1
|
Jayamanna Mohottige MW, Gardner CE, Nye-Wood MG, Farquharson KA, Juhász A, Belov K, Hogg CJ, Peel E, Colgrave ML. Bioactive components in the marsupial pouch and milk. Nutr Res Rev 2024:1-12. [PMID: 39551618 DOI: 10.1017/s0954422424000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Marsupials give birth to immunologically naïve young after a relatively short gestation period compared with eutherians. Consequently, the joey relies significantly on maternal protection, which is the focus of the present review. The milk and the pouch environment are essential contributors to maternal protection for the healthy development of joeys. In this review, we discuss bioactive components found in the marsupial pouch and milk that form cornerstones of maternal protection. These bioactive components include immune cells, immunoglobulins, the S100 family of calcium-binding proteins, lysozymes, whey proteins, antimicrobial peptides and other immune proteins. Furthermore, we investigated the possibility of the presence of plurifunctional components in milk and pouches that are potentially bioactive. These compounds include caseins, vitamins and minerals, oligosaccharides, lipids and microRNAs. Where applicable, this review addresses variability in bioactive components during different phases of lactation, designed to fulfil the immunological needs of the growing pouch young. Yet, there are numerous additional research opportunities to pursue, including uncovering novel bioactive components and investigating their modes of action, dynamics, stability and ability to penetrate the gut epithelium to facilitate systemic effects.
Collapse
Affiliation(s)
- Manujaya W Jayamanna Mohottige
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Chloe E Gardner
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | | | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Katherine Belov
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Carolyn J Hogg
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Emma Peel
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Michelle L Colgrave
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Gao F, Zhao Y, Shi X, Zhang Y, Jiang X, Li C, Pei C, Kong X. The role of TF-b in iron homeostasis and bacterial defense in common carp (Cyprinus carpio). Int J Biol Macromol 2024; 280:136011. [PMID: 39343272 DOI: 10.1016/j.ijbiomac.2024.136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Transferrin (TF) is a prototypical biological macromolecule protein known for its iron-binding properties. TF proteins play a crucial role in modulating host iron homeostasis and defending against pathogen invasion. In this study, we utilized common carp (Cyprinus carpio) tissues and Epithelioma papulosum cyprinid (EPC) cells to establish experimental models of iron overload with FeCl3 or ferric amine citrate (FAC), and to establish experimental models of bacterial infection with Aeromonas hydrophila. The current research has successfully identified the CcTF-b gene in common carp, revealing an ORF of 2001 bp with N-terminal and C-terminal structures. CcTF-b exhibited inhibitory effects on the growth of LPS and LTA in vitro. In the experimental models, the upregulations of PTGS2a and PTGS2a-like mRNA and protein levels were observed. Overexpression or interference with CcTF-b levels can modulate the expression of ferroptosis-related genes, inflammatory cytokines, lipid reactive oxygen species, GSH/GSSH levels, and Fe2+ concentration. Significantly, the expression levels of Nrf2 and GPX4 mRNA and protein, as well as the bacterial load of A. hydrophila, could be also modulated either by upregulating or downregulating CcTF-b factors. In conclusion, in this study, these findings suggest that CcTF-b plays a critical role in the innate immune response of common carp.
