1
|
Vahidinasab M, Adiek I, Hosseini B, Akintayo SO, Abrishamchi B, Pfannstiel J, Henkel M, Lilge L, Voegele RT, Hausmann R. Characterization of Bacillus velezensis UTB96, Demonstrating Improved Lipopeptide Production Compared to the Strain B. velezensis FZB42. Microorganisms 2022; 10:2225. [PMID: 36363818 PMCID: PMC9693074 DOI: 10.3390/microorganisms10112225] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
Bacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Isabel Adiek
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Behnoush Hosseini
- Department of Phytopathology (360a), Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Stephen Olusanmi Akintayo
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Bahar Abrishamchi
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599 Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Science, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Ralf T. Voegele
- Department of Phytopathology (360a), Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
2
|
Kutnu M, İşlerel ET, Tunçbağ N, Özcengiz G. Comparative biological network analysis for differentially expressed proteins as a function of bacilysin biosynthesis in Bacillus subtilis. Integr Biol (Camb) 2022; 14:99-110. [PMID: 35901454 DOI: 10.1093/intbio/zyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
The Gram-positive bacterium Bacillus subtilis produces a diverse range of secondary metabolites with different structures and activities. Among them, bacilysin is an enzymatically synthesized dipeptide that consists of L-alanine and L-anticapsin. Previous research by our group has suggested bacilysin's role as a pleiotropic molecule in its producer, B. subtilis PY79. However, the nature of protein interactions in the absence of bacilysin has not been defined. In the present work, we constructed a protein-protein interaction subnetwork by using Omics Integrator based on our recent comparative proteomics data obtained from a bacilysin-silenced strain, OGU1. Functional enrichment analyses on the resulting networks pointed to certain putatively perturbed pathways such as citrate cycle, quorum sensing and secondary metabolite biosynthesis. Various molecules, which were absent from the experimental data, were included in the final network. We believe that this study can guide further experiments in the identification and confirmation of protein-protein interactions in B. subtilis.
Collapse
Affiliation(s)
- Meltem Kutnu
- Department of Biological Sciences/Molecular Biology and Genetics, Middle East Technical University, Ankara 06800, Turkey
| | - Elif Tekin İşlerel
- Department of Biological Sciences/Molecular Biology and Genetics, Middle East Technical University, Ankara 06800, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Maltepe University, Istanbul 34857, Turkey
| | - Nurcan Tunçbağ
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences/Molecular Biology and Genetics, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Islam T, Rabbee MF, Choi J, Baek KH. Biosynthesis, Molecular Regulation, and Application of Bacilysin Produced by Bacillus Species. Metabolites 2022; 12:397. [PMID: 35629901 PMCID: PMC9147277 DOI: 10.3390/metabo12050397] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Microbes produce a diverse range of secondary metabolites in response to various environmental factors and interspecies competition. This enables them to become superior in a particular environment. Bacilysin, a dipeptide antibiotic produced by Bacillus species, is active against a broad range of microorganisms. Because of its simple structure and excellent mode of action, i.e., through the inhibition of glucosamine 6-phosphate synthase, it has drawn the attention of researchers. In addition, it acts as a pleiotropic signaling molecule that affects different cellular activities. However, all Bacillus species are not capable of producing bacilysin. The biosynthesis of bacilysin by Bacillus species is not uniform throughout the population; specificity and heterogeneity at both the strain and species levels has been observed. This review discusses how bacilysin is biosynthesized by Bacillus species, the regulators of its biosynthesis, its importance in the host, and the abiotic factors affecting bacilysin production.
Collapse
Affiliation(s)
| | | | | | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (T.I.); (M.F.R.); (J.C.)
| |
Collapse
|
4
|
Wu JJ, Chou HP, Huang JW, Deng WL. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiol Res 2021; 251:126815. [PMID: 34284299 DOI: 10.1016/j.micres.2021.126815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Bacillus subtilis is ubiquitous and capable of producing various metabolites, which make the bacterium a good candidate as a biocontrol agent for managing plant diseases. In this study, a phyllosphere bacterium B. subtilis PMB102 isolated from tomato leaf was found to inhibit the growth of Alternaria brassicicola ABA-31 on PDA and suppress Alternaria leaf spot on Chinese cabbage (Brassica rapa). The genome of PMB102 (Accession no. CP047645) was completely sequenced by Nanopore and Illumina technology to generate a circular chromosome of 4,103,088 bp encoding several gene clusters for synthesizing bioactive compounds. PMB102 and the other B. subtilis strains from different sources were compared in pangenome analysis to identify a suite of conserved genes involved in biocontrol and habitat adaptation. Two predicted gene products, surfactin and fengycin, were extracted from PMB102 culture filtrates and verified by LC-MS/MS. The antifungal activity of fengycin was tested on A. brassicicola ABA-31 in bioautography to inhibit hyphae growth, and in co-culturing assays to elicit the formation of swollen hyphae. Our data revealed that B. subtilis PMB102 suppresses Alternaria leaf spot by the production of antifungal metabolites, and fengycin plays an important role to inhibit the vegetative growth of A. brassicicola ABA-31.
Collapse
Affiliation(s)
- Je-Jia Wu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan; Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Hau-Ping Chou
- Department of Plant Pathology, National Chung Hsing University, Taiwan; Kaohsiung District Agricultural Research and Extension Station, Taiwan
| | - Jenn-Wen Huang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan; Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Wen-Ling Deng
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan; Department of Plant Pathology, National Chung Hsing University, Taiwan.
