1
|
Chen W, Laremore TN, Yennawar NH, Showalter SA. Phosphorylation modulates secondary structure of intrinsically disorder regions in RNA polymerase II. J Biol Chem 2025:108533. [PMID: 40273986 DOI: 10.1016/j.jbc.2025.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
The intrinsically disordered C-terminal domain (CTD) of RNA polymerase II contains tandem repeats with the consensus sequence YSPTSPS and coordinates transcription and co-transcriptional events through dynamic phosphorylation patterns. While it has been long hypothesized that phosphorylation induces structural changes in the CTD, a direct comparison of how different phosphorylation patterns modulate the CTD conformation has been limited. Here, we generated two distinct phosphorylation patterns in an essential Drosophila CTD region with the kinase Dyrk1a: one where Ser2 residues are primarily phosphorylated, mimicking the state near transcription termination, and a hyperphosphorylation state where most Ser2, Ser5, and Thr residues are phosphorylated, expanding on our work on Ser5 phosphorylation, which mimics early transcription elongation. Using 13C Direct-Detect NMR, we show that the CTD tends to form transient beta strands and beta turns, which are altered differently by Ser2 and Ser5 phosphorylation. Small angle x-ray scattering (SAXS) revealed no significant changes in the CTD global dimensions even at high phosphorylation levels, contradicting the common assumption of phosphorylation-induced chain expansion. Our findings support a transient beta model in which unphosphorylated CTD adopts transient beta strands at Ser2 during transcription pre-initiation. These transient structures are disrupted by Ser5 phosphorylation in early elongation, and later restored by Ser2 phosphorylation near termination for recruiting beta turn-recognizing termination factors.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tatiana N Laremore
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Neela H Yennawar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
2
|
Oven HC, Yap GPA, Zondlo NJ. Helical twists and β-turns in structures at serine-proline sequences: Stabilization of cis-proline and type VI β-turns via C-H/O interactions. Proteins 2024; 92:1190-1205. [PMID: 38747689 DOI: 10.1002/prot.26701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 10/26/2024]
Abstract
Structures at serine-proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)-(4-iodophenyl)hydroxyproline [hyp(4-I-Ph)]. The crystal structure of Boc-Ser-hyp(4-I-Ph)-OMe had two molecules in the unit cell. One molecule exhibited cis-proline and a type VIa2 β-turn (BcisD). The cis-proline conformation was stabilized by a C-H/O interaction between Pro C-Hα and the Ser side-chain oxygen. NMR data were consistent with stabilization of cis-proline by a C-H/O interaction in solution. The other crystallographically observed molecule had trans-Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac-Ser-hyp(4-I-Ph)-OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation and trans-Pro. Structures at Ser-Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser-Pro versus Ala-Pro sequences were compared to identify bases for Ser stabilization of local structures. C-H/O interactions between the Ser side-chain Oγ and Pro C-Hα were observed in 45% of structures with Ser-cis-Pro in the PDB, with nearly all Ser-cis-Pro structures adopting a type VI β-turn. 53% of Ser-trans-Pro sequences exhibited main-chain COi•••HNi+3 or COi•••HNi+4 hydrogen bonds, with Ser as the i residue and Pro as the i + 1 residue. These structures were overwhelmingly either type I β-turns or N-terminal capping motifs on α-helices or 310-helices. These results indicate that Ser-Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγ capable of engaging in a hydrogen bond with the amide N-H of the i + 2 (type I β-turn or 310-helix; Ser χ1 t) or i + 3 (α-helix; Ser χ1 g+) residue. Non-proline cis amide bonds can also be stabilized by C-H/O interactions.