Collapse
Affiliation(s)
- Feng Gao
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Yanjing Zhao
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xiaowei Shi
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Yunli Zhang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xinyu Jiang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
3
|
Teng T, Xi B, Xie J, Chen K, Xu P, Pan L. Molecular cloning and expression analysis of Megalobrama amblycephala transferrin gene and effects of exposure to iron and infection with Aeromonas hydrophila. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:987-997. [PMID: 28236008 DOI: 10.1007/s10695-017-0346-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Transferrin (Tf) plays an important function in iron homeostasis and metabolism of organisms. In this study, we identified and characterized the Tf gene in Megalobrama amblycephala and evaluated its expression in basal conditions as well as after iron overload and experimental infection with Aeromonas hydrophila. Furthermore, we studied the iron binding properties of recombinant Tf. The full-length M. amblycephala Tf complementary DNA (cDNA) (GenBank accession no.: KX698308) of 2245 bp was cloned and contained a 1953 bp open reading frame (ORF) encoding 650 amino acid residues and flanked by a 68 bp 5' and a 204 bp 3' untranslated regions (UTR). Predicted conservative structure illustrated that M. amblycephala Tf consisted of two conservative Tf domains. Amino acid sequence alignment revealed that M. amblycephala Tf had high similarity with that of cyprinids deposited in Genbank, and phylogenetic analysis showed that M. amblycephala Tf clustered with Ctenopharyngodon idella and Hypophthalmichthys molitrix. Tissue expression pattern analyses demonstrated that the liver was the main Tf mRNA expressing organ, being significantly higher than other tissues (p < 0.05). In the liver, Tf mRNA expression in fish artificially injected with the pathogenic bacteria A. hydrophila was significantly upregulated, reaching a peak at 12 h post injection (hpi) and then decreasing afterward. The expression in FeCl3-injected fish showed a similar tendency, but reached a peak at 8 hpi. Meanwhile, fish serum iron significantly decreased following A. hydrophila injection, but increased to peak at 4 hpi and then decreased in FeCl3-injected fish. The recombinant M. amblycephala Tf showed iron binding capacity using CAS analysis. These results are helpful to understand the structure and regulation of expression of Tf, as well as the specific function of Tf for both immune responses and iron homeostasis.
Collapse
Affiliation(s)
- Tao Teng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| |
Collapse
|
4
|
Hewavisenti RV, Morris KM, O'Meally D, Cheng Y, Papenfuss AT, Belov K. The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii). PeerJ 2016; 4:e1569. [PMID: 26793426 PMCID: PMC4715465 DOI: 10.7717/peerj.1569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/15/2015] [Indexed: 01/25/2023] Open
Abstract
Tasmanian devil (Sarcophilus harrisii) pouch young, like other marsupials, are born underdeveloped and immunologically naïve, and are unable to mount an adaptive immune response. The mother’s milk provides nutrients for growth and development as well as providing passive immunity. To better understand immune response in this endangered species, we set out to characterise the genes involved in passive immunity by sequencing and annotating the transcriptome of a devil milk sample collected during mid-lactation. At mid-lactation we expect the young to have heightened immune responses, as they have emerged from the pouch, encountering new pathogens. A total of 233,660 transcripts were identified, including approximately 17,827 unique protein-coding genes and 846 immune genes. The most highly expressed transcripts were dominated by milk protein genes such as those encoding early lactation protein, late lactation proteins, α-lactalbumin, α-casein and β-casein. There were numerous highly expressed immune genes including lysozyme, whey acidic protein, ferritin and major histocompatibility complex I and II. Genes encoding immunoglobulins, antimicrobial peptides, chemokines and immune cell receptors were also identified. The array of immune genes identified in this study reflects the importance of the milk in providing immune protection to Tasmanian devil young and provides the first insight into Tasmanian devil milk.
