1
|
Scaletti ER, Gustafsson Westergren R, Andersson Y, Wiita E, Henriksson M, Homan EJ, Jemth A, Helleday T, Stenmark P. The First Structure of Human MTHFD2L and Its Implications for the Development of Isoform-Selective Inhibitors. ChemMedChem 2022; 17:e202200274. [PMID: 35712863 PMCID: PMC9796130 DOI: 10.1002/cmdc.202200274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Indexed: 01/01/2023]
Abstract
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a mitochondrial 1-carbon metabolism enzyme, which is an attractive anticancer drug target as it is highly upregulated in cancer but is not expressed in healthy adult cells. Selective MTHFD2 inhibitors could therefore offer reduced side-effects during treatment, which are common with antifolate drugs that target other 1C-metabolism enzymes. This task is challenging however, as MTHFD2 shares high sequence identity with the constitutively expressed isozymes cytosolic MTHFD1 and mitochondrial MTHFD2L. In fact, one of the most potent MTHFD2 inhibitors reported to date, TH7299, is actually more active against MTHFD1 and MTHFD2L. While structures of MTHFD2 and MTHFD1 exist, no MTHFD2L structures are available. We determined the first structure of MTHFD2L and its complex with TH7299, which reveals the structural basis for its highly potent MTHFD2L inhibition. Detailed analysis of the MTHFD2L structure presented here clearly highlights the challenges associated with developing truly isoform-selective MTHFD2 inhibitors.
Collapse
Affiliation(s)
- Emma R. Scaletti
- Department of Biochemistry and BiophysicsStockholm UniversitySvante Arrhenius väg 16 CStockholm106 91Sweden
| | | | - Yasmin Andersson
- Drug Discovery and Development Platform, Science for Life Laboratory School of BiotechnologyRoyal Institute of TechnologyTomtebodavägen 23aStockholm17165Sweden
| | - Elisee Wiita
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Martin Henriksson
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Evert J. Homan
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Ann‐Sofie Jemth
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
- Department of Oncology and MetabolismThe University of SheffieldBeech Hill RoadSheffieldS10 2RXUK
| | - Pål Stenmark
- Department of Biochemistry and BiophysicsStockholm UniversitySvante Arrhenius väg 16 CStockholm106 91Sweden
| |
Collapse
|
2
|
The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2). PLoS Comput Biol 2022; 18:e1010140. [PMID: 35613161 PMCID: PMC9173628 DOI: 10.1371/journal.pcbi.1010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate MgA2+, while MgA2+ together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate MgB2+, and MgB2+ further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of MgA2+, MgB2+ and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.
Collapse
|
3
|
Gustafsson R, Jemth AS, Gustafsson NMS, Färnegårdh K, Loseva O, Wiita E, Bonagas N, Dahllund L, Llona-Minguez S, Häggblad M, Henriksson M, Andersson Y, Homan E, Helleday T, Stenmark P. Crystal Structure of the Emerging Cancer Target MTHFD2 in Complex with a Substrate-Based Inhibitor. Cancer Res 2016; 77:937-948. [PMID: 27899380 DOI: 10.1158/0008-5472.can-16-1476] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/23/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
To sustain their proliferation, cancer cells become dependent on one-carbon metabolism to support purine and thymidylate synthesis. Indeed, one of the most highly upregulated enzymes during neoplastic transformation is MTHFD2, a mitochondrial methylenetetrahydrofolate dehydrogenase and cyclohydrolase involved in one-carbon metabolism. Because MTHFD2 is expressed normally only during embryonic development, it offers a disease-selective therapeutic target for eradicating cancer cells while sparing healthy cells. Here we report the synthesis and preclinical characterization of the first inhibitor of human MTHFD2. We also disclose the first crystal structure of MTHFD2 in complex with a substrate-based inhibitor and the enzyme cofactors NAD+ and inorganic phosphate. Our work provides a rationale for continued development of a structural framework for the generation of potent and selective MTHFD2 inhibitors for cancer treatment. Cancer Res; 77(4); 937-48. ©2017 AACR.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nina M S Gustafsson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Färnegårdh
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nadilly Bonagas
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leif Dahllund
- Drug Discovery and Development Platform, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Häggblad
- Biochemical and Cellular Screening, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yasmin Andersson
- Drug Discovery and Development Platform, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Evert Homan
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
4
|
Lessons in biology from patients with inherited disorders of vitamin B12 and folate metabolism. Biochimie 2016; 126:3-5. [DOI: 10.1016/j.biochi.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
|
5
|
Abstract
DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.
