PB2) of influenza A virus (IAV) is an important viral determinant of pathogenicity and host range restriction. Specific interactions of the polymerase complex with host proteins may be determining factors in both of these characteristics and play important roles in the viral life cycle. To investigate this question, we performed a comprehensive proteomic analysis of human host proteins associated with the polymerase of the well-characterized H5N1 Vietnam/1203/04 isolate. We identified over 400 proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS), of which over 300 were found to bind to the PA subunit alone. The most intriguing and novel finding was the large number of mitochondrial proteins (∼20%) that associated with the PA subunit. These proteins mediate molecular transport across the mitochondrial membrane or regulate membrane potential and may in concert with the identified mitochondrion-associated apoptosis inducing factor (AIFM1) have roles in the induction of apoptosis upon association with PA. Additionally, we identified host factors that associated with the PA-PB1 (68 proteins) and/or the 3P complex (34 proteins) including proteins that have roles in innate antiviral signaling (e.g., ZAPS or HaxI) or are cellular RNA polymerase accessory factors (e.g., polymerase I transcript release factor [PTRF] or Supt5H). IAV strain-specific host factor binding to the polymerase was not observed in our analysis. Overall, this study has shed light into the complex contributions of the IAV polymerase to host cell pathogenicity and allows for direct investigations into the biological significance of these newly described interactions.
Collapse
|
3
|
Treilleux I, Chapot B, Goddard S, Pisani P, Angèle S, Hall J. The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase. Histopathology 2007; 51:63-9. [PMID: 17593081 DOI: 10.1111/j.1365-2559.2007.02726.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS To investigate whether aberrant methylation of the ATM promoter or loss of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) may be the underlying causes of reduced ATM protein levels often seen in breast tumours. METHODS AND RESULTS Methylation-specific polymerase chain reaction was used to determine the ATM promoter status and DNA-PKcs levels were measured by immunohistochemistry. None of the 74 invasive carcinomas (ICs) studied showed ATM promoter hypermethylation, whereas promoter methylation of CDKN2A/p16 (1.8%) and GSTP1 (15.8%) was detected. Of 92 ICs examined, 68 had reduced DNA-PKcs levels, supporting previous findings that alterations in double-strand break repair are associated with breast cancer pathogenesis. Although no association was found between the DNA-PKcs and ATM scores for the series of 92 tissues and 22/24 tissues with normal DNA-PKcs had reduced ATM, 29 tumours showed low expression of both DNA-PKcs and ATM compared with normal tissues. CONCLUSIONS No evidence was found that the reduction in ATM protein levels seen in breast carcinoma is the result of epigenetic silencing. However, cross-regulation between DNA-PKcs and ATM may be a possible cause in a subset of tumours and warrants further investigation.
Collapse
Affiliation(s)
- I Treilleux
- Centre Régional Léon Bérard, International Agency for Research on Cancer Lyon, France
| | | | | | | | | | | |
Collapse
|
4
|
Dip R, Naegeli H. More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. FASEB J 2005; 19:704-15. [PMID: 15857885 DOI: 10.1096/fj.04-3041rev] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a trimeric factor originally identified as an enzyme that becomes activated upon incubation with DNA. Genetic defects in either the catalytic subunit (DNA-PK(CS)) or the two Ku components of DNA-PK result in immunodeficiency, radiosensitivity, and premature aging. This combined phenotype is generally attributed to the requirement for DNA-PK in the repair of DNA double strand breaks during various biological processes. However, recent studies revealed that DNA-PK(CS), a member of the growing family of phosphatidylinositol 3-kinases, participates in signal transduction cascades related to apoptotic cell death, telomere maintenance and other pathways of genome surveillance. These manifold functions of DNA-PK(CS) have been associated with an increasing number of protein interaction partners and phosphorylation targets. Here we review the DNA binding properties of DNA-PK(CS) and highlight its ability to interact with an astounding diversity of nucleic acid substrates. This survey indicates that the large catalytic subunit of DNA-PK functions as a sensor of not only broken DNA molecules, but of a wider spectrum of aberrant, unusual, or specialized structures that interrupt the standard double helical conformation of DNA.
