1
|
Lee SY, An HJ, Kim JM, Sung MJ, Kim DK, Kim HK, Oh J, Jeong HY, Lee YH, Yang T, Kim JH, Lim HJ, Lee S. PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis. Stem Cell Res Ther 2021; 12:589. [PMID: 34823575 PMCID: PMC8614054 DOI: 10.1186/s13287-021-02656-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background PTEN-induced kinase 1 (PINK1) is a serine/threonine-protein kinase in mitochondria that is critical for mitochondrial quality control. PINK1 triggers mitophagy, a selective autophagy of mitochondria, and is involved in mitochondrial regeneration. Although increments of mitochondrial biogenesis and activity are known to be crucial during differentiation, data regarding the specific role of PINK1 in osteogenic maturation and bone remodeling are limited. Methods We adopted an ovariectomy model in female wildtype and Pink1−/− mice. Ovariectomized mice were analyzed using micro-CT, H&E staining, Masson’s trichrome staining. RT-PCR, western blot, immunofluorescence, alkaline phosphatase, and alizarin red staining were performed to assess the expression of PINK1 and osteogenic markers in silencing of PINK1 MC3T3-E1 cells. Clinical relevance of PINK1 expression levels was determined via qRT-PCR analysis in normal and osteoporosis patients. Results A significant decrease in bone mass and collagen deposition was observed in the femurs of Pink1−/− mice after ovariectomy. Ex vivo, differentiation of osteoblasts was inhibited upon Pink1 downregulation, accompanied by impaired mitochondrial homeostasis, increased mitochondrial reactive oxygen species production, and defects in mitochondrial calcium handling. Furthermore, PINK1 expression was reduced in bones from patients with osteoporosis, which supports the practical role of PINK1 in human bone disease. Conclusions In this study, we demonstrated that activation of PINK1 is a requisite in osteoblasts during differentiation, which is related to mitochondrial quality control and low reactive oxygen species production. Enhancing PINK1 activity might be a possible treatment target in bone diseases as it can promote a healthy pool of functional mitochondria in osteoblasts. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02656-4.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Hyun-Ju An
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea.,Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Min-Ji Sung
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Do Kyung Kim
- CHA Graduate School of Medicine, 120 Hyeryong-ro, Pocheon, 11160, Republic of Korea
| | - Hyung Kyung Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, College of Medicine, Seoul, 05278, Republic of Korea
| | - Jongbeom Oh
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea
| | - Hye Yun Jeong
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Yu Ho Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Taeyoung Yang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Jun Han Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea
| | - Ha Jeong Lim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea.
| |
Collapse
|
2
|
SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ 2017; 25:229-240. [PMID: 28914882 PMCID: PMC5762839 DOI: 10.1038/cdd.2017.144] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/26/2022] Open
Abstract
Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by increased ATP production and decreased mitochondrial stress. Inhibition of mitochondrial activity or an increase in mitochondrial superoxide production significantly suppressed osteoblast differentiation. During differentiation, SOD2 was specifically induced to eliminate excess mitochondrial superoxide and protein oxidation, whereas SIRT3 expression was increased to enhance SOD2 activity through deacetylation of K68. Both SOD2 and SIRT3 knockdown resulted in suppression of differentiation. Meanwhile, mice deficient in SIRT3 exhibited obvious osteopenia accompanied by osteoblast dysfunction, whereas overexpression of SOD2 or SIRT3 improved the differentiation capability of primary osteoblasts derived from SIRT3-deficient mice. These results suggest that SIRT3/SOD2 is required for regulating mitochondrial stress and plays a vital role in osteoblast differentiation and bone formation.
