1
|
Dolfini D, Minuzzo M, Sertic S, Mantovani R. NF-YA overexpression protects from glutamine deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118571. [PMID: 31706909 DOI: 10.1016/j.bbamcr.2019.118571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022]
Abstract
The heterotrimeric transcription factor NF-Y binds to CCAAT boxes of genes of glutamine metabolism. We set out to study the role of the regulatory NF-YA subunit in this pathway. We produced U2OS and A549 clones stably overexpressing -OE- the two splicing isoforms of NF-YA. NF-YA OE cells show normal growth and colony formation rates, but they become resistant to cell death upon glutamine deprivation. Increased mRNA and protein expression of the key biosynthetic enzyme GLUL in U2OS entails increased production of endogenous glutamine upon deprivation. The use of GLUL inhibitors dampens the NF-YA-mediated effect. NF-YA OE prevents activation of the pro-apoptotic transcription factor CHOP/DDIT3. Elevated basal levels of SERCA1/2, coding for the molecular target of Thapsigargin, correlate with resistance of NF-YA OE cells to the drug. The work represents a proof-of-principle that elevated levels of NF-YA, as found in some tumor types, helps altering cancer metabolic pathways.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Mario Minuzzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
2
|
STAT1 regulates human glutaminase 1 promoter activity through multiple binding sites in HIV-1 infected macrophages. PLoS One 2013; 8:e76581. [PMID: 24086752 PMCID: PMC3782442 DOI: 10.1371/journal.pone.0076581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/25/2013] [Indexed: 01/14/2023] Open
Abstract
Mononuclear phagocytes (MP, macrophages and microglia), the main targets of HIV-1 infection in the brain, play a pathogenic role in HIV-associated neurocognitive disorders (HAND) through the production and release of various soluble neurotoxic factors including glutamate. We have previously reported that glutaminase (GLS), the glutamate-generating enzyme, is upregulated in HIV-1 infected MP and in the brain tissues of HIV dementia individuals, and that HIV-1 or interferon-α (IFN-α) regulates human glutaminase 1 (GLS1) promoter through signal transducer and activator of transcription 1 (STAT1) phosphorylation in macrophages. However, there are multiple putative STAT1 binding sites in human GLS1 promoter, the exact molecular mechanism of how HIV-1 or IFN-α regulates human GLS1 promoter remains unclear. To further study the function of the putative STAT1 binding sites, we mutated the sequence of each binding site to ACTAGTCTC and found that six mutants (mut 1,3,4,5,7,8) had significantly higher promoter activity and two mutants (mut 2 and mut 6) completely lost the promoter activity compared with the wild type. To determine whether sites 2 and 6 could interfere with other inhibitory sites, particularly the nearby inhibitory sites 3 and 5, we made double mutants dmut 2/3 and dmut 5/6, and found that both the double mutants had significantly higher activity than the wild type, indicating that sites 3 and 5 are critical inhibitory elements, while sites 2 and 6 are excitatory elements. ChIP assay verified that STAT1 could bind with sites 2/3 and 5/6 within human GLS1 promoter in IFN-α stimulated or HIV-1-infected monocyte-derived macrophages. Interestingly, we found that rat Gls1 promoter was regulated through a similar way as human GLS1 promoter. Together, our data identified critical elements that regulate GLS1 promoter activity.
Collapse
|
3
|
Zhao L, Huang Y, Tian C, Taylor L, Curthoys N, Wang Y, Vernon H, Zheng J. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders. PLoS One 2012; 7:e32995. [PMID: 22479354 PMCID: PMC3316554 DOI: 10.1371/journal.pone.0032995] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 02/03/2012] [Indexed: 01/14/2023] Open
Abstract
HIV-1 associated neurocognitive disorders (HAND) develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS), glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM) and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN) α specifically activated the glutaminase 1 (GLS1) promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1) phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1) mRNA levels in HIV associated-dementia (HAD) individuals correlate with STAT1 (p<0.01), IFN-α (p<0.05) and IFN-β (p<0.01). Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and by binding to the GLS1 promoter. Since glutaminase is a potential component of elevated glutamate production during the pathogenesis of HAND, our data will help to identify additional therapeutic targets for the treatment of HAND.