Collapse
Affiliation(s)
- Ramiro Dip
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
5
|
Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bedford JS. Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res 2005; 65:1670-7. [PMID: 15753361 DOI: 10.1158/0008-5472.can-04-3451] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous reports have suggested a connection between reduced levels of the catalytic subunit of DNA-dependent protein kinases (DNA-PKcs), a component of the nonhomologous DNA double-strand breaks end-joining system, and a reduction in ATM. We studied this possible connection in other DNA-PKcs-deficient cell types, and following knockdown of DNA-PKcs with small interfering RNA, Chinese hamster ovary V3 cells, lacking DNA-PKcs, had reduced levels of ATM and hSMG-1, but both were restored after transfection with PRKDC. Atm levels were also reduced in murine scid cells. Reduction of ATM in a human glioma cell line lacking DNA-PKcs was accompanied by defective signaling through downstream substrates, post-irradiation. A large reduction of DNA-PKcs was achieved in normal human fibroblasts after transfection with two DNA-PKcs small interfering RNA sequences. This was accompanied by a reduction in ATM. These data were confirmed using immunocytochemical detection of the proteins. Within hours after transfection, a decline in PRKDC mRNA was seen, followed by a more gradual decline in DNA-PKcs protein beginning 1 day after transfection. No change in ATM mRNA was observed for 2 days post-transfection. Only after the DNA-PKcs reduction occurred was a reduction in ATM mRNA observed, beginning 2 days post-transfection. The amount of ATM began to decline, starting about 3 days post-treatment, then it declined to levels comparable to DNA-PKcs. Both proteins returned to normal levels at later times. These data illustrate a potentially important cross-regulation between the nonhomologous end-joining system for rejoining of DNA double-strand breaks and the ATM-dependent damage response network of pathways, both of which operate to maintain the integrity of the genome.
Collapse
Affiliation(s)
- Yuanlin Peng
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Mayeur GL, Kung WJ, Martinez A, Izumiya C, Chen DJ, Kung HJ. Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells. J Biol Chem 2005; 280:10827-33. [PMID: 15640154 DOI: 10.1074/jbc.m413336200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) dynamically assembles and disassembles multicomponent receptor complexes in order to respond rapidly and reversibly to fluctuations in androgen levels. We are interested in identifying the basal factors that compose the AR aporeceptor and holoreceptor complexes and impact the transcriptional process. Using tandem mass spectroscopy analysis, we identified the trimeric DNA-dependent protein kinase (DNA-PK) complex as the major AR-interacting proteins. AR directly interacts with both Ku70 and Ku80 in vivo and in vitro, as shown by co-immunoprecipitation, glutathione S-transferase pull-down, and Sf9 cell/baculovirus expression. The interaction was localized to the androgen receptor ligand binding domain and is independent of DNA interactions. Ku interacts with AR in the cytoplasm and nucleus regardless of the presence or absence of androgen. Ku acts as a coactivator of AR activity in a luciferase reporter assay employing both Ku-defective cells and Ku small interfering RNA knock-down in a prostate cancer cell line. DNA-PK catalytic subunit (DNA-PKcs) also acts as a coactivator of androgen receptor activity in a luciferase reporter assay employing DNA-PKcs defective cells. AR nuclear translocation is not affected in Ku defective cells, implying Ku functionality may be mainly nuclear. Chromatin immunoprecipitation experiments demonstrated that both Ku70 and Ku80 interact with the prostate-specific antigen promoter in an androgen-dependant manner. Finally, in vitro transcription assays demonstrated Ku involvement in transcriptional recycling with androgen dependent promoters.
Collapse
MESH Headings
- Androgens/metabolism
- Animals
- Antigens, Nuclear/chemistry
- Antigens, Nuclear/metabolism
- Antigens, Nuclear/physiology
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- Cytoplasm/metabolism
- DNA/chemistry
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Immunoprecipitation
- Insecta
- Ku Autoantigen
- Ligands
- Luciferases/metabolism
- Male
- Mass Spectrometry
- Models, Genetic
- Prostatic Neoplasms/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Androgen/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Greg L Mayeur
- Department of Biological Chemistry, School of Medicine, University of California, Davis, UC Davis Cancer Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
7
|
Smith AD, Collaco RF, Trempe JP. Enhancement of recombinant adeno-associated virus type 2-mediated transgene expression in a lung epithelial cell line by inhibition of the epidermal growth factor receptor. J Virol 2003; 77:6394-404. [PMID: 12743297 PMCID: PMC155027 DOI: 10.1128/jvi.77.11.6394-6404.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as gene delivery systems because they show long-term expression in vivo and transduce numerous cell types. Limitations to successful gene transduction from rAAVs have prompted investigations of a variety of treatments to enhance transgene expression from rAAV vectors. Tyrphostin-1, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, dramatically enhances rAAV transgene expression. Elegant studies have demonstrated that a single-strand D-sequence-binding protein (ssDBP) is phosphorylated by EGFR and binds to the D sequence element in the AAV terminal repeat (TR). Binding of the Tyr-phosphorylated ssDBP prevents conversion of single-stranded vector DNA to a double-strand conformation. We observed dramatic increases in transgene expression in lung epithelial cells (IB3) with tyrphostin treatment. Gel shift analysis of ssDBP revealed that its DNA binding characteristics were unchanged after tyrphostin treatment or adenovirus infection. Tyrphostin stimulated rAAV transgene expression to a greater extent than adenovirus coinfection. Southern hybridizations revealed that the vector DNA remained in the single-strand conformation in tyrphostin-treated cells but double-stranded replicative form monomer DNA was most abundant in adenovirus-infected cells. Northern analyses revealed that tyrphostin treatment enhanced mRNA accumulation more than in adenovirus-infected cultures even though replicative form DNA was undetectable. Analysis of the JNK, ERK, and p38K mitogen-activated protein kinase pathways revealed that tyrphostin treatment stimulated the activity of JNK and p38K. Our data suggest that tyrphostin-induced alteration of stress response pathways results in dramatic enhancement of transcription on linear vector DNA templates in the IB3 cell line. These results expand the downstream targets of the EGFR in regulating rAAV transduction.
