1
|
Pavlova ON, Tupikin AE, Chernitsyna SM, Bukin YS, Lomakina AV, Pogodaeva TV, Nikonova AA, Bukin SV, Zemskaya TI, Kabilov MR. Description and Genomic Analysis of the First Facultatively Lithoautotrophic, Thermophilic Bacteria of the Genus Thermaerobacter Isolated from Low-temperature Sediments of Lake Baikal. MICROBIAL ECOLOGY 2023; 86:1604-1619. [PMID: 36717392 DOI: 10.1007/s00248-023-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Members of the genus Thermaerobacter belong to the phylum Firmicutes and all isolates characterised to date are strictly aerobic and thermophilic. They were isolated from a mud sample of the Challenger Deep in the Mariana Trench, hydrothermal vents, and silt compost. A novel thermophilic, facultatively lithoautotrophic bacteria of the genus Thermaerobacter, strain PB12/4term (=VKM B-3151T), with a metabolism that is uncharacteristic of the type species, was isolated from low-temperature surface sediments near the Posolsk Bank methane seep, Lake Baikal, Russia. The new strain grows with molecular hydrogen as electron donor, elemental sulfur, and thiosulfate as electron acceptors, and CO2/[Formula: see text] as carbon source. The genome of strain PB12/4term consists of one chromosome with a total length of 2.820.915 bp and the G+C content of the genomic DNA was 72.2%. The phylogenomic reconstruction based on 120 conserved bacterial single-copy proteins revealed that strain PB12/4term belongs to the genus Thermaerobacter within in the class Thermaerobacteria, phylum Firmicutes_E. The strain PB12/4term is closely related to Thermaerobacter subterraneus DSM 13965 (ANI=95.08%, AF=0.91) and Thermaerobacter marianensis DSM 12885 (ANI=84.98%, AF=0.77). Genomic and experimental data confirm the ability of the Thermaerobacter PB12/4term pure culture to facultatively lithotrophic growth, which is provided by the presence of [NiFe]hydrogenase enzymes that are absent in T. marianensis DSM 12885 and T. subterraneus DSM 13965. The data obtained on the physiological and biochemical differences of strain PB12/4term provide a deeper insight into the species diversity and functional activity of the genus Thermaerobacter.
Collapse
Affiliation(s)
- O N Pavlova
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| | - A E Tupikin
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - S M Chernitsyna
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Y S Bukin
- Laboratory of Genosystematics, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A V Lomakina
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T V Pogodaeva
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A A Nikonova
- Laboratory of Chromatography, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - S V Bukin
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T I Zemskaya
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - M R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
The existence of a nonclassical TCA cycle in the nucleus that wires the metabolic-epigenetic circuitry. Signal Transduct Target Ther 2021; 6:375. [PMID: 34728602 PMCID: PMC8563883 DOI: 10.1038/s41392-021-00774-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The scope and variety of the metabolic intermediates from the mitochondrial tricarboxylic acid (TCA) cycle that are engaged in epigenetic regulation of the chromatin function in the nucleus raise an outstanding question about how timely and precise supply/consumption of these metabolites is achieved in the nucleus. We report here the identification of a nonclassical TCA cycle in the nucleus (nTCA cycle). We found that all the TCA cycle-associated enzymes including citrate synthase (CS), aconitase 2 (ACO2), isocitrate dehydrogenase 3 (IDH3), oxoglutarate dehydrogenase (OGDH), succinyl-CoA synthetase (SCS), fumarate hydratase (FH), and malate dehydrogenase 2 (MDH2), except for succinate dehydrogenase (SDH), a component of electron transport chain for generating ATP, exist in the nucleus. We showed that these nuclear enzymes catalyze an incomplete TCA cycle similar to that found in cyanobacteria. We propose that the nTCA cycle is implemented mainly to generate/consume metabolic intermediates, not for energy production. We demonstrated that the nTCA cycle is intrinsically linked to chromatin dynamics and transcription regulation. Together, our study uncovers the existence of a nonclassical TCA cycle in the nucleus that links the metabolic pathway to epigenetic regulation.