Collapse
|
6
|
Sah S, Varshney U. Impact of Mutating the Key Residues of a Bifunctional 5,10-Methylenetetrahydrofolate Dehydrogenase-Cyclohydrolase from Escherichia coli on Its Activities. Biochemistry 2015; 54:3504-13. [PMID: 25988590 DOI: 10.1021/acs.biochem.5b00400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) catalyzes interconversion of 5,10-methylene-tetrahydrofolate and 10-formyl-tetrahydrofolate in the one-carbon metabolic pathway. In some organisms, the essential requirement of 10-formyl-tetrahydrofolate may also be fulfilled by formyltetrahydrofolate synthetase (Fhs). Recently, we developed an Escherichia coli strain in which the folD gene was deleted in the presence of Clostridium perfringens fhs (E. coli ΔfolD/p-fhs) and used it to purify FolD mutants (free from the host-encoded FolD) and determine their biological activities. Mutations in the key residues of E. coli FolD, as identified from three-dimensional structures (D121A, Q98K, K54S, Y50S, and R191E), and a genetic screen (G122D and C58Y) were generated, and the mutant proteins were purified to determine their kinetic constants. Except for the R191E and K54S mutants, others were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. While the R191E mutant showed high cyclohydrolase activity, it retained only a residual dehydrogenase activity. On the other hand, the K54S mutant lacked the cyclohydrolase activity but possessed high dehydrogenase activity. The D121A and G122D (in a loop between two helices) mutants were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. In vivo and in vitro characterization of wild-type and mutant (R191E, G122D, D121A, Q98K, C58Y, K54S, and Y50S) FolD together with three-dimensional modeling has allowed us to develop a better understanding of the mechanism for substrate binding and catalysis by E. coli FolD.
Collapse
Affiliation(s)
- Shivjee Sah
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,‡Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
7
|
Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A 2014; 112:400-5. [PMID: 25548164 DOI: 10.1073/pnas.1414555112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An inborn error of metabolism associated with mutations in the human methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) gene has been identified. The proband presented with SCID, megaloblastic anemia, and neurologic abnormalities, but the causal metabolic impairment is unknown. SCID has been associated with impaired purine nucleotide metabolism, whereas megaloblastic anemia has been associated with impaired de novo thymidylate (dTMP) biosynthesis. MTHFD1 functions to condense formate with tetrahydrofolate and serves as the primary entry point of single carbons into folate-dependent one-carbon metabolism in the cytosol. In this study, we examined the impact of MTHFD1 loss of function on folate-dependent purine, dTMP, and methionine biosynthesis in fibroblasts from the proband with MTHFD1 deficiency. The flux of formate incorporation into methionine and dTMP was decreased by 90% and 50%, respectively, whereas formate flux through de novo purine biosynthesis was unaffected. Patient fibroblasts exhibited enriched MTHFD1 in the nucleus, elevated uracil in DNA, lower rates of de novo dTMP synthesis, and increased salvage pathway dTMP biosynthesis relative to control fibroblasts. These results provide evidence that impaired nuclear de novo dTMP biosynthesis can lead to both megaloblastic anemia and SCID in MTHFD1 deficiency.
Collapse
|
8
|
Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:343-65. [PMID: 23408533 DOI: 10.1002/wsbm.1209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable.