Collapse
Affiliation(s)
- Lixia Zhao
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yunlong Huang
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (JZ); (YH)
| | - Changhai Tian
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lynn Taylor
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Norman Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Yi Wang
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hamilton Vernon
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jialin Zheng
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (JZ); (YH)
| |
Collapse
|
4
|
Romero-Gómez M. Pharmacotherapy of hepatic encephalopathy in cirrhosis. Expert Opin Pharmacother 2010; 11:1317-27. [PMID: 20384539 DOI: 10.1517/14656561003724721] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD Hepatic encephalopathy (HE) is a major complication encountered in nearly half of the patients with liver cirrhosis. AREAS COVERED IN THIS REVIEW A review of the safety and efficacy of current therapies for HE that seek to pre-empt ammonia production and/or to increase its elimination, reducing inflammation, blocking benzodiazepine-like compound production, and supporting systemic hemodynamics. WHAT THE READER WILL GAIN Insight into some recent advances in the management of HE that could modify our therapeutic approach to end-stage liver disease. Cirrhotic individuals during an overt HE episode require careful management, focusing on precipitant factors as well as metabolic and hemodynamic derangements. TAKE HOME MESSAGE Intestinal ammoniagenesis requires flora modification by antibiotics, prebiotics and probiotics; glutaminase inhibition as well as antibiotics to pre-empt systemic inflammation. Hemodynamic/fluid support is essential. Nutritional support is crucial and hypoproteinemic diets should be avoided. Blocking benzodiazepine-like compounds by the use of flumazenil could be useful in patients with severe, benzodiazepine-induced HE. Long-term rifaximin is well tolerated, does not promote resistance and could decrease overt HE bouts in patients with previous episodes of overt HE. Lactulose is better than no treatment in improving quality of life in patients with minimal HE; it also acts as secondary prophylaxis following overt HE.
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- Unit for Clinical Management of Digestive Diseases and CIBEREHD, Hospital Universitario de Valme, University of Seville, Seville, Spain.
| |
Collapse
|
5
|
Romero-Gómez M, Jover M, Galán JJ, Ruiz A. Gut ammonia production and its modulation. Metab Brain Dis 2009; 24:147-57. [PMID: 19067141 DOI: 10.1007/s11011-008-9124-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/28/2008] [Indexed: 12/12/2022]
Abstract
Systemic hyperammonemia has been largely found in patients with cirrhosis and hepatic encephalopathy, and ammonia plays a major role in the pathogenesis of hepatic encephalopathy. However, controversial points remain: a) the correlation between plasma ammonia levels and neurophysiological impairment. The lack of correlation between ammonia levels and grade of hepatic encephalopathy in some cases has been considered a weakness of the ammonia hypothesis, but new methods for ammonia measurements and the implication of systemic inflammation in the modulation of ammonia neurotoxicity could explain this gap; b) the source of ammonia production. Hyperammonemia has been considered as derived from urea breakdown by intestinal bacteria and the majority of treatments were targeted against bacteria-derived ammonia from the colon. However, some data suggest an important role for small intestine ammonia production: 1) the hyperammonemia after porto-caval shunted rats has been found similar in germ-free than in non-germ-free animals. 2) In cirrhotic patients the greatest hyperammonemia was found in portal drained viscera and derived mainly from glutamine deamination. 3) The amount of time required to increase of ammonia (less than one hour) after oral glutamine challenge supports a small intestine origin of the hyperammonemia. As the main source of ammonia in cirrhotics derives from portal drained viscera owing to glutamine deamidation, increased glutaminase activity in the intestine seems to be responsible for systemic hyperammonemia. Lastly, some genetic alterations in the glutaminase gene such as the haplotype TACC could modulate intestinal ammonia production and the risk of overt hepatic encephalopathy in cirrhotics.
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- Unit for the Clinical Management of Digestive Diseases & ciberehd, Hospital Universitario de Valme, Universidad de Sevilla, 41014 Sevilla, Spain.
| | | | | | | |
Collapse
|
6
|
Rasmussen M, Kong L, Zhang GR, Liu M, Wang X, Szabo G, Curthoys NP, Geller AI. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter. Brain Res 2007; 1144:19-32. [PMID: 17331479 PMCID: PMC2694742 DOI: 10.1016/j.brainres.2007.01.125] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/12/2007] [Accepted: 01/21/2007] [Indexed: 12/25/2022]
Abstract
Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an approximately 9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported approximately 90% glutamatergic neuron-specific expression. The GAD67 promoter supported approximately 90% GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine a glutamatergic or GABAergic neuron.