| |
Collapse
|
5
|
Yang H, Zhang X, Liu Y, Liu L, Li J, Du G, Chen J. Synthetic biology-driven microbial production of folates: Advances and perspectives. BIORESOURCE TECHNOLOGY 2021; 324:124624. [PMID: 33434873 DOI: 10.1016/j.biortech.2020.124624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
With the development and application of synthetic biology, significant progress has been made in the production of folate by microbial fermentation using cell factories, especially for using generally regarded as safe (GRAS) microorganism as production host. In this review, the physiological functions and applications of folates were firstly discussed. Second, the current advances of folate-producing GRAS strains development were summarized. Third, the applications of synthetic biology-based metabolic regulatory tools in GRAS strains were introduced, and the progress in the application of these tools for folate production were summarized. Finally, the challenges to folates efficient production and corresponding emerging strategies to overcome them by synthetic biology were discussed, including the construction of biosensors using tetrahydrofolate riboswitches to regulate metabolic pathways, adaptive evolution to overcome the flux limitations of the folate pathway. The combination of new strategies and tools of synthetic biology is expected to further improve the efficiency of microbial folate synthesis.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaolong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
6
|
Vahidinasab M, Lilge L, Reinfurt A, Pfannstiel J, Henkel M, Morabbi Heravi K, Hausmann R. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb Cell Fact 2020; 19:205. [PMID: 33167976 PMCID: PMC7654001 DOI: 10.1186/s12934-020-01468-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. RESULTS The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. CONCLUSIONS This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany.
| | - Aline Reinfurt
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| |
Collapse
|
7
|
Antibacterial Activity of Bacillus inaquosorum Strain T1 against pirABVp -Bearing Vibrio parahaemolyticus: Genetic and Physiological Characterization. Appl Environ Microbiol 2020; 86:AEM.01950-20. [PMID: 32859595 DOI: 10.1128/aem.01950-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is caused by PirAB toxin-producing Vibrio parahaemolyticus and has devastated the global shrimp aquaculture industry. One approach for preventing the growth of AHPND-producing Vibrio spp. is through the application of beneficial bacteria capable of inhibiting these pathogens. In this study, we focused on the inhibitory activity of Bacillus inaquosorum strain T1, which hinders V. parahaemolyticus growth in coculture experiments in a density-dependent manner; inhibition was also observed using cell-free supernatants from T1 stationary-phase cultures. Using mariner-based transposon mutagenesis, 17 mutants having a complete or partial loss of inhibitory activity were identified. Of those displaying a total loss of activity, 13 had insertions within a 42.6-kb DNA region comprising 15 genes whose deduced products were homologous to nonribosomal polypeptide synthetases (NRPSs), polyketide synthases (PKSs), and related activities, which were mapped as one transcriptional unit. Mutants with partial activity contained insertions in spo0A and oppA, indicating stationary-phase control. The levels of expression of NRPS and PKS lacZ transcriptional fusions were negligible during growth and were the highest during early stationary phase. Inactivation of sigH resulted in a loss of inhibitor activity, indicating a role for σH in transcription. Disruption of abrB resulted in NRPS and PKS gene overexpression during growth as well as enhanced growth inhibition. Our characterization of the expression and control of an NRPS-PKS gene cluster in B. inaquosorum T1 provides an understanding of the factors involved in inhibitor production, enabling this strain's development for use as a tool against AHPND-causing Vibrio pathogens in shrimp aquaculture.IMPORTANCE The shrimp aquaculture industry has been significantly impacted by acute hepatopancreatic necrosis disease (AHPND), resulting in significant financial losses annually. AHPND is caused by strains of the bacterial pathogen Vibrio parahaemolyticus, and treatment of AHPND involves the use of antibiotics, which leads to a rise in the number of antibiotic-resistant strains. Alternative treatments include the application of beneficial microorganisms having inhibitory activities against pathogens causing AHPND. In this study, we examined the ability of Bacillus inaquosorum strain T1 to inhibit the growth of an AHPND-causing Vibrio strain, and we show that this activity involves a gene cluster associated with antibacterial compound production. We found that gene expression is under stationary-phase control and that enhanced activity occurs upon inactivation of a global transition state regulator. Our approach for understanding the factors involved in producing B. inaquosorum strain T1 inhibitory activity will allow for the development of this strain as a tool for AHPND prevention and treatment.
Collapse
|
8
|
Castro D, Torres M, Sampedro I, Martínez-Checa F, Torres B, Béjar V. Biological Control of Verticillium Wilt on Olive Trees by the Salt-Tolerant Strain Bacillus velezensis XT1. Microorganisms 2020; 8:E1080. [PMID: 32698452 PMCID: PMC7409040 DOI: 10.3390/microorganisms8071080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Verticillium wilt, caused by the pathogen Verticillium dahliae, is extremely devastating to olive trees (Olea europea). Currently, no successful control measure is available against it. The objective of this work was to evaluate the antifungal activity of Bacillus velezensis XT1, a well-characterized salt-tolerant biocontrol strain, against the highly virulent defoliating V. dahliae V024. In vitro, strain XT1 showed to reduce fungal mycelium from 34 to 100%, depending on if the assay was conducted with the supernatant, volatile compounds, lipopeptides or whole bacterial culture. In preventive treatments, when applied directly on young olive trees, it reduced Verticillium incidence rate and percentage of severity by 54 and ~80%, respectively. It increased polyphenol oxidase (PPO) activity by 395%, indicating an enhancement of disease resistance in plant tissues, and it decreased by 20.2% the number of fungal microsclerotia in soil. In adult infected trees, palliative inoculation of strain XT1 in the soil resulted in a reduction in Verticillium symptom severity by ~63%. Strain XT1 is biosafe, stable in soil and able to colonize olive roots endophytically. All the traits described above make B. velezensis XT1 a promising alternative to be used in agriculture for the management of Verticillium wilt.
Collapse
Affiliation(s)
- David Castro
- Xtrem Biotech S.L., European Business Innovation Center, 18100 Granada, Spain; (D.C.); (B.T.)
| | - Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (I.S.); (F.M.-C.); (V.B.)
- Biomedical Research Center, Institute of Biotechnology, 18016 Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (I.S.); (F.M.-C.); (V.B.)
- Biomedical Research Center, Institute of Biotechnology, 18016 Granada, Spain
| | - Fernando Martínez-Checa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (I.S.); (F.M.-C.); (V.B.)
- Biomedical Research Center, Institute of Biotechnology, 18016 Granada, Spain
| | - Borja Torres
- Xtrem Biotech S.L., European Business Innovation Center, 18100 Granada, Spain; (D.C.); (B.T.)
| | - Victoria Béjar
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (I.S.); (F.M.-C.); (V.B.)