Collapse
|
3
|
Nuclear matrix protein SMAR1 control regulatory T-cell fate during inflammatory bowel disease (IBD). Mucosal Immunol 2015; 8:1184-200. [PMID: 25993445 PMCID: PMC4762908 DOI: 10.1038/mi.2015.42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Regulatory T (Treg) cells are essential for self-tolerance and immune homeostasis. Transcription factor Foxp3, a positive regulator of Treg cell differentiation, has been studied to some extent. Signal transducer and activator of transcription factor 3 (STAT3) is known to negatively regulate Foxp3. It is not clear how STAT3 is regulated during Treg differentiation. We show that SMAR1, a known transcription factor and tumor suppressor, is directly involved in maintaining Treg cell fate decision. T-cell-specific conditional knockdown of SMAR1 exhibits increased susceptibility towards inflammatory disorders, such as colitis. The suppressive function of Treg cells is compromised in the absence of SMAR1 leading to increased T helper type 17 (Th17) differentiation and inflammation. Compared with wild-type, the SMAR1(-/-) Treg cells showed increased susceptibility of inflammatory bowel disease in Rag1(-/ -) mice, indicating the role of SMAR1 in compromising Treg cell differentiation resulting in severe colitis. We show that SMAR1 negatively regulate STAT3 expression favoring Foxp3 expression and Treg cell differentiation. SMAR1 binds to the MAR element of STAT3 promoter, present adjacent to interleukin-6 response elements. Thus Foxp3, a major driver of Treg cell differentiation, is regulated by SMAR1 via STAT3 and a fine-tune balance between Treg and Th17 phenotype is maintained.
Collapse
|
4
|
Sharma J, Johnston MV, Hossain MA. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci 2014; 15:9. [PMID: 24410996 PMCID: PMC3898007 DOI: 10.1186/1471-2202-15-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/31/2013] [Indexed: 12/05/2022] Open
Abstract
Background Mitochondrial dysfunction has been linked to neuronal death and a wide array of neurodegenerative diseases. Previously, we have shown sex differences in mitochondria-mediated cell death pathways following hypoxia-ischemia. However, the role of mitochondrial biogenesis in hypoxic-ischemic brain injury between male vs. female has not been studied yet. Results Primary cerebellar granule neurons (CGNs), isolated from P7 male and female mice (CD-1) segregated based on visual inspection of sex, were exposed to 2 h of oxygen glucose deprivation (OGD) followed by 6–24 h of reoxygenation (Reox). Mitochondrial membrane potential (ΔΨm) and cellular ATP levels were reduced significantly in XX CGNs as compared to XY CGNs. Mitochondrial DNA (mtDNA) content was increased (>2-fold) at 2 h OGD in XY CGNs and remained increased up to 24 h of Reox compared to XX neurons and normoxia controls. The expression of mitochondrial transcription factor A (Tfam), the nuclear respiratory factor-1 (NRF-1) and the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, were up-regulated (2-fold, ***p < 0.001) in XY CGNs but slightly reduced or remained unchanged in XX neurons. Similarly, the TFAM and PGC-1α protein levels and the mitochondrial proteins HSP60 and COXIV were increased in XY neurons only. Supportively, a balanced stimulation of fusion (Mfn 1and Mfn 2) and fission (Fis 1 and Drp 1) genes and enhanced formation of donut-shaped mitochondria were observed in XY CGNs vs. XX neurons (**p < 0.01). Conclusions Our results demonstrate that OGD/Reox alters mitochondrial biogenesis and morphological changes in a sex-specific way, influencing neuronal injury/survival differently in both sexes.
Collapse
Affiliation(s)
| | | | - Mir Ahamed Hossain
- Department of Neurology, The Hugo W, Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.