Collapse
Affiliation(s)
| | - Katrina M Morris
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| | - Denis O'Meally
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| | - Yuanyuan Cheng
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Australia; Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| |
Collapse
|
5
|
Daly KA, Mailer SL, Digby MR, Lefévre C, Thomson P, Deane E, Nicholas KR, Williamson P. Molecular analysis of tammar (Macropus eugenii) mammary epithelial cells stimulated with lipopolysaccharide and lipoteichoic acid. Vet Immunol Immunopathol 2008; 129:36-48. [PMID: 19157568 DOI: 10.1016/j.vetimm.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/25/2008] [Accepted: 12/01/2008] [Indexed: 01/22/2023]
Abstract
The immunological function of the metatherian mammary gland plays a crucial part in neonatal survival of the marsupial young. Marsupial pouch young do not develop adult like immune responses until just prior to leaving the pouch. The immune components of the maternal milk secretions are important during this vulnerable early post-partum period. In addition, infection of the mammary gland has not been recognized in metatherians, despite the ready availability of pathogens in the pouch. Regardless of which, little is known about the immunobiology of the mammary gland and the immune responses of mammary epithelial cells in metatherians. In this study, a molecular approach was utilized to examine the response of tammar (Macropus eugenii) mammary epithelial cells to Escherichia coli derived lipopolysaccharide (LPS) and Staphylococcus aureus derived lipoteichoic acid (LTA). Using custom-made cDNA microarrays, candidate genes were identified in the transciptome, which were involved in antigen presentation, inflammation, cell growth and proliferation, cellular damage and apoptosis. Quantification of mRNA expression of several of these candidate genes, along with seven other genes (TLR4, CD14, TNF-alpha, cathelicidin, PRDX1, IL-5 and ABCG2) associated with innate immunity in LPS and LTA challenged mammary epithelial cells and leukocytes, was assessed for up to 24 h. Differences in genes associated with cellular damage and pro-inflammatory cytokine production were seen between stimulated mammary epithelial cells and leukocytes. LTA challenge tended to result in lower level induction of pro-inflammatory cytokines, increased PRDX1 mRNA levels, suggesting increased oxidative stress, and increased CD14 expression, but in a non-TLR4-dependent manner. The use of functional genomic tools in the tammar identified differences in the response of tammar mammary epithelial cells (MEC) and leukocytes to challenge with LPS and LTA, and validates the utility of the approach. The results of this study are consistent with a model in which tammar mammary epithelial cells have the capacity to elicit a complex and robust immune response to pathogens.
Collapse
Affiliation(s)
- Kerry A Daly
- Faculty of Veterinary Science, B19, University of Sydney, Camperdown, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Daly KA, Lefévre C, Nicholas K, Deane E, Williamson P. CD14 and TLR4 are expressed early in tammar (Macropus eugenii) neonate development. ACTA ACUST UNITED AC 2008; 211:1344-51. [PMID: 18375859 DOI: 10.1242/jeb.012013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marsupials are born in a relatively underdeveloped state and develop during a period of intensive maturation in the postnatal period. During this period, the young marsupial lacks a competent immune system, but manages to survive despite the potential of exposure to environmental pathogens. Passive immune transfer via the milk is one well-recognised strategy to compensate the neonate, but there also may be innate immune mechanisms in place. In this study, CD14 and Toll-like receptor 4 (TLR4), integral molecular components of pathogen recognition, were identified and characterised for the first time in a marsupial, the tammar wallaby (Macropus eugenii). Functional motifs of tammar CD14 and the toll/interleukin receptor (TIR) domain of TLR4 were highly conserved. The lipopolysaccharide (LPS) binding residues and the TLR4 interaction site of CD14 were conserved in all marsupials. The TIR signalling domain had 84% identity within marsupials and 77% with eutherians. Stimulation of adult tammar leukocytes resulted in the induction of a biphasic pattern of CD14 and TLR4 expression, and coincided with increased production of the pro-inflammatory cytokine TNF-alpha. Differential patterns of expression of CD14 and TLR4 were observed in tammar pouch young early in development, suggesting that early maturation of the innate immune system in these animals may have developed as an immune survival strategy to protect the marsupial neonate from exposure to microbial pathogens.
Collapse
Affiliation(s)
- Kerry A Daly
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
7
|
Daly KA, Digby M, Lefèvre C, Mailer S, Thomson P, Nicholas K, Williamson P. Analysis of the expression of immunoglobulins throughout lactation suggests two periods of immune transfer in the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol 2007; 120:187-200. [PMID: 17727962 DOI: 10.1016/j.vetimm.2007.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/09/2007] [Accepted: 07/17/2007] [Indexed: 12/28/2022]
Abstract
Marsupial young are born in an under-developed state without mature immune responses. Prior to the maturation of an immune system, marsupial young are heavily reliant upon immune factors secreted in the milk to defend them against potential microbial pathogens in the environment. In this study, we identified and characterized the immunoglobulin heavy chain constant regions, light chains, polymeric Ig receptor (pIgR), J chain, neonatal Fc receptor (alpha chain) (FcRn) and the chemokine CCL28 from the model marsupial species, the tammar wallaby (Macropus eugenii). Low levels of conservation were seen in motifs in C alpha and C gamma associated with receptor binding and or transcytosis, and this may have potential implications for functionality. We evaluated the expression of immunoglobulin genes in the tammar mammary gland throughout lactation and found that two periods of increased expression of immunoglobulin genes occur. These two periods coincide with the birth of the young, and with its first emergence from the pouch. This increased expression may represent a strategy for maternal immunological protection of the pouch young.