- Biomedical Research Center, Institute of Biotechnology, 18016 Granada, Spain
| |
Collapse
|
9
|
Stincone P, Veras FF, Pereira JQ, Mayer FQ, Varela APM, Brandelli A. Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Microbiol Res 2020; 238:126515. [PMID: 32531696 DOI: 10.1016/j.micres.2020.126515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
Cyclic lipopeptides (CLPs) from Bacillus strains have demonstrated a wide range of bioactivities making them interesting candidates for different applications in the pharmaceutical, food and biotechnological industries. Genome sequencing, together with phylogenetic analysis of the Bacillus sp. P34, isolated from a freshwater fish gut, showed that the bacterial strain belongs to the Bacillus velezensis group. In silico investigation of metabolic gene clusters of nonribosomal peptide synthetases (NRPS) revealed the genetic elements associated with the synthesis of surfactin, fengycin and iturin family component bacillomycin. Further, an assay was conducted to investigate the production of CLPs in the presence of heat inactivated bacterial cultures or fungal spores. Maximum fengycin concentration was observed at 24 h (2300-2700 mg/mL), while maximum iturin amounts were detected at 48 h (250 mg/mL) in the presence of heat-inactivated spores of Aspergillus niger. Heat-inactivated cells of Listeria monocytogenes caused a reduction of both fengycin and iturin amounts. The production of fengycins A and B and the iturin family component bacillomycin L was confirmed by mass spectrometry analyses. This study reinforces the potential of B. velezensis P34 as a valuable strain for biotechnological production of CLPs recognized as important antimicrobial substances.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Jamile Queiroz Pereira
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, 92990-000, Eldorado do Sul, Brazil
| | - Ana Paula Muterle Varela
- Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, 92990-000, Eldorado do Sul, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil.
| |
Collapse
|
10
|
The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiol 2019; 82:62-69. [DOI: 10.1016/j.fm.2019.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/23/2018] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
|
11
|
Ge Y, Lee JH, Hu B, Zhao Y. Loss-of-Function Mutations in the Dpp and Opp Permeases Render Erwinia amylovora Resistant to Kasugamycin and Blasticidin S. MOLECULAR PLANT-MICROBE INTERACTIONS® 2018; 31:823-832. [PMID: 0 DOI: 10.1094/mpmi-01-18-0007-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Extensive use of the antibiotic streptomycin to control fire blight disease of apples and pears, caused by the enterobacterial plant pathogen Erwinia amylovora, leads to the development of streptomycin-resistant strains in the United States and elsewhere. Kasugamycin (Ksg) has been permitted to be used as an alternative or replacement to control this serious bacterial disease. In this study, we investigated the role of two major peptide ATP-binding cassette transporter systems in E. amylovora, the dipeptide permease (Dpp) and oligopeptide permease (Opp), in conferring sensitivity to Ksg and blasticidin S (BcS). Minimum inhibitory concentration and spot dilution assays showed that the dpp deletion mutants exhibited slightly enhanced resistance to Ksg in rich medium, whereas the opp mutant exhibited slightly enhanced resistance to Ksg in minimal medium and BcS in rich medium. Deletion of both dpp and opp conferred a higher level of resistance to Ksg in both rich and minimal media, whereas deletion of opp alone was sufficient to confer high level of resistance to BcS in minimal medium. In addition, bioinformatic analysis combined with reverse transcription-quantitative polymerase chain reaction showed that the Rcs phosphorelay system negatively regulates opp expression and the rcsB mutant was more sensitive to both Ksg and BcS in minimal medium as compared with the wild type. An electrophoresis motility shift assay further confirmed the direct binding of the RcsA/RcsB proteins to the promoter region of the opp operon. However, neither the Dpp nor the Opp permeases contributed to disease progress on immature pears, hypersensitive response on tobacco leaves, or exopolysaccharide amylovoran production. These results suggested that Ksg and BcS employ the Dpp and Opp permeases to enter E. amylovora cells and the Dpp and Opp permeases act synergistically for illicit transport of antibiotics.
Collapse
Affiliation(s)
- Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China; and
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China; and
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
12
|
Toral L, Rodríguez M, Béjar V, Sampedro I. Antifungal Activity of Lipopeptides From Bacillus XT1 CECT 8661 Against Botrytis cinerea. Front Microbiol 2018; 9:1315. [PMID: 29997581 PMCID: PMC6028715 DOI: 10.3389/fmicb.2018.01315] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022] Open
Abstract
This work aims to explore the capacity of a Bacillus methylotrophicus (later heterotypic synonym of Bacillus velezensis) strain named XT1 CECT 8661 against the necrotrophic plant pathogen Botrytis cinerea and to identify the compounds responsible for its activity. Q_TOF electrospray mass spectrometry analysis allows us to detect several lipopeptides – surfactin, bacillomycin, and fengycin – in XT1 cultures. In vitro antibiosis studies demonstrated the efficiency of the lipopeptide fraction for the inhibition of fungal growth. In fact, microscopy studies (SEM/TEM) revealed, an alteration of the morphology of the phytopathogen in interaction with lipopeptides, with resistance structures appearing in the early stages of growth of the fungus. Our studies, carried out with tomatoes, grapes, and strawberries have demonstrated the efficiency of Bacillus XT1 CECT 8661 lipopeptides against B. cinerea infection and it capability to trigger the antioxidant activity in fruit. Overall, the results of this study highlight the potential of lipopeptides of this strain as an effective biological control agent against the colonisation of B. cinerea.