Collapse
Affiliation(s)
- Harrison C Oven
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Flores-Solis D, Lushpinskaia IP, Polyansky AA, Changiarath A, Boehning M, Mirkovic M, Walshe J, Pietrek LM, Cramer P, Stelzl LS, Zagrovic B, Zweckstetter M. Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II. Nat Commun 2023; 14:5979. [PMID: 37749095 PMCID: PMC10519987 DOI: 10.1038/s41467-023-41633-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023] Open
Abstract
Eukaryotic gene regulation and pre-mRNA transcription depend on the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II. Due to its highly repetitive, intrinsically disordered sequence, the CTD enables clustering and phase separation of Pol II. The molecular interactions that drive CTD phase separation and Pol II clustering are unclear. Here, we show that multivalent interactions involving tyrosine impart temperature- and concentration-dependent self-coacervation of the CTD. NMR spectroscopy, molecular ensemble calculations and all-atom molecular dynamics simulations demonstrate the presence of diverse tyrosine-engaging interactions, including tyrosine-proline contacts, in condensed states of human CTD and other low-complexity proteins. We further show that the network of multivalent interactions involving tyrosine is responsible for the co-recruitment of the human Mediator complex and CTD during phase separation. Our work advances the understanding of the driving forces of CTD phase separation and thus provides the basis to better understand CTD-mediated Pol II clustering in eukaryotic gene transcription.
Collapse
Affiliation(s)
- David Flores-Solis
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 35075, Göttingen, Germany
| | - Irina P Lushpinskaia
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 35075, Göttingen, Germany
| | - Anton A Polyansky
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Campus Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Arya Changiarath
- Faculty of Biology, Johannes Gutenberg University Mainz (JGU), Gresemundweg 2, 55128, Mainz, Germany
- KOMET1, Institute of Physics, Johannes Gutenberg University Mainz (JGU), Staudingerweg 9, 55099, Mainz, Germany
| | - Marc Boehning
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Milana Mirkovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Campus Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - James Walshe
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Lisa M Pietrek
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasße 3, 60438, Frankfurt am Main, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Lukas S Stelzl
- Faculty of Biology, Johannes Gutenberg University Mainz (JGU), Gresemundweg 2, 55128, Mainz, Germany
- KOMET1, Institute of Physics, Johannes Gutenberg University Mainz (JGU), Staudingerweg 9, 55099, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Bojan Zagrovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Campus Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 35075, Göttingen, Germany.
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Lushpinskaia IP, Flores-Solis D, Zweckstetter M. Structure and phase separation of the C-terminal domain of RNA polymerase II. Biol Chem 2023; 404:839-844. [PMID: 37331973 DOI: 10.1515/hsz-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
The repetitive heptads in the C-terminal domain (CTD) of RPB1, the largest subunit of RNA Polymerase II (Pol II), play a critical role in the regulation of Pol II-based transcription. Recent findings on the structure of the CTD in the pre-initiation complex determined by cryo-EM and the novel phase separation properties of key transcription components offers an expanded mechanistic interpretation of the spatiotemporal distribution of Pol II during transcription. Current experimental evidence further suggests an exquisite balance between CTD's local structure and an array of multivalent interactions that drive phase separation of Pol II and thus shape its transcriptional activity.
Collapse
Affiliation(s)
- Irina P Lushpinskaia
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - David Flores-Solis
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Batkhishig D, Bilguun K, Enkhbayar P, Miyashita H, Kretsinger RH, Matsushima N. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors. Protein J 2019; 37:223-236. [PMID: 29651716 PMCID: PMC5976695 DOI: 10.1007/s10930-018-9767-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.
Collapse
Affiliation(s)
- Dashdavaa Batkhishig
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Department of Physics, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 210648, Mongolia
| | - Khurelbaatar Bilguun
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Institute of Physics and Technology, Mongolian Academy of Sciences, Enkhtaivan avenue 54B, Ulaanbaatar, 210651, Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.
| | - Hiroki Miyashita
- Hokubu Rinsho Co., Ltd, Sapporo, 060-0061, Japan.,Institute of Tandem Repeats, Sapporo, 004-0882, Japan
| | | | - Norio Matsushima
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia. .,Institute of Tandem Repeats, Sapporo, 004-0882, Japan. .,Sapporo Medical University, Sapporo, 060-8556, Japan.