Collapse
Affiliation(s)
- Kerry A Daly
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Llewellyn LE. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep 2006; 23:200-22. [PMID: 16572228 DOI: 10.1039/b501296c] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saxitoxin (STX) was discovered early last century and can contaminate seafood and drinking water, and over time has become an invaluable research tool and an internationally regulated chemical weapon. Among natural products, toxins obtain a unique reputation from their high affinity and selectivity for their target pharmacological receptor, which for STX has long been considered to only be the voltage gated sodium channel. In recent times however, STX has been discovered to also bind to calcium and potassium channels, neuronal nitric oxide synthase, STX metabolizing enzymes and two circulatory fluid proteins, namely a transferrin-like family of proteins and a unique protein found in the blood of pufferfish.
Collapse
|
9
|
Lambert LA, Perri H, Halbrooks PJ, Mason AB. Evolution of the transferrin family: Conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:129-41. [PMID: 16111909 DOI: 10.1016/j.cbpb.2005.07.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 11/23/2022]
Abstract
The transferrin family spans both vertebrates and invertebrates. It includes serum transferrin, ovotransferrin, lactoferrin, melanotransferrin, inhibitor of carbonic anhydrase, saxiphilin, the major yolk protein in sea urchins, the crayfish protein, pacifastin, and a protein from green algae. Most (but not all) contain two domains of around 340 residues, thought to have evolved from an ancient duplication event. For serum transferrin, ovotransferrin and lactoferrin each of the duplicated lobes binds one atom of Fe (III) and one carbonate anion. With a few notable exceptions each iron atom is coordinated to four conserved amino acid residues: an aspartic acid, two tyrosines, and a histidine, while anion binding is associated with an arginine and a threonine in close proximity. These six residues in each lobe were examined for their evolutionary conservation in the homologous N- and C-lobes of 82 complete transferrin sequences from 61 different species. Of the ligands in the N-lobe, the histidine ligand shows the most variability in sequence. Also, of note, four of the twelve insect transferrins have glutamic acid substituted for aspartic acid in the N-lobe (as seen in the bacterial ferric binding proteins). In addition, there is a wide spread substitution of lysine for the anion binding arginine in the N-lobe in many organisms including all of the fish, the sea squirt and many of the unusual family members i.e., saxiphilin and the green alga protein. It is hoped that this short analysis will provide the impetus to establish the true function of some of the TF family members that clearly lack the ability to bind iron in one or both lobes and additionally clarify the evolutionary history of this important family of proteins.
Collapse
Affiliation(s)
- Lisa A Lambert
- Department of Biology, Chatham College, Woodland Road, Pittsburgh, PA 15232, USA
| | | | | | | |
Collapse
|
10
|
Western AH, Eckery DC, Demmer J, Juengel JL, McNatty KP, Fidler AE. Expression of the FcRn receptor (alpha and beta) gene homologues in the intestine of suckling brushtail possum (Trichosurus vulpecula) pouch young. Mol Immunol 2003; 39:707-17. [PMID: 12531282 DOI: 10.1016/s0161-5890(02)00260-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neonatal IgG transporter FcRn consists of two chains, FcRn alpha and beta (also known as beta(2) microglobulin), and is involved in transferring IgG molecules across both mammary and intestinal epithelial cells. Developmental changes in FcRn IgG alpha and beta chain mRNA levels were investigated in the gut of brushtail possum (Trichosurus vulpecula) pouch young (PY) using Northern hybridisation. FcRn alpha transcripts were detected in the PY proximal intestine at all times examined, between days 1 and 195 of post-natal life, with increased levels detected from around day 110. The beta(2) microglobulin transcript levels in the PY proximal intestine were low to undetectable until day 110 of post-natal life and then increased dramatically after day 159. Both the FcRn alpha and beta gene transcripts were detected in a wide range of tissues in the adult possum (>365 days). Genomic sequences located 5' to the start of transcription of the FcRn alpha and beta(2) microglobulin genes were cloned and analysed for predicted cis-acting transcription control elements. Both the FcRn alpha and beta(2) microglobulin genomic sequences contained STAT5 binding motifs consistent with the transcription of both genes being modulated by prolactin. Using in situ hybridisation, the FcRn alpha and beta(2) microglobulin transcripts were localised to the epithelial cells of the PY intestine. However, no prolactin receptor transcripts were detected in the same epithelial cells suggesting that the observed changes in FcRn alpha and beta(2) microglobulin gene expression in the proximal intestine are not modulated directly by prolactin. The results are consistent with the hypothesis that changes in FcRn alpha and beta(2) microglobulin gene expression take place in the possum PY intestine to accommodate changes in maternal milk composition to meet the changing immunological demands of the PY.