Collapse
Affiliation(s)
- Laura Toral
- Xtrem Biotech S.L., European Business Innovation Center, Granada, Spain
| | - Miguel Rodríguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Victoria Béjar
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| |
Collapse
|
13
|
Liu H, Fan X, Cheng H, Yin S, Zhang G, Xi Y, An L, Zhang L. Characterization of a gene regulating antibiotic production in Bacillus subtilis BSD-2. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1329633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongwei Liu
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| | - Xing Fan
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| | - Huicai Cheng
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| | - Shuli Yin
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| | - Genwei Zhang
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| | - Yanhua Xi
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| | - Likang An
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| | - Liping Zhang
- Department of Microbiology, Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
- Department of Microbiology, Hebei Engineering and Technology Center of Microbiological Control On Main Crop Disease, Shijiazhuang, PR China
| |
Collapse
|
14
|
Veras FF, Correa APF, Welke JE, Brandelli A. Inhibition of mycotoxin-producing fungi by Bacillus strains isolated from fish intestines. Int J Food Microbiol 2016; 238:23-32. [PMID: 27589021 DOI: 10.1016/j.ijfoodmicro.2016.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
Abstract
Bacillus strains isolated from the aquatic environment of the Brazilian Amazon region were tested for their activity against mycotoxigenic fungi. All tested bacteria showed antifungal activity, inhibiting at least 7 indicator fungi. Four Bacillus strains showing promising antifungal results were subsequently evaluated for their activity in reducing mycelial growth rate, sporulation, spore germination percentage, and mycotoxin production. Bacillus sp. P1 and Bacillus sp. P11 had a remarkable antifungal effect on toxigenic fungi. Washed bacterial cell suspension of strains P1 and P11 (107CFU/ml) reduced by >70% the fungal colony diameters, including a complete inhibition of ochratoxin A (OTA) producing Aspergillus spp. Significant reduction of growth rate, sporulation and spore germination were also observed. The bacteria influenced the production of mycotoxins, causing a reduction around 99 and 97% in AFB1 and OTA concentration, respectively. Chromatographic analysis revealed the presence of lipopeptides (iturin A and surfactin isomers) in butanol extracts of cell-free supernatants and cell pellets of strains P1 and P11. Furthermore, antifungal activity of these extracts was confirmed against A. flavus A12 and A. carbonarius ITAL293, producers of AFB1 and OTA, respectively. These bacterial strains could be promising biocontrol agents against toxigenic fungi.
Collapse
Affiliation(s)
- Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Ana Paula Folmer Correa
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil.
| |
Collapse
|
15
|
Leães FL, Velho RV, Caldas DGG, Ritter AC, Tsai SM, Brandelli A. Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of target microorganisms. Res Microbiol 2015; 167:83-9. [PMID: 26577655 DOI: 10.1016/j.resmic.2015.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 11/27/2022]
Abstract
Certain Bacillus strains are important producers of antimicrobial peptides with great potential for biological control. Antimicrobial peptide production by Bacillus amyloliquefaciens P11 was investigated in the presence of heat-inactivated cells of bacteria and fungi. B. amyloliquefaciens P11 exhibited higher antimicrobial activity in the presence of inactivated cells of Staphylococcus aureus and Aspergillus parasiticus compared to other conditions tested. Expression of essential genes related to biosynthesis of the antimicrobial peptides surfactin (sfp), iturin A (lpa-14 and ituD), subtilosin A (sboA) and fengycin (fenA) was investigated by quantitative real-time PCR (qRT-PCR). The genes lpa-14 and ituD were highly expressed in the presence of S. aureus (inactivated cells), indicating induction of iturin A production by B. amyloliquefaciens P11. The other inducing condition (inactivated cells of A. parasiticus) suppressed expression of lpa-14, but increased expression of ituD. A twofold increase in fenA expression was observed for both conditions, while strong suppression of sboA expression was observed in the presence of inactivated cells of S. aureus. An increase in antimicrobial activity was observed, indicating that synthesis of antimicrobial peptides may be induced by target microorganisms.
Collapse
Affiliation(s)
- Fernanda Leal Leães
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, ICTA, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Renata Voltolini Velho
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, ICTA, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Danielle Gregório Gomes Caldas
- Laboratório de Biologia Celular e Molecular, Centro de Energia Nuclear na Agricultura, CENA, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Ana Carolina Ritter
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, ICTA, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Siu Mui Tsai
- Laboratório de Biologia Celular e Molecular, Centro de Energia Nuclear na Agricultura, CENA, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, ICTA, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
16
|
Mousa WK, Raizada MN. Biodiversity of genes encoding anti-microbial traits within plant associated microbes. FRONTIERS IN PLANT SCIENCE 2015; 6:231. [PMID: 25914708 PMCID: PMC4392301 DOI: 10.3389/fpls.2015.00231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/23/2015] [Indexed: 05/10/2023]
Abstract
The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
17
|
Özcengiz G, Öğülür İ. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. N Biotechnol 2015; 32:612-9. [PMID: 25644640 DOI: 10.1016/j.nbt.2015.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/06/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis has the capacity to produce more than two dozen bioactive compounds with an amazing variety of chemical structures. Among them, bacilysin is a non-ribosomally synthesized dipeptide antibiotic consisting of l-alanine residue at the N terminus and a non-proteinogenic amino acid, l-anticapsin, at the C terminus. In spite of its simple structure, it is active against a wide range of bacteria and fungi. As a potent antimicrobial agent, we briefly review the biochemistry and genetics as well as the regulation of bacilysin biosynthesis within the frame of peptide pheromones-based control of secondary activities. Biological functions of bacilysin in the producer B. subtilis beyond its antimicrobial activity as well as potential biotechnological use of the biosynthetic enzyme l-amino acid ligase (Lal) are also discussed.
Collapse
Affiliation(s)
- Gülay Özcengiz
- Department of Biological Sciences and Molecular Biology and Genetics, Middle East Technical University, 06800 Ankara, Turkey.
| | - İsmail Öğülür
- Marmara University, Research and Training Hospital, Division of Pediatric Allergy and Immunology, 34899 Istanbul, Turkey
| |
Collapse
|
18
|
Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Appl Environ Microbiol 2015; 81:2591-602. [PMID: 25636844 DOI: 10.1128/aem.03096-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of "Candidatus Phytoplasma asteris," chrysanthemum yellows strain, was investigated at different times following the infection of a plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Target genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU) were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus. Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the remaining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood that the pathogen may be acquired by a vector and/or inoculated to a healthy plant.