| |
Collapse
|
6
|
Portz B, Lu F, Gibbs EB, Mayfield JE, Rachel Mehaffey M, Zhang YJ, Brodbelt JS, Showalter SA, Gilmour DS. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat Commun 2017; 8:15231. [PMID: 28497792 PMCID: PMC5437306 DOI: 10.1038/ncomms15231] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood. Here we present a biophysical and biochemical interrogation of the structure of the full length CTD of Drosophila melanogaster, which we conclude is a compact random coil. Surprisingly, we find that the repetitive CTD is structurally heterogeneous. Phosphorylation causes increases in radius, protein accessibility and stiffness, without disrupting local structural heterogeneity. Additionally, we show the human CTD is also structurally heterogeneous and able to substitute for the D. melanogaster CTD in supporting fly development to adulthood. This finding implicates conserved structural organization, not a precise array of heptad motifs, as important to CTD function.
Collapse
Affiliation(s)
- Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,The Huck Institutes of Life Sciences. The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua E Mayfield
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
7
|
Wahle E, Moritz B. Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases – how and why. Biol Chem 2013; 394:1029-43. [DOI: 10.1515/hsz-2013-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/13/2013] [Indexed: 12/23/2022]
Abstract
Abstract
Asymmetric dimethylation of arginine side chains in proteins is a frequent posttranslational modification, catalyzed by type I protein arginine methyltransferases (PRMTs). This article summarizes what is known about this modification in the nuclear poly(A)-binding protein (PABPN1). PABPN1 contains 13 dimethylated arginine residues in its C-terminal domain. Three enzymes, PRMT1, 3, and 6, can methylate PABPN1. Although 26 methyl groups are transferred to one PABPN1 molecule, the PRMTs do so in a distributive reaction, i.e., only a single methyl group is transferred per binding event. As PRMTs form dimers, with the active sites accessible from a small central cavity, backbone conformation around the methyl-accepting arginine is an important determinant of substrate specificity. Neither the association of PABPN1 with poly(A) nor its role in poly(A) tail synthesis is affected by arginine methylation. At least at low protein concentration, methylation does not affect the protein’s tendency to oligomerize. The dimethylarginine residues of PABPN1 are located in the binding site for its nuclear import receptor, transportin. Arginine methylation weakens this interaction about 10-fold. Very recent evidence suggests that arginine methylation as a way of fine-tuning the interactions between transportin and its cargo may be a general mechanism.
Collapse
|
8
|
Mao AH, Lyle N, Pappu RV. Describing sequence-ensemble relationships for intrinsically disordered proteins. Biochem J 2013; 449:307-18. [PMID: 23240611 PMCID: PMC4074364 DOI: 10.1042/bj20121346] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intrinsically disordered proteins participate in important protein-protein and protein-nucleic acid interactions and control cellular phenotypes through their prominence as dynamic organizers of transcriptional, post-transcriptional and signalling networks. These proteins challenge the tenets of the structure-function paradigm and their functional mechanisms remain a mystery given that they fail to fold autonomously into specific structures. Solving this mystery requires a first principles understanding of the quantitative relationships between information encoded in the sequences of disordered proteins and the ensemble of conformations they sample. Advances in quantifying sequence-ensemble relationships have been facilitated through a four-way synergy between bioinformatics, biophysical experiments, computer simulations and polymer physics theories. In the present review we evaluate these advances and the resultant insights that allow us to develop a concise quantitative framework for describing the sequence-ensemble relationships of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Albert H. Mao
- Medical Scientist Training Program, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
- Computational & Molecular Biophysics Program, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
| | - Nicholas Lyle
- Computational & Systems Biology Program, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
| |
Collapse
|
9
|
Jasnovidova O, Stefl R. The CTD code of RNA polymerase II: a structural view. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:1-16. [DOI: 10.1002/wrna.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Kölbel K, Ihling C, Kühn U, Neundorf I, Otto S, Stichel J, Robaa D, Beck-Sickinger AG, Sinz A, Wahle E. Peptide Backbone Conformation Affects the Substrate Preference of Protein Arginine Methyltransferase I. Biochemistry 2012; 51:5463-75. [DOI: 10.1021/bi300373b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Knut Kölbel
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Ines Neundorf
- Institute of Biochemistry, University of Leipzig, Brüderstrasse 34, 04103
Leipzig, Germany
| | - Silke Otto
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Jan Stichel
- Institute of Biochemistry, University of Leipzig, Brüderstrasse 34, 04103
Leipzig, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | | | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| |
Collapse
|
11
|
Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008; 37:337-52. [PMID: 18573085 DOI: 10.1146/annurev.biophys.37.032807.130008] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.