| |
Collapse
|
5
|
Pridgeon JW, Klesius PH, Mu X, Yancey RJ, Kievit MS, Dominowski PJ. Efficacy of QCDCR formulated CpG ODN 2007 in Nile tilapia against Streptococcus iniae and identification of upregulated genes. Vet Immunol Immunopathol 2011; 145:179-90. [PMID: 22129787 DOI: 10.1016/j.vetimm.2011.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/15/2022]
Abstract
The potential of using a QCDCR (quilA:cholesterol:dimethyl dioctadecyl ammonium bromide:carbopol:R1005 glycolipid) formulated CpG oligodeoxynucleotide (ODN), ODN 2007, to confer protection in Nile tilapia against Streptococcus iniae infection was evaluated in this study. At two days post treatment, QCDCR formulated ODN 2007 elicited significant (P<0.05) protection to Nile tilapia, with relative percent survival of 63% compared to fish treated by QCDCR alone. To understand the molecular mechanisms involved in the protective immunity elicited by ODN 2007, suppression subtractive cDNA hybridization technique was used to identify upregulated genes induced by ODN 2007. A total of 69 expressed sequence tags (ESTs) were identified from the subtractive cDNA library. Quantitative PCR revealed that 44 ESTs were significantly (P<0.05) upregulated by ODN 2007, including 29 highly (>10-fold) and 15 moderately (<10-fold) upregulated ESTs. Of all ESTs, putative peroxisomal sarcosine oxidase was upregulated the highest. The 69 ESTs only included six genes that had putative functions related to immunity, of which only two (putative glutaredoxin-1 and carboxypeptidase N catalytic chain) were confirmed to be significantly upregulated. Our results suggest that the protection elicited by ODN 2007 is mainly through innate immune responses directly or indirectly related to immunity.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:115-33. [PMID: 21036202 DOI: 10.1016/j.bbcan.2010.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
Abstract
Elevated lifetime estrogen exposure is a major risk factor for breast cancer. Recent advances in the understanding of breast carcinogenesis clearly indicate that induction of estrogen receptor (ER) mediated signaling is not sufficient for the development of breast cancer. The underlying mechanisms of breast susceptibility to estrogen's carcinogenic effect remain elusive. Physiologically achievable concentrations of estrogen or estrogen metabolites have been shown to generate reactive oxygen species (ROS). Recent data implicated that these ROS induced DNA synthesis, increased phosphorylation of kinases, and activated transcription factors, e.g., AP-1, NRF1, E2F, NF-kB and CREB of non-genomic pathways which are responsive to both oxidants and estrogen. Estrogen-induced ROS by increasing genomic instability and by transducing signal through influencing redox sensitive transcription factors play important role (s) in cell transformation, cell cycle, migration and invasion of the breast cancer. The present review discusses emerging data in support of the role of estrogen induced ROS-mediated signaling pathways which may contribute in the development of breast cancer. It is envisioned that estrogen induced ROS mediated signaling is a key complementary mechanism that drives the carcinogenesis process. ROS mediated signaling however occurs in the context of other estrogen induced processes such as ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity. Importantly, estrogen-induced ROS can function as independent reversible modifiers of phosphatases and activate kinases to trigger the transcription factors of downstream target genes which participate in cancer progression.
Collapse
Affiliation(s)
- Victor Okoh
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
9
|
Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008; 39:3057-63. [PMID: 18723421 PMCID: PMC2726706 DOI: 10.1161/strokeaha.108.520114] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/27/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial biogenesis is regulated through the coordinated actions of both nuclear and mitochondrial genomes to ensure that the organelles are replenished on a regular basis. This highly regulated process has been well defined in skeletal and heart muscle, but its role in neuronal cells, particularly when under stress or injury, is not well understood. In this study, we report for the first time rapidly increased mitochondrial biogenesis in a rat model of neonatal hypoxic/ischemic brain injury (H-I). METHODS Postnatal day 7 rats were subjected to H-I induced by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. The relative amount of brain mitochondrial DNA (mtDNA) was measured semiquantitatively using long fragment PCR at various time points after H-I. HSP60 and COXIV proteins were detected by Western blot. Expression of three genes critical for the transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM), were examined by Western blot and RT-PCR. RESULTS Brain mtDNA content was markedly increased 6 hours after H-I, and continued to increase up to 24 hours after H-I. Paralleling the temporal change in mtDNA content, mitochondrial number and proteins HSP60 and COXIV, and citrate synthase activity were increased in neurons in the cortical infarct border zone after H-I. Moreover, cortical expression of NRF-1 and TFAM were increased 6 to 24 hours after H-I, whereas PGC-1 was not changed. CONCLUSIONS Neonatal H-I brain injury rapidly induces mitochondrial biogenesis, which may constitute a novel component of the endogenous repair mechanisms of the brain.