Collapse
|
19
|
Buddrus-Schiemann K, Rieger M, Mühlbauer M, Barbarossa MV, Kuttler C, Hense BA, Rothballer M, Uhl J, Fonseca JR, Schmitt-Kopplin P, Schmid M, Hartmann A. Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models. Anal Bioanal Chem 2014; 406:6373-83. [PMID: 25116602 DOI: 10.1007/s00216-014-8063-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/24/2014] [Accepted: 07/24/2014] [Indexed: 01/12/2023]
Abstract
In this interdisciplinary approach, the dynamics of production and degradation of the quorum sensing signal 3-oxo-decanoylhomoserine lactone were studied for continuous cultures of Pseudomonas putida IsoF. The signal concentrations were quantified over time by use of monoclonal antibodies and ELISA. The results were verified by use of ultra-high-performance liquid chromatography. By use of a mathematical model we derived quantitative values for non-induced and induced signal production rate per cell. It is worthy of note that we found rather constant values for different rates of dilution in the chemostat, and the values seemed close to those reported for batch cultures. Thus, the quorum-sensing system in P. putida IsoF is remarkably stable under different environmental conditions. In all chemostat experiments, the signal concentration decreased strongly after a peak, because emerging lactonase activity led to a lower concentration under steady-state conditions. This lactonase activity probably is quorum sensing-regulated. The potential ecological implication of such unique regulation is discussed.
Collapse
Affiliation(s)
- Katharina Buddrus-Schiemann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yuan J, Raza W, Huang Q, Shen Q. The ultrasound-assisted extraction and identification of antifungal substances fromB. amyloliquefaciensstrain NJN-6 suppressingFusarium oxysporum. J Basic Microbiol 2012; 52:721-30. [DOI: 10.1002/jobm.201100560] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/05/2012] [Indexed: 11/11/2022]
|
21
|
Köroğlu TE, Oğülür I, Mutlu S, Yazgan-Karataş A, Ozcengiz G. Global regulatory systems operating in Bacilysin biosynthesis in Bacillus subtilis. J Mol Microbiol Biotechnol 2011; 20:144-55. [PMID: 21709425 DOI: 10.1159/000328639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Bacillus subtilis, bacilysin is a nonribosomally synthesized dipeptide antibiotic composed of L-alanine and L-anticapsin. The biosynthesis of bacilysin depends on the bacABCDEywfG operon (bac operon)and the adjacent ywfH gene. To elucidate the effects of global regulatory genes on the expression of bac operon, we used the combination of lacZ fusion analysis and the gel mobility shift assays. The cell density-dependent transition state induction of the bac operon was clearly shown. The basal expression level of the bac operon as well as transition state induction of bac is directly ComA dependent. Three Phr peptides, PhrC, PhrF and PhrK, are required for full-level expression of ComA-dependent bac operon expression, but the most important role seemed to be played by PhrC in stimulating bac expression through a RapC-independent manner. Spo0A is another positive regulator which participates in the transition state induction of bac both directly by interacting with the bac promoter and indirectly by repressing abrB expression. AbrB and CodY proteins do not only directly repress the bac promoter, but they also mutually stimulate the transition state induction of bac indirectly, most likely by antagonizing their repressive effects without preventing each other's binding since both proteins can bind to the bac promoter simultaneously.
Collapse
Affiliation(s)
- Türkan Ebru Köroğlu
- Molecular Biology-Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, Istanbul Technical University, Turkey
| | | | | | | | | |
Collapse
|
22
|
Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity ofBacillus amyloliquefaciensPPCB004 against postharvest fungal pathogens. J Appl Microbiol 2010; 108:386-95. [DOI: 10.1111/j.1365-2672.2009.04438.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 2009; 8:63. [PMID: 19941639 PMCID: PMC2787494 DOI: 10.1186/1475-2859-8-63] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/26/2009] [Indexed: 01/18/2023] Open
Abstract
Background Phytopathogenic fungi affecting crop and post-harvested vegetables are a major threat to food production and food storage. To face these drawbacks, producers have become increasingly dependent on agrochemicals. However, intensive use of these compounds has led to the emergence of pathogen resistance and severe negative environmental impacts. There are also a number of plant diseases for which chemical solutions are ineffective or non-existent as well as an increasing demand by consumers for pesticide-free food. Thus, biological control through the use of natural antagonistic microorganisms has emerged as a promising alternative to chemical pesticides for more rational and safe crop management. Results The genome of the plant-associated B. amyloliquefaciens GA1 was sample sequenced. Several gene clusters involved in the synthesis of biocontrol agents were detected. Four gene clusters were shown to direct the synthesis of the cyclic lipopeptides surfactin, iturin A and fengycin as well as the iron-siderophore bacillibactin. Beside these non-ribosomaly synthetised peptides, three additional gene clusters directing the synthesis of the antibacterial polyketides macrolactin, bacillaene and difficidin were identified. Mass spectrometry analysis of culture supernatants led to the identification of these secondary metabolites, hence demonstrating that the corresponding biosynthetic gene clusters are functional in strain GA1. In addition, genes encoding enzymes involved in synthesis and export of the dipeptide antibiotic bacilysin were highlighted. However, only its chlorinated derivative, chlorotetaine, could be detected in culture supernatants. On the contrary, genes involved in ribosome-dependent synthesis of bacteriocin and other antibiotic peptides were not detected as compared to the reference strain B. amyloliquefaciens FZB42. Conclusion The production of all of these antibiotic compounds highlights B. amyloliquefaciens GA1 as a good candidate for the development of biocontrol agents.
Collapse
Affiliation(s)
- Anthony Arguelles-Arias
- Centre for Protein Engineering, Physiology and Bacterial Genetics, University of Liege, 4000 Liege, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
The novel gene yvfI in Bacillus subtilis is essential for bacilysin biosynthesis. Antonie van Leeuwenhoek 2008; 94:471-9. [PMID: 18604637 DOI: 10.1007/s10482-008-9265-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
Using transposon mutagenesis in Bacillus subtilis PY79, three independent mutants defective in production of bacilysin were isolated. To identify the genes in these mutant loci affecting bacilysin biosynthesis, the inserted transposon and its flanking regions were cloned and sequenced from each mutant. Transposon insertions in these three mutants were found to be in the yvfI gene which encodes an unknown protein similar to GntR family transcriptional regulators. For further confirmation, deletion mutants were constructed in which nucleotides 196-314 of the yvfI gene were removed. All resulting yvfI (Delta196-314)::spc deletion mutants exhibited bacilysin-negative phenotypes, as in the case of the yvfI::Tn10::spc insertional mutants. The lacR gene, encoding a transcriptional regulator, resides immediately downstream from the yvfI gene. Therefore, an insertion mutation was created in the lacR gene to demonstrate that the bacilysin negative phenotype is actually due to the mutation in the yvfI gene and not a polar effect of yvfI mutation on the downstream gene. As expected, all resulting lacR mutant derivatives of PY79 still produced bacilysin.