Collapse
Affiliation(s)
- A H Western
- AgResearch Wallaceville, Ward Street, Upper Hutt, New Zealand
| | | | | | | | | | | |
Collapse
|
11
|
Demmer J, Stasiuk SJ, Grigor MR, Simpson KJ, Nicholas KR. Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:187-94. [PMID: 11779633 DOI: 10.1016/s0167-4781(01)00334-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The whey acidic protein (WAP) is a whey protein found in the milk of a number of species. We have isolated and characterised a WAP cDNA clone from the brushtail possum (Trichosurus vulpecula) and examined its expression in the mammary gland. The amino acid sequences of WAP from the possum and another marsupial, the tammar wallaby, share 69% identity, however, less sequence identity exists between the marsupial and eutherian WAP sequences (30-37%). The possum and tammar WAP genes consist of three four-disulphide core (4-DSC) domains, with a WAP motif at the beginning of each domain. In contrast, the eutherian WAP sequences consist of two 4-DSC domains with the WAP motif only present in the second domain. This WAP motif is also present in a number of protease inhibitors found in a wide range of species. Phylogenetic analysis of marsupial and eutherian WAP sequences suggests that the ancestral WAP gene has three domains and that one of the domains has been deleted from the eutherian gene. The profile of WAP gene expression in the possum mammary gland changed throughout lactation, with WAP mRNA levels reaching a peak between days 106 and 177 of lactation. The level of WAP mRNA in the mammary gland appeared to be correlated with the level of circulating prolactin in the lactating female and was different to that observed for several other whey protein genes. Overlapping expression of the WAP and early lactation protein genes, both of which are putative protease inhibitors, may provide protection of milk immunoglobulins that are required for the prolonged period of passive immune transfer to the marsupial pouch young.
Collapse
Affiliation(s)
- J Demmer
- Dairy Science Group, AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
| | | | | | | | | |
Collapse
|
12
|
Jeoung D, Kim HY. Cloning and sequence analysis of cDNA for heavy-chain ferritin from the Canis familiaris. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:401-6. [PMID: 11913787 DOI: 10.3109/10425170109084465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ferritin serves as a storage protein for iron in animals. Complementary DNA encoding a heavy chain ferritin was cloned from the brain of Canis familiaris. The dog ferritin cDNA encodes a 182 amino acid that shows high levels of amino acid identity with vertebrate ferritins (90-98%). Near the cap region of the 5'-untranslated region, the dog H-ferritin mRNA displays a 28-nucleotide sequence that is exactly conserved in the corresponding region of the human and pig H-ferritin mRNA, thus making this sequence a prime candidate for involvement in the known translational regulation of H-ferritin by iron.