Collapse
Affiliation(s)
- Marco Scotti
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | | | |
Collapse
|
9
|
Eadsforth TC, Maluf FV, Hunter WN. Acinetobacter baumannii FolD ligand complexes --potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571. FEBS J 2012; 279:4350-60. [PMID: 23050773 DOI: 10.1111/febs.12025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/07/2012] [Accepted: 10/04/2012] [Indexed: 01/26/2023]
Abstract
The bifunctional N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclohydrolase (DHCH or FolD), which is widely distributed in prokaryotes and eukaryotes, is involved in the biosynthesis of folate cofactors that are essential for growth and cellular development. The enzyme activities represent a potential antimicrobial drug target. We have characterized the kinetic properties of FolD from the Gram-negative pathogen Acinetobacter baumanni and determined high-resolution crystal structures of complexes with a cofactor and two potent inhibitors. The data reveal new details with respect to the molecular basis of catalysis and potent inhibition. A unexpected finding was that our crystallographic data revealed a different structure for LY374571 (an inhibitor studied as an antifolate) than that previously published. The implications of this observation are discussed.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
10
|
Abstract
The role of metabolic compartmentation in spatially organizing metabolic enzymes into pathways, regulating flux through metabolic pathways, and controlling the partitioning of metabolic intermediates among pathways is appreciated, but our understanding of the mechanisms that establish metabolic architecture and mediate communication and regulation among interconnected metabolic pathways and networks is still incomplete. This review discusses recent advancements in our understanding of metabolic compartmentation within the pathways that constitute the folate-mediated one-carbon metabolic network and emerging evidence for a need to regulate the trafficking of folates among compartmentalized metabolic pathways.
Collapse
|
11
|
Hamdane D, Guerineau V, Un S, Golinelli-Pimpaneau B. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis. Biochemistry 2011; 50:5208-19. [PMID: 21561081 DOI: 10.1021/bi1019463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flavoprotein TrmFO catalyzes the C5 methylation of uridine 54 in the TΨC loop of tRNAs using 5,10-methylenetetrahydrofolate (CH(2)THF) as a methylene donor and FAD as a reducing agent. Here, we report biochemical and spectroscopic studies that unravel the remarkable capability of Bacillus subtilis TrmFO to stabilize, in the presence of oxygen, several flavin-reduced forms, including an FADH(•) radical, and a catalytic intermediate endowed with methylating activity. The FADH(•) radical was characterized by high-field electron paramagnetic resonance and electron nuclear double-resonance spectroscopies. Interestingly, the enzyme exhibited tRNA methylation activity in the absence of both an added carbon donor and an external reducing agent, indicating that a reaction intermediate, containing presumably CH(2)THF and FAD hydroquinone, is present in the freshly purified enzyme. Isolation by acid treatment, under anaerobic conditions, of noncovalently bound molecules, followed by mass spectrometry analysis, confirmed the presence in TrmFO of nonmodified FAD. Addition of formaldehyde to the purified enzyme protects the reduced flavins from decay by probably preventing degradation of CH(2)THF. The absence of air-stable reduced FAD species during anaerobic titration of oxidized TrmFO, performed in the absence or presence of added CH(2)THF, argues against their thermodynamic stabilization but rather implicates their kinetic trapping by the enzyme. Altogether, the unexpected isolation of a stable catalytic intermediate suggests that the flavin-binding pocket of TrmFO is a highly insulated environment, diverting the reduced FAD present in this intermediate from uncoupled reactions.
Collapse
Affiliation(s)
- Djemel Hamdane
- Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
12
|
Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1784:1873-98. [PMID: 18801467 PMCID: PMC2646786 DOI: 10.1016/j.bbapap.2008.08.012] [Citation(s) in RCA: 770] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 01/04/2023]
Abstract
Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Wood-Ljungdahl pathway of CO(2) fixation involves this type of stepwise process. The biochemical events that underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that have led to the identification of the key components and steps of this usual mechanism of CO and CO(2) fixation. In this historical perspective, we have included reflections that hopefully will sketch the landscape of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then describe the properties of the genes and enzymes involved in the pathway and conclude with a section describing some major questions that remain unanswered.