Collapse
Affiliation(s)
- P Cramer
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 2008; 15:795-804. [PMID: 18660819 PMCID: PMC2597375 DOI: 10.1038/nsmb.1468] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 06/24/2008] [Indexed: 11/09/2022]
Abstract
RNA polymerase II (Pol II) in Saccharomyces cerevisiae can terminate transcription via several pathways. To study how a mechanism is chosen, we analyzed recruitment of Nrd1, which cooperates with Nab3 and Sen1 to terminate small nucleolar RNAs and other short RNAs. Budding yeast contains three C-terminal domain (CTD) interaction domain (CID) proteins, which bind the CTD of the Pol II largest subunit. Rtt103 and Pcf11 act in mRNA termination, and both preferentially interact with CTD phosphorylated at Ser2. The crystal structure of the Nrd1 CID shows a fold similar to that of Pcf11, but Nrd1 preferentially binds to CTD phosphorylated at Ser5, the form found proximal to promoters. This indicates why Nrd1 cross-links near 5' ends of genes and why the Nrd1-Nab3-Sen1 termination pathway acts specifically at short Pol II-transcribed genes. Nrd1 recruitment to genes involves a combination of interactions with CTD and Nab3.
Collapse
Affiliation(s)
- Lidia Vasiljeva
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
13
|
Alazard R, Mourey L, Ebel C, Konarev PV, Petoukhov MV, Svergun DI, Erard M. Fine-tuning of intrinsic N-Oct-3 POU domain allostery by regulatory DNA targets. Nucleic Acids Res 2007; 35:4420-32. [PMID: 17576670 PMCID: PMC1935007 DOI: 10.1093/nar/gkm453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 'POU' (acronym of Pit-1, Oct-1, Unc-86) family of transcription factors share a common DNA-binding domain of approximately 160 residues, comprising so-called 'POUs' and 'POUh' sub-domains connected by a flexible linker. The importance of POU proteins as developmental regulators and tumor-promoting agents is due to linker flexibility, which allows them to adapt to a considerable variety of DNA targets. However, because of this flexibility, it has not been possible to determine the Oct-1/Pit-1 linker structure in crystallographic POU/DNA complexes. We have previously shown that the neuronal POU protein N-Oct-3 linker contains a structured region. Here, we have used a combination of hydrodynamic methods, DNA footprinting experiments, molecular modeling and small angle X-ray scattering to (i) structurally interpret the N-Oct-3-binding site within the HLA DRalpha gene promoter and deduce from this a novel POU domain allosteric conformation and (ii) analyze the molecular mechanisms involved in conformational transitions. We conclude that there might exist a continuum running from free to 'pre-bound' N-Oct-3 POU conformations and that regulatory DNA regions likely select pre-existing conformers, in addition to molding the appropriate DBD structure. Finally, we suggest that a specific pair of glycine residues in the linker might act as a major conformational switch.