Collapse
|
3
|
Slobodkin A, Slobodkina G, Allioux M, Alain K, Jebbar M, Shadrin V, Kublanov I, Toshchakov S, Bonch-Osmolovskaya E. Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres. Genes (Basel) 2019; 10:genes10110849. [PMID: 31717820 PMCID: PMC6896113 DOI: 10.3390/genes10110849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023] Open
Abstract
Information on the biochemical pathways of carbon and energy metabolism in representatives of the deep lineage bacterial phylum Deferribacteres are scarce. Here, we report the results of the sequencing and analysis of the high-quality draft genome of the thermophilic chemolithoautotrophic anaerobe Deferribacter autotrophicus. Genomic data suggest that CO2 assimilation is carried out by recently proposed reversible tricarboxylic acid cycle (“roTCA cycle”). The predicted genomic ability of D. autotrophicus to grow due to the oxidation of carbon monoxide was experimentally proven. CO oxidation was coupled with the reduction of nitrate to ammonium. Utilization of CO most likely involves anaerobic [Ni, Fe]-containing CO dehydrogenase. This is the first evidence of CO oxidation in the phylum Deferribacteres. The genome of D. autotrophicus encodes a Nap-type complex of nitrate reduction. However, the conversion of produced nitrite to ammonium proceeds via a non-canonical pathway with the participation of hydroxylamine oxidoreductase (Hao) and hydroxylamine reductase. The genome contains 17 genes of putative multiheme c-type cytochromes and “e-pilin” genes, some of which are probably involved in Fe(III) reduction. Genomic analysis indicates that the roTCA cycle of CO2 fixation and putative Hao-enabled ammonification may occur in several members of the phylum Deferribacteres.
Collapse
Affiliation(s)
- Alexander Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (G.S.); (V.S.); (I.K.); (S.T.); (E.B.-O.)
- Correspondence:
| | - Galina Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (G.S.); (V.S.); (I.K.); (S.T.); (E.B.-O.)
| | - Maxime Allioux
- Univ Brest, CNRS, Ifremer, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, F-29280 Plouzané, France; (M.A.); (K.A.); (M.J.)
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, F-29280 Plouzané, France; (M.A.); (K.A.); (M.J.)
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, F-29280 Plouzané, France; (M.A.); (K.A.); (M.J.)
| | - Valerian Shadrin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (G.S.); (V.S.); (I.K.); (S.T.); (E.B.-O.)
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (G.S.); (V.S.); (I.K.); (S.T.); (E.B.-O.)
| | - Stepan Toshchakov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (G.S.); (V.S.); (I.K.); (S.T.); (E.B.-O.)
| | - Elizaveta Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (G.S.); (V.S.); (I.K.); (S.T.); (E.B.-O.)
| |
Collapse
|
4
|
Genomic Analysis of Calderihabitans maritimus KKC1, a Thermophilic, Hydrogenogenic, Carboxydotrophic Bacterium Isolated from Marine Sediment. Appl Environ Microbiol 2017; 83:AEM.00832-17. [PMID: 28526793 DOI: 10.1128/aem.00832-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/13/2017] [Indexed: 11/20/2022] Open
Abstract
Calderihabitans maritimus KKC1 is a thermophilic, hydrogenogenic carboxydotroph isolated from a submerged marine caldera. Here, we describe the de novo sequencing and feature analysis of the C. maritimus KKC1 genome. Genome-based phylogenetic analysis confirmed that C. maritimus KKC1 was most closely related to the genus Moorella, which includes well-studied acetogenic members. Comparative genomic analysis revealed that, like Moorella, C. maritimus KKC1 retained both the CO2-reducing Wood-Ljungdahl pathway and energy-converting hydrogenase-based module activated by reduced ferredoxin, but it lacked the HydABC and NfnAB electron-bifurcating enzymes and pyruvate:ferredoxin oxidoreductase required for ferredoxin reduction for acetogenic growth. Furthermore, C. maritimus KKC1 harbored six genes encoding CooS, a catalytic subunit of the anaerobic CO dehydrogenase that can reduce ferredoxin via CO oxidation, whereas Moorella possessed only two CooS genes. Our analysis revealed that three cooS genes formed known gene clusters in other microorganisms, i.e., cooS-acetyl coenzyme A (acetyl-CoA) synthase (which contained a frameshift mutation), cooS-energy-converting hydrogenase, and