Collapse
Affiliation(s)
- Stephen W Ragsdale
- Department of Biological Chemistry, MSRB III, 5301, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109-0606, USA.
| | | |
Collapse
|
13
|
Christensen KE, Mackenzie RE. Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. VITAMINS AND HORMONES 2008; 79:393-410. [PMID: 18804703 DOI: 10.1016/s0083-6729(08)00414-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folate-mediated metabolism involves enzyme-catalyzed reactions that occur in the cytoplasmic, mitochondrial, and nuclear compartments in mammalian cells. Which of the folate-dependent enzymes are expressed in these compartments depends on the stage of development, cell type, cell cycle, and whether or not the cell is transformed. Mitochondria become formate-generating organelles in cells and tissues expressing the MTHFD2 and MTHFD1L genes. The products of these nuclear genes were derived from trifunctional precursor proteins, expressing methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetase activities. The MTHFD2 protein is a bifunctional protein with dehydrogenase and cyclohydrolase activities that arose from a trifunctional precursor through the loss of the synthetase domain and a novel adaptation to NAD rather than NADP specificity for the dehydrogenase. The MTHFD1L protein retains the size of its trifunctional precursor, but through the mutation of critical residues, both the dehydrogenase and cyclohydrolase activities have been silenced. MTHFD1L is thus a monofunctional formyltetrahydrofolate synthetase. This review discusses the properties and functions of these mitochondrial proteins and their role in supporting cytosolic purine synthesis during embryonic development and in cells undergoing rapid growth.
Collapse
Affiliation(s)
- Karen E Christensen
- Montreal Children's Hospital Research Institute, Montreal, QC, Canada H3Z 2Z3
| | | |
Collapse
|
14
|
Christensen KE, MacKenzie RE. Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals. Bioessays 2006; 28:595-605. [PMID: 16700064 DOI: 10.1002/bies.20420] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, folate metabolism is compartmentalized between the cytoplasm and organelles. The folate pathways of mitochondria are adapted to serve the metabolism of the organism. In yeast, mitochondria support cytoplasmic purine synthesis through the generation of formate. This pathway is important but not essential for survival, consistent with the flexibility of yeast metabolism. In plants, the mitochondrial pathways support photorespiration by generating serine from glycine. This pathway is essential under photosynthetic conditions and the enzyme expression varies with photosynthetic activity. In mammals, the expression of the mitochondrial enzymes varies in tissues and during development. In embryos, mitochondria supply formate and glycine for purine synthesis, a process essential for survival; in adult tissues, flux through mitochondria can favor serine production. The differences in the folate pathways of mitochondria depending on species, tissues and developmental stages, profoundly alter the nature of their metabolic contribution.
Collapse
|
15
|
Christensen KE, Mirza IA, Berghuis AM, Mackenzie RE. Magnesium and phosphate ions enable NAD binding to methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase. J Biol Chem 2005; 280:34316-23. [PMID: 16100107 DOI: 10.1074/jbc.m505210200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) is believed to have evolved from a trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase. It is unique in its absolute requirement for inorganic phosphate and magnesium ions to support dehydrogenase activity. To enable us to investigate the roles of these ions, a homology model of human NMDMC was constructed based on the structures of three homologous proteins. The model supports the hypothesis that the absolutely required Pi can bind in close proximity to the 2'-hydroxyl of NAD through interactions with Arg166 and Arg198. The characterization of mutants of Arg166, Asp190, and Arg198 show that Arg166 is primarily responsible for Pi binding, while Arg198 plays a secondary role, assisting in binding and properly orienting the ion in the cofactor binding site. Asp190 helps to properly position Arg166. Mutants of Asp133 suggest that the magnesium ion interacts with both Pi and the aspartate side chain and plays a role in positioning Pi and NAD. NMDMC uses Pi and magnesium to adapt an NADP binding site for NAD binding. This adaptation represents a novel variation of the classic Rossmann fold.