Collapse
Affiliation(s)
- Morten Rasmussen
- Department of Neurology, Research Building 3, West Roxbury VA Hospital/Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Disturbed body nitrogen homeostasis due to impaired hepatic urea synthesis leads to an alteration in inter-organ ammonia trafficking, resulting in hyperammonemia. Glutamine (Gln) synthase is the alternative pathway for ammonia detoxification. Gln taken up by several organs is split by the intramitochondrial phosphate-activated enzyme glutaminase (PAG) into glutamate (Glu) and ammonia. In cirrhotic patients with portosystemic intrahepatic shunt, the main source of systemic hyperammonemia is the small intestine, and ammonia derives mainly from Gln deamidation. Recently, PAG has been found increased in cirrhotics showing minimal hepatic encephalopathy and, therefore, could be implicated in the production of systemic hyperammonemia in these patients. Intestinal PAG activity correlates with psychometric test and magnetic resonance spectroscopy findings. Moreover, nitric oxide and tumor necrosis factor seem to be the major factors regulating intestinal ammonia production in cirrhotics. In the brain, PAG localized into the astrocytes is responsible for ammonia and free-radical production. The blockade of PAG, using 6-oxo-5-norleucine, avoids the toxic effects of Gln accumulation in the brain. These data support an important role for intestinal and brain glutaminase in the pathogenesis of hepatic encephalopathy and could be a new target for future therapies.
Collapse
|
8
|
Baglietto-Vargas D, LóPEZ-TéLLEZ J, MORENO-GONZáLEZ I, GUTIéRREZ* A, Aledo J. Segregation of two glutaminase isoforms in islets of Langerhans. Biochem J 2004; 381:483-7. [PMID: 15089745 PMCID: PMC1133855 DOI: 10.1042/bj20040523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 04/19/2004] [Indexed: 01/20/2023]
Abstract
Despite the importance of glutamatergic signalling in the co-ordination of hormone secretion, the identity of the enzyme for the production of glutamate in beta-cells is still unresolved. We have found that the endocrine pancreas co-expresses two isoforms of GA (glutaminase), denoted as kidney-type (KGA) and liver-type (LGA), with a complementary cellular pattern of expression. Whereas KGA was mainly present in alpha-cells, LGA was very abundant in beta-cells. This spatial segregation may have important functional implications, facilitating a differential regulation of glutamate production in insulin- and glucagon-secreting cells.
Collapse
Affiliation(s)
- David Baglietto-Vargas
- *Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan F. LóPEZ-TéLLEZ
- *Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Inés MORENO-GONZáLEZ
- *Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Antonia GUTIéRREZ*
- *Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence may be addressed to either of the authors (e-mail and )
| | - J. Carlos Aledo
- †Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence may be addressed to either of the authors (e-mail and )
| |
Collapse
|
9
|
Romero-Gómez M, Ramos-Guerrero R, Grande L, de Terán LC, Corpas R, Camacho I, Bautista JD. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J Hepatol 2004; 41:49-54. [PMID: 15246207 DOI: 10.1016/j.jhep.2004.03.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Revised: 02/08/2004] [Accepted: 03/26/2004] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS We performed the current study to assess the intestinal activity of enterocyte phosphate-activated glutaminase (PAG) in cirrhosis. METHODS Forty-nine cirrhotic patients and 36 control subjects underwent endoscopic duodenal biopsies. Minimal hepatic encephalopathy (MHE) was evaluated using three psychometric tests. Oral glutamine challenge (OGC) was performed and MELD, Child-Pugh and the presence of esophageal varices were recorded. PAG was measured by enzymatic methods. Cerebral magnetic resonance spectroscopy was performed in 10 cirrhotics. RESULTS PAG was found to be higher in cirrhotics than control subjects 2.4+/-1.51 vs. 0.68+/-0.57IU/mg protein (P<0.001). PAG was also increased in patients with MHE and correlated with MELD, INR, esophageal varices and serum bile acids. A negative correlation was observed between PAG activity and intra-cerebral choline/creatine ratio (r=-0.67; P=0.035) and a positive correlation with glutamine plus glutamate/creatine ratio (r=0.78; P=0.007). In multivariate analysis using backward logistic regression, presence of MHE was the only variable independently related to altered enterocyte PAG. CONCLUSIONS Enterocyte PAG is increased in cirrhotic patients and correlates with MHE. These data support a possible role for intestinal glutaminase in the pathogenesis of hepatic encephalopathy (HE) and could be a new target for future therapies.