Collapse
Affiliation(s)
- Wei Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
10
|
Yeh TS, Ho JD, Yang VWC, Tzeng CR, Hsieh RH. Calcium Stimulates Mitochondrial Biogenesis in Human Granulosa Cells. Ann N Y Acad Sci 2006; 1042:157-62. [PMID: 15965058 DOI: 10.1196/annals.1338.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian granulosa cells are known to play a key role in regulating ovarian physiology. Age increases apoptosis in follicular granulosa cells and subsequently decreases ovarian fecundity. The aging ovary also contains fewer follicles that possess fewer granulosa cells. The viability of follicular granulosa cells may be essential for development of the oocyte. Calcium ion plays an important role in a variety of biological processes, including gene expression, cell cycle regulation, and cell death. To study the ability of mitochondrial biogenesis in human granulosa cells, we determined the mitochondrial marker proteins, including the nuclear-encoded NADH-ubiquinone oxidoreductase alpha subunit 9 (NDUFA9) and mitochondrial-encoded COX I, after treatment of the cells with the calcium ionophore A23187. We showed that the expression of these mitochondrial marker proteins in human granulosa cells increased with changes in cytosolic Ca2+ using the ionophore A23187. Treatment of granulosa cells with 0.5 microM of A23187 for 120 h increased the levels of NDUFA 9 and COX I subunit by up to 2.6- and 2.4-fold, respectively. Raising Ca2+ by exposing granulosa cells to 1 microM of A23187 for 48 h significantly increased mitochondrial transcription factor (mtTFA) gene expression by up to 2.9-fold. Our results indicate that the adaptive responses of granulosa cells to increased Ca2+ may include upregulation of mitochondrial proteins and that mtTFA may be involved in such a mitochondrial biogenesis pathway.
Collapse
Affiliation(s)
- Tien-Shun Yeh
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei, Taiwan 112, Republic of China
| | | | | | | | | |
Collapse
|
11
|
Au HK, Yeh TS, Kao SH, Shih CM, Hsieh RH, Tzeng CR. Calcium-dependent up-regulation of mitochondrial electron transfer chain gene expressions in human luteinized granulosa cells. Fertil Steril 2006; 84 Suppl 2:1104-8. [PMID: 16210000 DOI: 10.1016/j.fertnstert.2005.03.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate the transcription and translation ability of mitochondria in terminally differentiated granulosa cells, these cells were incubated with ionic calcium. DESIGN Prospective laboratory research. SETTING In vitro fertilization laboratory in a university hospital. PATIENT(S) Granulosa cells were harvested from 50 female patients undergoing IVF. INTERVENTION(S) Analysis of mitochondrial gene expression by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and of mitochondrial-encoded proteins by Western blot. MAIN OUTCOME MEASURE(S) Comparison of the RNA expression levels of genes including cytochrome c oxidase subunit I (COX I), adenosine triphosphate synthase 6 (ATPase 6), flavoprotein, and succinate-ubiquinone oxidoreductase, and protein levels of COX I and flavoprotein in different calcium ion treatment groups. RESULT(S) There were dose-dependent increases in RNA expressions of the four genes analyzed from granulosa cells cultured in a serial concentration of calcium ions. This effect was abolished when cells were preincubated with the extracellular calcium-chelating agent, Ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). The effect of ionic calcium on both the nuclear- and mitochondrial-encoded subunits also was determined. Expression levels of mitochondrial transcription factor A in RNA significantly increased in granulosa cells that were exposed for 24 and 48 hours to 0.5 and 1 microM A23187. CONCLUSION(S) The present study is the first report to present calcium-dependent increases in the transcription and translation levels of both nuclear-encoded and mitochondrial-encoded mitochondrial respiratory enzyme subunits and also indicates that mitochondrial transcription factor A is involved in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Heng-Kien Au
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|