Collapse
|
16
|
Christensen KE, Patel H, Kuzmanov U, Mejia NR, MacKenzie RE. Disruption of the mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria. J Biol Chem 2004; 280:7597-602. [PMID: 15611115 DOI: 10.1074/jbc.m409380200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mthfd1 gene encoding the cytoplasmic methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase enzyme (DCS) was inactivated in embryonic stem cells. The null embryonic stem cells were used to generate spontaneously immortalized fibroblast cell lines that exhibit the expected purine auxotrophy. Elimination of these cytoplasmic activities allowed for the accurate assessment of similar activities encoded by other genes in these cells. A low level of 10-formyltetrahydrofolate synthetase was detected and was shown to be localized to mitochondria. However, NADP-dependent methylenetetrahydrofolate dehydrogenase activity was not detected. Northern blot analysis suggests that a recently identified mitochondrial DCS (Prasannan, P., Pike, S., Peng, K., Shane, B., and Appling, D. R. (2003) J. Biol. Chem. 278, 43178-43187) is responsible for the synthetase activity. The lack of NADP-dependent dehydrogenase activity suggests that this RNA may encode a monofunctional synthetase. Moreover, examination of the primary structure of this novel protein revealed mutations in key residues required for dehydrogenase and cyclohydrolase activities. This monofunctional synthetase completes the pathway for the production of formate from formyltetrahydrofolate in the mitochondria in our model of mammalian one-carbon folate metabolism in embryonic and transformed cells.
Collapse
Affiliation(s)
- Karen E Christensen
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
17
|
Fu TF, Scarsdale JN, Kazanina G, Schirch V, Wright HT. Location of the pteroylpolyglutamate-binding site on rabbit cytosolic serine hydroxymethyltransferase. J Biol Chem 2003; 278:2645-53. [PMID: 12438316 DOI: 10.1074/jbc.m210649200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT; EC 2.1.2.1) catalyzes the reversible interconversion of serine and glycine with transfer of the serine side chain one-carbon group to tetrahydropteroylglutamate (H(4)PteGlu), and also the conversion of 5,10-methenyl-H(4)PteGlu to 5-formyl-H(4)PteGlu. In the cell, H(4)PteGlu carries a poly-gamma-glutamyl tail of at least 3 glutamyl residues that is required for physiological activity. This study combines solution binding and mutagenesis studies with crystallographic structure determination to identify the extended binding site for tetrahydropteroylpolyglutamate on rabbit cytosolic SHMT. Equilibrium binding and kinetic measurements of H(4)PteGlu(3) and H(4)PteGlu(5) with wild-type and Lys --> Gln or Glu site mutant homotetrameric rabbit cytosolic SHMTs identified lysine residues that contribute to the binding of the polyglutamate tail. The crystal structure of the enzyme in complex with 5-formyl-H(4)PteGlu(3) confirms the solution data and indicates that the conformation of the pteridine ring and its interactions with the enzyme differ slightly from those observed in complexes of the monoglutamate cofactor. The polyglutamate chain, which does not contribute to catalysis, exists in multiple conformations in each of the two occupied binding sites and appears to be bound by the electrostatic field created by the cationic residues, with only limited interactions with specific individual residues.