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- Hepatology Unit, Hospital Universitario de Valme, Ctra Cádiz s/n, 41014 Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kenny J, Bao Y, Hamm B, Taylor L, Toth A, Wagers B, Curthoys NP. Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase. Protein Expr Purif 2003; 31:140-8. [PMID: 12963351 DOI: 10.1016/s1046-5928(03)00161-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The human gene that encodes the kidney-type glutaminase (KGA) spans 84-kb, contains 19 exons, and encodes two alternatively spliced mRNAs. Various segments of the rat KGA cDNA were PCR amplified and cloned into a bacterial expression vector to determine whether the N- and C- terminal ends of the glutaminase protein were essential for activity. A recombinant glutaminase, lacking the coding sequence contained in exon 1, was found to be fully active. In contrast, proteins that lacked sequences from exons 1 and 2 and exons 1-3 were inactive. An additional construct that corresponded to the sequence encoded by exons 2-14 also retained full activity. Both of the fully active, truncated proteins were purified to apparent homogeneity using an incorporated N-terminal His(6)-tag and Ni(2+)-affinity chromatography. The K(M) values for glutamine of the native and recombinant forms of glutaminase were nearly identical. However, the two truncated forms of the glutaminase exhibit the characteristic phosphate activation profile only when dialyzed into a buffer lacking phosphate. Dialysis versus 10mM Tris-phosphate was sufficient to form an active tetramer. Thus, the deleted N-terminal sequence may contribute to the phosphate-dependent oligomerization and activation of the native glutaminase.
Collapse
Affiliation(s)
- John Kenny
- Department of Biochemistry and Molecular Biology, Colorado State University, Ft. Collins, CO 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Pérez-Gómez C, Matés JM, Gómez-Fabre PM, del Castillo-Olivares A, Alonso FJ, Márquez J. Genomic organization and transcriptional analysis of the human l-glutaminase gene. Biochem J 2003; 370:771-84. [PMID: 12444921 PMCID: PMC1223212 DOI: 10.1042/bj20021445] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 10/25/2002] [Accepted: 11/25/2002] [Indexed: 11/17/2022]
Abstract
In mammals, glutaminase (GA) is expressed in most tissues, but the regulation of organ-specific expression is largely unknown. Therefore, as an essential step towards studying the regulation of GA expression, the human liver-type GA (hLGA) gene has been characterized. LGA genomic sequences were isolated using the genome walking technique. Analysis and comparison of these sequences with two LGA cDNA clones and the Human Genome Project database, allowed the determination of the genomic organization of the LGA gene. The gene has 18 exons and is approx. 18 kb long. All exon/intron junction sequences conform to the GT/AG rule. Progressive deletion analysis of LGA promoter-luciferase constructs indicated that the core promoter is located between nt -141 and +410, with several potential regulatory elements: CAAT, GC, TATA-like, Ras-responsive element binding protein and specificity protein 1 (Sp1) sites. The minimal promoter was mapped within +107 and +410, where only an Sp1 binding site is present. Mutation experiments suggested that two CAAT recognition elements near the transcription-initiation site (-138 and -87), play a crucial role for optimal promoter activity. Electrophoretic mobility-shift assays confirmed the importance of CAAT- and TATA-like boxes to enhance basal transcription, and demonstrated that HNF-1 motif is a significant distal element for transcriptional regulation of the hLGA gene.
Collapse
Affiliation(s)
- Cristina Pérez-Gómez
- Departamento de Biología Molecular y Bioquímica, Laboratorio de Química de Proteínas, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Curthoys NP, Gstraunthaler G. Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol 2001; 281:F381-90. [PMID: 11502586 DOI: 10.1152/ajprenal.2001.281.3.f381] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased renal catabolism of plasma glutamine during metabolic acidosis generates two ammonium ions that are predominantly excreted in the urine. They function as expendable cations that facilitate the excretion of acids. Further catabolism of alpha-ketoglutarate yields two bicarbonate ions that are transported into the venous blood to partially compensate for the acidosis. In rat kidney, this adaptation is sustained, in part, by the induction of multiple enzymes and various transport systems. The pH-responsive increases in glutaminase (GA) and phosphoenolpyruvate carboxykinase (PEPCK) mRNAs are reproduced in LLC-PK(1)-fructose 1,6-bisphosphatase (FBPase) cells. The increase in GA activity results from stabilization of the GA mRNA. The 3'-untranslated region of the GA mRNA contains a direct repeat of an eight-base AU sequence that functions as a pH-response element. This sequence binds zeta-crystallin/NADPH:quinone reductase with high affinity and specificity. Increased binding of this protein during acidosis may initiate the pH-responsive stabilization of the GA mRNA. In contrast, induction of PEPCK occurs at the transcriptional level. In LLC-PK(1)-FBPase(+) kidney cells, a decrease in intracellular pH leads to activation of the p38 stress-activated protein kinase and subsequent phosphorylation of transcription factor ATF-2. This transcription factor binds to cAMP-response element 1 within the PEPCK promoter and may enhance its transcription during metabolic acidosis.
Collapse
Affiliation(s)
- N P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| | | |
Collapse
|