Collapse
|
25
|
Romero D, de Vicente A, Olmos JL, Dávila JC, Pérez-García A. Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 2008; 103:969-76. [PMID: 17897200 DOI: 10.1111/j.1365-2672.2007.03323.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To analyse the morphological and ultrastructural effects of lipopeptides of cell-free liquid cultures from the antagonistic Bacillus subtilis strains, UMAF6614 and UMAF6639, on the cucurbit powdery mildew fungus, Podosphaera fusca, conidial germination. METHODS AND RESULTS Butanolic extracts from cell-free supernatants of B. subtilis cultures were tested for their ability to arrest P. fusca conidial germination using the zucchini cotyledon disc method. Previously, the occurrence of lipopeptide antibiotics fengycin, iturin/bacillomycin and surfactin in the extracts was verified by diverse chromatographic approaches. Conidial germination was strongly reduced by antifungal extracts obtained from liquid cultures of both B. subtilis strains. Scanning electron microscopy analysis showed morphological damage in conidia characterized by the presence of large depressions and loss of turgidness. Transmission electron microscopy analysis revealed severe modifications in the plasma membrane and disorganization of the P. fusca cell cytoplasm. CONCLUSIONS The lipopeptides produced by the two strains of B. subtilis are able to reduce cucurbit powdery mildew disease by arresting conidial germination, which seems to result from the induction of important cytological alterations. SIGNIFICANCE AND IMPACT OF THE STUDY We elucidated the mechanisms employed by these antagonistic strains of B. subtilis to suppress cucurbit powdery mildew disease and delineate the ultrastructural damages responsible for their suppressive effect.
Collapse
Affiliation(s)
- D Romero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
26
|
Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A, Barbe V, Schenowitz C, Mangenot S, Couloux A, Segurens B, de Daruvar A, Blanchard A, Citti C. Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 2007; 3:e75. [PMID: 17511520 PMCID: PMC1868952 DOI: 10.1371/journal.pgen.0030075] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 04/02/2007] [Indexed: 11/18/2022] Open
Abstract
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts. Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
Collapse
Affiliation(s)
- Pascal Sirand-Pugnet
- Université Bordeaux 2, UMR1090, Villenave d'Ornon, France
- INRA, UMR1090, Villenave d'Ornon, France
| | - Carole Lartigue
- Université Bordeaux 2, UMR1090, Villenave d'Ornon, France
- INRA, UMR1090, Villenave d'Ornon, France
| | | | - Daniel Jacob
- Centre de Bioinformatique de Bordeaux, Université Bordeaux 2, Bordeaux, France
| | - Aurélien Barré
- Centre de Bioinformatique de Bordeaux, Université Bordeaux 2, Bordeaux, France
| | - Valérie Barbe
- Genoscope, Centre National de Séquençage, Evry, France
| | | | | | | | | | - Antoine de Daruvar
- Centre de Bioinformatique de Bordeaux, Université Bordeaux 2, Bordeaux, France
| | - Alain Blanchard
- Université Bordeaux 2, UMR1090, Villenave d'Ornon, France
- INRA, UMR1090, Villenave d'Ornon, France
| | - Christine Citti
- INRA, ENVT, UMR1225, Toulouse, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 2007; 73:3490-6. [PMID: 17416694 PMCID: PMC1932663 DOI: 10.1128/aem.02751-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural isolates of Bacillus subtilis are often difficult to transform due to their low genetic competence levels. Here we describe two methods that stimulate natural transformation. The first method uses plasmid pGSP12, which expresses the competence transcription factor ComK and stimulates competence development about 100-fold. The second method stimulates Campbell-type recombination of DNA ligation mixtures in B. subtilis by the addition of polyethylene glycol. We employed these novel methods to study the regulation of the synthetases for the lipopeptide antibiotics mycosubtilin (myc) and surfactin (srfA) in B. subtilis strain ATCC 6633. By means of lacZ reporter fusions, it was shown that the expression of srfA is >100 times lower in strain ATCC 6633 than in the laboratory strain B. subtilis 168. Expression of the myc operon was highest in rich medium, whereas srfA expression reached maximal levels in minimal medium. Further genetic analyses showed that the srfA operon is mainly regulated by the response regulator ComA, while the myc operon is primarily regulated by the transition-state regulator AbrB. Although there is in vitro evidence for a synergistic activity of mycosubtilin and surfactin, the expression of both lipopeptide antibiotics is clearly not coordinated.
Collapse
Affiliation(s)
- Erwin H Duitman
- Department of Genetics, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:430-40. [PMID: 17427813 DOI: 10.1094/mpmi-20-4-0430] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the mode of action involved in their biocontrol performance. Cell-free supernatants showed antifungal activities very close to those previously reported for vegetative cells. Identification of three lipopeptide antibiotics, surfactin, fengycin, and iturin A or bacillomycin, in butanolic extracts from cell-free culture filtrates of these B. subtilis strains pointed out that antibiosis could be a major factor involved in their biocontrol ability. The strong inhibitory effect of purified lipopeptide fractions corresponding to bacillomycin, fengycin, and iturin A on P. fusca conidia germination, as well as the in situ detection of these lipopeptides in bacterial-treated melon leaves, provided interesting evidence of their putative involvement in the antagonistic activity. Those results were definitively supported by site-directed mutagenesis analysis, targeted to suppress the biosynthesis of the different lipopeptides. Taken together, our data have allowed us to conclude that the iturin and fengycin families of lipopeptides have a major role in the antagonism of B. subtilis toward P. fusca.