Collapse
Affiliation(s)
- Andrew D Smith
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo 43614-5804, USA
| | | | | |
Collapse
|
8
|
Ko L, Chin WW. Nuclear receptor coactivator thyroid hormone receptor-binding protein (TRBP) interacts with and stimulates its associated DNA-dependent protein kinase. J Biol Chem 2003; 278:11471-9. [PMID: 12519782 DOI: 10.1074/jbc.m209723200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors mediate gene activation through ligand-dependent interaction with coactivators. We previously cloned and characterized thyroid hormone receptor-binding protein, TRBP (NcoA6: AIB3/ASC-2/RAP250/PRIP/TRBP/NRC), as an LXXLL-containing coactivator that associates with coactivator complexes through its C terminus. To search for protein factors involved in TRBP action, we identified a distinct set of proteins from HeLa nuclear extract that interacts with the C terminus of TRBP. Analysis by mass spectrometric protein sequencing revealed a DNA-dependent protein kinase (DNA-PK) complex including its catalytic subunit and regulatory subunits, Ku70 and Ku86. DNA-PK is a heterotrimeric nuclear phosphatidylinositol 3-kinase that functions in DNA repair, recombination, and transcriptional regulation. DNA-PK phosphorylates TRBP at its C-terminal region, which directly interacts with Ku70 but not Ku86 in vitro. In addition, in the absence of DNA, TRBP itself activates DNA-PK, and the TRBP-stimulated DNA-PK activity has an altered phosphorylation pattern from DNA-stimulated activity. An anti-TRBP antibody inhibits TRBP-induced kinase activity, suggesting that protein content of TRBP is responsible for the stimulation of DNA-independent kinase activity. Furthermore, in DNA-PK-deficient scid cells, TRBP-mediated transactivation is significantly impaired, and nuclear localization of TRBP is altered. The activation of DNA-PK in the absence of DNA ends by the coactivator TRBP suggests a novel mechanism of coactivator-stimulated DNA-PK phosphorylation in transcriptional regulation.
Collapse
Affiliation(s)
- Lan Ko
- Department of Gene Regulation, Bone and Inflammation Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | |
Collapse
|
9
|
Abstract
The DNA-dependent protein kinase (DNA-PK), comprised of the Ku70/Ku80 (now known as G22p1/Xrcc5) heterodimer and the catalytic subunit DNA-PKcs (now known as Prkdc), is required for the nonhomologous end joining (NHEJ) pathway of DNA double-strand break repair. The mechanism of action of DNA-PK remains unclear. We have investigated whether DNA-PK regulates gene transcription in vivo after DNA damage using the subtractive hybridization technique of cDNA representational difference analysis (cDNA RDA). Differential transcription, both radiation-dependent and independent, was detected and confirmed in primary mouse embryo fibroblasts from DNA-PKcs(-/-) and DNA-PKcs(+/+) mice. We present evidence that transcription of the extracellular matrix gene laminin alpha 4 (Lama4) is regulated by DNA-PK in a radiation-independent manner. However, screening of both primary and immortalized DNA-PKcs-deficient cell lines demonstrates that the majority of differences were not consistently dependent on DNA-PK status. Similar results were obtained in experiments using KU mutant hamster cell lines, indicating heterogeneity of transcription between closely related cell lines. Our results suggest that while DNA-PK may be involved in limited gene-specific transcription, it does not play a major role in the transcriptional response to DNA damage.
Collapse
Affiliation(s)
- F Bryntesson
- Department of Molecular Haematology and Cancer Biology, Institute of Child Health, University College, London, 30 Guildford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | |
Collapse
|