Collapse
Affiliation(s)
- Tzu-Fun Fu
- Department of Biochemistry and the Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond 23219-1570, USA
| | | | | | | | | |
Collapse
|
18
|
Sundararajan S, MacKenzie RE. Residues involved in the mechanism of the bifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase: the roles of glutamine 100 and aspartate 125. J Biol Chem 2002; 277:18703-9. [PMID: 11904299 DOI: 10.1074/jbc.m200127200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human bifunctional dehydrogenase-cyclohydrolase domain catalyzes the interconversion of 5,10-methylene-H(4)folate and 10-formyl-H(4)folate. Although previous structure and mutagenesis studies indicated the importance of lysine 56 in cyclohydrolase catalysis, the role of several surrounding residues had not been explored. In addition to further defining the role of lysine 56, the work presented in this study explores the functions of glutamine 100 and aspartate 125 through the use of site-directed mutagenesis and chemical modification. Mutants at position 100 are inactive with respect to cyclohydrolase activity while preserving significant dehydrogenase levels. We succeeded in producing a K56Q/Q100K double mutant, which has no cyclohydrolase yet retains more than two-thirds of wild type dehydrogenase activity. Neither activity is detectable in aspartate 125 mutants with the exception of D125E. The results indicate that the function of glutamine 100 is to activate lysine 56 for cyclohydrolase catalysis and that aspartate 125 is involved in the binding of the H(4)folate substrates. In highlighting the importance of these residues, catalytic mechanisms are proposed for both activities as well as an explanation for the differences in channeling efficiency in the forward and reverse directions.
Collapse
Affiliation(s)
- Saravanan Sundararajan
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
19
|
Abstract
Folic acid is an essential nutrient from the B complex group of vitamins. Folate, as a cofactor, is involved in numerous intracellular reactions, and this is reflected in the various derivatives that have been isolated from biological sources. Folic acid is involved in single carbon transfer reactions and serves as a source of single carbon units in different oxidative states. The processes involved in the absorption, transport, and intracellular metabolism of this cofactor are complex. Much of folate is bound tightly to enzymes, indicating that there is not excess of this cofactor and that its cellular availability is protected as well as being strictly regulated. In animals, the liver controls the supply of folate through first pass metabolism, biliary secretion, enterohepatic recirculation, as well as through senescent erythrocyte recycling. Deficiencies of folate can occur for many reasons, including reduced intake, increased metabolism, and/or increased requirements as well as through genetic defects. The effects of folate deficiency include hyperhomocysteinemia, megaloblastic anemia, and mood disorders. Folate deficiency has also been implicated in disorders associated with neural tube defects. Supplementation of grain products such as cereals has been undertaken in several countries as a cost-effective means of reducing the prevelance of neural tube defects. Recently, common polymorphisms have been discovered in several genes associated with folate pathways that may play a role in diseases associated with folate deficiency, particularly mild folate deficiency.
Collapse
Affiliation(s)
- J G Donnelly
- Department of Pathology, the Ottawa Hospital and the University of Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Upton A, Smelt V, Mushtaq A, Aplin R, Johnson N, Mardon H, Sim E. Placental arylamine N-acetyltransferase type 1: potential contributory source of urinary folate catabolite p-acetamidobenzoylglutamate during pregnancy. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:143-8. [PMID: 11113560 DOI: 10.1016/s0304-4165(00)00149-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human arylamine N-acetyltransferase type 1 (NAT1), better known as a drug-metabolising enzyme, has been proposed to acetylate the folate catabolite p-aminobenzoylglutamate (p-abaglu) to N-acetamidobenzoylglutamate (ap-abaglu) which is a major urinary folate catabolite. Using mass spectroscopic analysis, we demonstrate the formation of ap-abaglu by recombinant human NAT1 and human placental homogenates. Using density gradient centrifugation the placental enzymic activity which acetylates p-aba and the placental enzymic activity acetylating p-abaglu both have an S(20,w) value of 3.25 S. This is the expected value for a monomer of human NAT1 (33 kDa). The specific NAT1 inhibitor 5-iodosalicylate inhibits acetylation of both p-aba and p-abaglu catalysed by either recombinant human NAT1 or placental samples as the source of enzyme. These data demonstrate that NAT1 is the major placental enzyme involved in acetylating p-abaglu.
Collapse
Affiliation(s)
- A Upton
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|