Collapse
Affiliation(s)
- Diego Romero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, E-29071 Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Irigül O, Yazgan-Karataş A. Sporulation-specific expression of the yvgW (cadA) gene and the effect of blockage on spore properties in Bacillus subtilis. Gene 2006; 382:71-8. [PMID: 16901659 DOI: 10.1016/j.gene.2006.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 06/17/2006] [Accepted: 06/22/2006] [Indexed: 11/16/2022]
Abstract
The yvgW gene of Bacillus subtilis has been reported to encode a product which resembles CPx-type ATPase having a function related to Cd2+ and Zn2+ resistance through efflux of this metal. We recently showed that yvgW gene product is also important for sporulation in B. subtilis. The present study was focused on the functional characterization of yvgW in the sporulation process of B. subtilis. The analysis of yvgW expression showed that a significant expression took place during the late stage of sporulation (T5-T8). The deletion of spoIIAC and spoIIGB genes, encoding for sigmaF and sigmaE, respectively, resulted in the complete elimination of yvgW-lacZ expression while the deletion of the spoIIIG coding for sigmaG decreased the yvgW-lacZ expression to only 37% that of the wild type level. In contrast, the deletion of spoIVCB gene coding for sigmaK had no significant effects on the yvgW-lacZ expression. Transcription initiation site of yvgW during sporulation was determined by 5'-RACE-PCR, indicating that -10 and -35 sequences exhibited very good homology with the consensus sequences recognized by RNA polymerase containing sigmaE. Moreover, through the construction of yvgWDelta537-1351::spc, yvgW mutant cells were investigated for their spore properties, such as their resistance profiles against heat, chloroform and lysozyme, pointing out that spores of the mutant cells showed high sensitivity to heat and chloroform, but resistance to lysozyme. The level of dipicolinic acid was also significantly reduced to approximately 63% in yvgW spores as compared to wild type spores. Furthermore, the analyses of the nutrition-specific germination and outgrowth characteristics of the null mutant and the wild type cells revealed no defect in the initiation of yvgW spore germination but they returned to vegetative state more slowly than the wild type spores in minimal medium.
Collapse
Affiliation(s)
- O Irigül
- Istanbul Technical University, Department of Molecular Biology and Genetics, Maslak, 34469 Istanbul, Turkey
| | | |
Collapse
|
30
|
Wang W, Hollmann R, Deckwer WD. Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase. Proteome Sci 2006; 4:19. [PMID: 17022804 PMCID: PMC1622742 DOI: 10.1186/1477-5956-4-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/05/2006] [Indexed: 11/30/2022] Open
Abstract
High cell density cultivations were performed under identical conditions for two Bacillus megaterium strains (MS941 and WH320), both carrying a heterologous dextransucrase (dsrS) gene under the control of the xylA promoter. At characteristic points of the cultivations (end of batch, initial feeding, before and after induction) the proteome was analyzed based on two dimensional gel electrophoresis and mass spectrometric protein identification using the protein database "bmegMEC.v2" recently made available. High expression but no secretion of DsrS was found for the chemical mutant WH320 whereas for MS 941, a defined protease deficient mutant of the same parent strain (DSM319), not even expression of DsrS could be detected. The proteomic analysis resulted in the identification of proteins involved in different cellular pathways such as in central carbon and overflow metabolism, in protein synthesis, protein secretion and degradation, in cell wall metabolism, in cell division and sporulation, in membrane transport and in stress responses. The two strains exhibited considerable variations in expression levels of specific proteins during the different phases of the cultivation process, whereas induction of DsrS production had, in general, little effect. The largely differing behaviour of the two strains with regard to DsrS expression can be attributed, at least in part, to changes observed in the proteome which predominantly concern biosynthetic enzymes and proteins belonging to the membrane translocation system, which were strongly down-regulated at high cell densities in MS941 compared with WH320. At the same time a cell envelope-associated quality control protease and two peptidoglycan-binding proteins related to cell wall turnover were strongly expressed in MS941 but not found in WH320. However, to further explain the very different physiological responses of the two strains to the same cultivation conditions, it is necessary to identify the mutated genes in WH320 in addition to the known lacZ. In view of the results of this proteomic study it seems that at high cell density conditions and hence low growth rates MS941, in contrast to WH320, does not maintain a vegetative growth which is essential for the expression of the foreign dsrS gene by using the xylA promoter. It is conceivable that applications of a promoter which is highly active under nutrient-limited cultivation conditions is necessary, at least for MS941, for the overexpression of recombinant genes in such B. megaterium fed-batch cultivation process. However to obtain a heterologous protein in secreted and properly folded form stills remains a big challenge.
Collapse
Affiliation(s)
- Wei Wang
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Rajan Hollmann
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Wolf-Dieter Deckwer
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| |
Collapse
|
31
|
Auchtung JM, Lee CA, Grossman AD. Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J Bacteriol 2006; 188:5273-85. [PMID: 16816200 PMCID: PMC1539962 DOI: 10.1128/jb.00300-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, extracellular peptide signaling regulates several biological processes. Secreted Phr signaling peptides are imported into the cell and act intracellularly to antagonize the activity of regulators known as Rap proteins. B. subtilis encodes several Rap proteins and Phr peptides, and the processes regulated by many of these Rap proteins and Phr peptides are unknown. We used DNA microarrays to characterize the roles that several rap-phr signaling modules play in regulating gene expression. We found that rapK-phrK regulates the expression of a number of genes activated by the response regulator ComA. ComA activates expression of genes involved in competence development and the production of several secreted products. Two Phr peptides, PhrC and PhrF, were previously known to stimulate the activity of ComA. We assayed the roles that PhrC, PhrF, and PhrK play in regulating gene expression and found that these three peptides stimulate ComA-dependent gene expression to different levels and are all required for full expression of genes activated by ComA. The involvement of multiple Rap proteins and Phr peptides allows multiple physiological cues to be integrated into a regulatory network that modulates the timing and magnitude of the ComA response.