Collapse
Affiliation(s)
- D Jeoung
- Cancer Genomics Unit, In2gen Company, Seoul, South Korea
| | | |
Collapse
|
13
|
Abstract
Transferrins are iron-binding proteins that are involved in iron storage and resistance to bacterial disease. Previous work has shown that nonsynonymous-to-synonymous-site substitution ratios (d(n)/d(s) ratios) between transferrin genes from some salmonid species were significantly greater than 1.0, providing evidence for positive selection at the transferrin gene. The purpose of the current study was to put these earlier results in a broader evolutionary context by examining variation among 25 previously published transferrin sequences from fish, amphibians, and mammals. The results of the study show that evidence for positive selection at transferrin is limited to salmonids-d(n)/d(s) ratios estimated for nonsalmonid lineages were generally less than 1.0. Within the salmonids, approximately 13% of the transferrin codon sites are estimated to be subject to positive selection, with an estimated d(n)/d(s) ratio of approximately 7. The three- dimensional locations of some of the selected sites were inferred by comparing these sites to homologous sites in the bovine lactoferrin crystallographic structure. The selected sites generally fall on the outside of the molecule, within and near areas that are bound by transferrin-binding proteins from human pathogenic bacteria. The physical locations of sites estimated to be subject to positive selection support previous speculation that competition for iron from pathogenic bacteria could be the source of positive selection.
Collapse
Affiliation(s)
- M J Ford
- National Marine Fisheries Service, Northwest Fisheries Science Center, Conservation Biology Division, Seattle, Washington 98112, USA.
| |
Collapse
|
14
|
Adamski FM, Demmer J. Immunological protection of the vulnerable marsupial pouch young: two periods of immune transfer during lactation in Trichosurus vulpecula (brushtail possum). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2000; 24:491-502. [PMID: 10785274 DOI: 10.1016/s0145-305x(00)00012-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Marsupial young are born with an underdeveloped immune system and are dependent upon passively acquired immune protection provided by the mother's milk. Colostrum and milk samples were collected from the brushtail possum throughout lactation and the concentration of secretory IgA (sIgA), IgG and transferrin was determined by Western blotting. Two periods of immune transfer were identified. The first, a colostral phase, occurs immediately after birth and involves sIgA, IgG and transferrin. During the early lactation stage, pouch young receive milk of a unique composition as they undergo developmental changes in the pouch that occur in utero for eutherian mammals. At the end of this external gestation, the composition of the milk changes (switch phase) to resemble that of eutherian mammals in the late lactation phase. The second transfer of immunity consists of IgG and transferrin, and occurs during the switch phase prior to maturation of the immune response.
Collapse
Affiliation(s)
- F M Adamski
- Reproduction Technologies Group, AgResearch Ruakura, Private Bag 3123, Hamilton, New Zealand
| | | |
Collapse
|
15
|
Adamski FM, King AT, Demmer J. Expression of the Fc receptor in the mammary gland during lactation in the marsupial Trichosurus vulpecula (brushtail possum). Mol Immunol 2000; 37:435-44. [PMID: 11090878 DOI: 10.1016/s0161-5890(00)00065-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of several functions described for the Fc receptor is regulation of IgG isotype transport into milk. The first marsupial homologues of the Fc receptor heavy and light chains, FcRn and beta-2 microglobulin, from the brushtail possum have been cloned and characterised. The level of FcRn mRNA in the possum mammary gland was highest at the start of lactation, and decreased slowly thereafter. Expression of FcRn mRNA did not increase during the switch phase when the concentration of IgG in milk is highest. In contrast, the level of beta-2 microglobulin mRNA in the mammary gland increased during the switch phase when milk IgG concentration also increases. This correlation between beta-2 microglobulin mRNA expression in the mammary gland with the time of active IgG-transfer into milk was also observed in the bovine and murine mammary gland. This suggests that expression of the Fc receptor in the mammary gland is controlled by the expression of beta-2 microglobulin and that its expression is upregulated during the period of highest IgG-transfer into milk.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blotting, Northern
- Cattle
- Cloning, Molecular
- Female
- Gene Expression Regulation, Developmental
- Humans
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Lactation/genetics
- Lactation/immunology
- Lactation/metabolism
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/metabolism
- Marsupialia/genetics
- Marsupialia/immunology
- Marsupialia/metabolism
- Mice
- Milk/immunology
- Milk/metabolism
- Molecular Sequence Data
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Fc/chemistry
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Sequence Alignment
- beta 2-Microglobulin/chemistry
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/metabolism
Collapse
Affiliation(s)
- F M Adamski
- Reproductive Technologies Group, AgResearch Ruakura, Private Bag 3123, Hamilton, New Zealand
| | | | | |
Collapse
|