Collapse
Affiliation(s)
- Robert Alazard
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Christine Ebel
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Peter V. Konarev
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Maxim V. Petoukhov
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Dmitri I. Svergun
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Monique Erard
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
- *To whom correspondence should be addressed. +33 (0) 562175496+33 (0) 562175994
| |
Collapse
|
14
|
Zhang Y, Kim Y, Genoud N, Gao J, Kelly JW, Pfaff SL, Gill GN, Dixon JE, Noel JP. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol Cell 2007; 24:759-770. [PMID: 17157258 PMCID: PMC2859291 DOI: 10.1016/j.molcel.2006.10.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/08/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Phosphorylation and dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II (Pol II) represent a critical regulatory checkpoint for transcription. Transcription initiation requires Fcp1/Scp1-mediated dephosphorylation of phospho-CTD. Fcp1 and Scp1 belong to a family of Mg2+ -dependent phosphoserine (P.Ser)/phosphothreonine (P.Thr)-specific phosphatases. We recently showed that Scp1 is an evolutionarily conserved regulator of neuronal gene silencing. Here, we present the X-ray crystal structures of a dominant-negative form of human Scp1 (D96N mutant) bound to mono- and diphosphorylated peptides encompassing the CTD heptad repeat (Y1S2P3T4S5P6S7). Moreover, kinetic and thermodynamic analyses of Scp1-phospho-CTD peptide complexes support the structures determined. This combined structure-function analysis discloses the residues in Scp1 involved in CTD binding and its preferential dephosphorylation of P.Ser5 of the CTD heptad repeat. Moreover, these results provide a template for the design of specific inhibitors of Scp1 for the study of neuronal stem cell development.
Collapse
Affiliation(s)
- Yan Zhang
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Youngjun Kim
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Nicolas Genoud
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Jianmin Gao
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Jeffery W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Samuel L Pfaff
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Gordon N Gill
- Department of Medicine, University of California, San Diego, La Jolla, California 92093; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Joseph P Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037.
| |
Collapse
|
15
|
Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P. A structural perspective of CTD function. Genes Dev 2005; 19:1401-15. [PMID: 15964991 DOI: 10.1101/gad.1318105] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) integrates nuclear events by binding proteins involved in mRNA biogenesis. CTD-binding proteins recognize a specific CTD phosphorylation pattern, which changes during the transcription cycle, due to the action of CTD-modifying enzymes. Structural and functional studies of CTD-binding and -modifying proteins now reveal some of the mechanisms underlying CTD function. Proteins recognize CTD phosphorylation patterns either directly, by contacting phosphorylated residues, or indirectly, without contact to the phosphate. The catalytic mechanisms of CTD kinases and phosphatases are known, but the basis for CTD specificity of these enzymes remains to be understood.
Collapse
Affiliation(s)
- Anton Meinhart
- Department of Chemistry and Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
16
|
Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors. Nature 2004; 430:223-6. [PMID: 15241417 DOI: 10.1038/nature02679] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/21/2004] [Indexed: 11/08/2022]
Abstract
During transcription, RNA polymerase (Pol) II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing by the carboxy-terminal domain (CTD) of Pol II, which consists of up to 52 repeats of the sequence Tyr 1-Ser 2-Pro 3-Thr 4-Ser 5-Pro 6-Ser 7 (refs 1, 2). After phosphorylation, the CTD binds tightly to a conserved CTD-interacting domain (CID) present in the proteins Pcf11 and Nrd1, which are essential and evolutionarily conserved factors for polyadenylation-dependent and -independent 3'-RNA processing, respectively. Here we describe the structure of a Ser 2-phosphorylated CTD peptide bound to the CID domain of Pcf11. The CTD motif Ser 2-Pro 3-Thr 4-Ser 5 forms a beta-turn that binds to a conserved groove in the CID domain. The Ser 2 phosphate group does not make direct contact with the CID domain, but may be recognized indirectly because it stabilizes the beta-turn with an additional hydrogen bond. Iteration of the peptide structure results in a compact beta-spiral model of the CTD. The model suggests that, during the mRNA transcription-processing cycle, compact spiral regions in the CTD are unravelled and regenerated in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Anton Meinhart
- Department of Chemistry and Biochemistry, Gene Center, University of Munich, 81377 Munich, Germany
| | | |
Collapse
|