Collapse
|
32
|
Tabata K, Ikeda H, Hashimoto SI. ywfE in Bacillus subtilis codes for a novel enzyme, L-amino acid ligase. J Bacteriol 2005; 187:5195-202. [PMID: 16030213 PMCID: PMC1196041 DOI: 10.1128/jb.187.15.5195-5202.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, such as d-alanyl-d-alanine, polyglutamate, and gamma-peptide, but, curiously, no enzyme synthesizing alpha-dipeptides of l-amino acids is known. We attempted to find such an enzyme. By in silico screening based on the consensus sequence of the superfamily followed by an in vitro assay with purified enzyme to avoid the degradation of the peptide(s) synthesized, ywfE of Bacillus subtilis was found to code for the activity forming l-alanyl-l-glutamine from l-alanine and l-glutamine with hydrolysis of ATP to ADP. No AMP was formed, supporting the idea that the enzyme belongs to the superfamily. Surprisingly, the enzyme accepted a wide variety of l-amino acids. Among 231 combinations of l-amino acids tested, reaction products were obtained for 111 combinations and 44 kinds of alpha-dipeptides were confirmed by high-performance liquid chromatography analyses, while no tripeptide or longer peptide was detected and the d-amino acids were inert. From these results, we propose that ywfE encodes a new member of the superfamily, l-amino acid ligase.
Collapse
Affiliation(s)
- Kazuhiko Tabata
- Technical Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., 1-1 Kyowa-cho, Hofu-shi, 747-8522 Yamaguchi, Japan
| | | | | |
Collapse
|
33
|
van der Ploeg JR. Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 2005; 187:3980-9. [PMID: 15937160 PMCID: PMC1151730 DOI: 10.1128/jb.187.12.3980-3989.2005] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB'-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB'-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci.
Collapse
Affiliation(s)
- Jan R van der Ploeg
- Institute for Oral Biology, Center for Dental-, Oral Medicine and Maxillofacial Surgery, University of Zürich, Plattenstrasse 11, CH-8032, Zürich, Switzerland.
| |
Collapse
|
34
|
Steinborn G, Hajirezaei MR, Hofemeister J. bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains. Arch Microbiol 2004; 183:71-9. [PMID: 15609023 DOI: 10.1007/s00203-004-0743-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/27/2004] [Accepted: 10/11/2004] [Indexed: 11/30/2022]
Abstract
The genes encoding the biosynthesis of the dipeptide bacilysin and its antibiotic constituent anticapsin were isolated from several strains of Bacillus subtilis as well as B. amyloliquefaciens and B. pumilus. The ywfBCDEF genes of B. subtilis 168 were shown to carry the biosynthetic core functions and were renamed bacABCDE. Mutation of the bacD gene or transformation of the bacABC genes into a B. subtilis Delta (ywfA-bacABCDE) deletion mutant led to the accumulation of anticapsin, which was fourfold higher after transformation of the bacABC genes into a bacD mutant. The genes bacD and bacE proved to encode the functions of amino acid ligation and self-protection to bacilysin, respectively. Amplification of the bacABCDE gene cluster in a bacAB gene-deficient host strain of B. amyloliquefaciens resulted in a tenfold bacilysin overproduction. Some host strains required distinct glucosamine and yeast extract supplements in order to prevent suicidal effects of the recombinant antibiotic production. The bac genes from different Bacillus species revealed the same arrangement and 72.6-88.6% of sequence identity.
Collapse
Affiliation(s)
- Gerhard Steinborn
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | | | |
Collapse
|
35
|
Phister TG, O'Sullivan DJ, McKay LL. Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl Environ Microbiol 2004; 70:631-4. [PMID: 14711701 PMCID: PMC321241 DOI: 10.1128/aem.70.1.631-634.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three antimicrobial compounds produced by Bacillus sp. strain CS93 isolated from pozol were identified by using high-performance liquid chromatography and mass spectrometry. The three compounds were iturin, bacilysin, and chlorotetaine. Production of these compounds by CS93 could account for the medicinal properties attributed to pozol.
Collapse
Affiliation(s)
- Trevor G Phister
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
36
|
Yazgan Karata° A, Çetin S, Özcengiz G. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-4781(03)00037-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Inaoka T, Takahashi K, Ohnishi-Kameyama M, Yoshida M, Ochi K. Guanine nucleotides guanosine 5'-diphosphate 3'-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J Biol Chem 2003; 278:2169-76. [PMID: 12372825 DOI: 10.1074/jbc.m208722200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found that a polycistronic operon (ywfBCDEFG) and a monocistronic gene (ywfH) are required for the biosynthesis of bacilysin in Bacillus subtilis. The disruption of these genes by plasmid integration caused loss of the ability to produce bacilysin, accompanied by a lack of bacilysin synthetase activity in the crude extract. We investigated the regulatory mechanism for bacilysin biosynthesis using the transcriptional lacZ fusion system. The transcription of these genes was found to be induced at the transition from exponential to stationary phase. Induction of transcription was accelerated by depleting a required amino acid, which was done by transferring the wild-type (rel(+)) cells to an amino acid-limited medium. In contrast, no enhancement of the gene expression was detected in relA mutant cells. In wild-type (rel(+)) cells, a forced reduction of intracellular GTP, brought about by addition of decoyinine, which is a GMP synthetase inhibitor, enhanced the expression of both the ywfBCDEFG operon and the ywfH gene, resulting in a 2.5-fold increase in bacilysin production. Disruption of the codY gene, which regulates stationary phase genes by detecting the level of GTP, also induced transcription of these genes. In contrast, the expression of ywfBCDEFG in relA cells was not activated either by decoyinine addition or codY disruption, although the expression of ywfH was induced. Moreover, the codY disruption resulted in an increase of bacilysin production only in rel(+) cells. These results indicate that guanosine 5'-diphosphate 3'-diphosphate (ppGpp) plays a crucial role in transcription of the ywfBCDEFG operon and that the transcription of these genes are dependent upon the level of intracellular GTP which is transmitted as a signal via the CodY-mediated repression system. We propose that, unlike antibiotic production in Streptomyces spp., bacilysin production in B. subtilis is controlled by a dual regulation system composed of the guanine nucleotides ppGpp and GTP.
Collapse
Affiliation(s)
- Takashi Inaoka
- Microbial Function Laboratory, National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|