cooF-cooS-FAD-NAD oxidoreductase, while the other three had novel genomic contexts. Sequence composition analysis indicated that these cooS genes likely evolved from a common ancestor. Collectively, these data suggest that C. maritimus KKC1 may be highly dependent on CO as a low-potential electron donor to directly reduce ferredoxin and may be more suited to carboxydotrophic growth compared to the acetogenic growth observed in Moorella, which show adaptation at a thermodynamic limit.IMPORTANCECalderihabitans maritimus KKC1 and members of the genus Moorella are phylogenetically related but physiologically distinct. The former is a hydrogenogenic carboxydotroph that can grow on carbon monoxide (CO) with H2 production, whereas the latter include acetogenic bacteria that grow on H2 plus CO2 with acetate production. Both species may require reduced ferredoxin as an actual "energy equivalent," but ferredoxin is a low-potential electron carrier and requires a high-energy substrate as an electron donor for reduction. Comparative genomic analysis revealed that C. maritimus KKC1 lacked specific electron-bifurcating enzymes and possessed six CO dehydrogenases, unlike Moorella species. This suggests that C. maritimus KKC1 may be more dependent on CO, a strong electron donor that can directly reduce ferredoxin via CO dehydrogenase, and may exhibit a survival strategy different from that of acetogenic Moorella, which solves the energetic barrier associated with endergonic reduction of ferredoxin with hydrogen.
Collapse
|
5
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Yan Z, Maruyama A, Arakawa T, Fushinobu S, Wakagi T. Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii. Sci Rep 2016; 6:33061. [PMID: 27619895 PMCID: PMC5020499 DOI: 10.1038/srep33061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022] Open
Abstract
As the first three-dimensional structure of the two-subunit type 2-oxoacid:ferredoxin oxidoreductases (OFOR) from archaea, we solved the crystal structures of STK_23000/STK_22980 (StOFOR1) and STK_24350/STK_24330 (StOFOR2) from Sulfolobus tokodaii. They showed similar overall structures, consisting of two a- and b-subunit heterodimers containing thiamin pyrophosphate (TPP) cofactor and [4Fe-4S] cluster, but lack an intramolecular ferredoxin domain. Unlike other OFORs, StOFORs can utilize both pyruvate and 2-oxoglutarate, playing a key role in the central metabolism. In the structure of StOFOR2 in unreacted pyruvate complex form, carboxylate group of pyruvate is recognized by Arg344 and Thr257 from the a-subunit, which are conserved in pyruvate:ferredoxin oxidoreductase from Desulfovbrio africanus (DaPFOR). In the structure of StOFOR1 co-crystallized with 2-oxobutyrate, electron density corresponding to a 1-hydroxypropyl group (post-decarboxylation state) was observed at the thiazole ring of TPP. The binding pockets of the StOFORs surrounding the methyl or propyl group of the ligands are wider than that of DaPFOR. Mutational analyses indicated that several residues were responsible for the broad 2-oxoacid specificity of StOFORs. We also constructed a possible complex structural model by placing a Zn(2+)-containing dicluster ferredoxin of S. tokodaii into the large pocket of StOFOR2, providing insight into the electron transfer between the two redox proteins.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akane Maruyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayoshi Wakagi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
|
8
|
Yan Z, Fushinobu S, Wakagi T. Four Cys residues in heterodimeric 2-oxoacid:ferredoxin oxidoreductase are required for CoA-dependent oxidative decarboxylation but not for a non-oxidative decarboxylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:736-43. [PMID: 24491525 DOI: 10.1016/j.bbapap.2014.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/26/2022]
Abstract
Heterodimeric 2-oxoacid:ferredoxin oxidoreductase (OFOR) from Sulfolobus tokodaii (StOFOR) has only one [4Fe-4S]²⁺ cluster, ligated by 4 Cys residues, C12, C15, C46, and C197. The enzyme has no other Cys. To elucidate the role of these Cys residues in holding of the iron-sulfur cluster in the course of oxidative decarboxylation of a 2-oxoacid, one or two of these Cys residues was/were substituted with Ala to yield C12A, C15A, C46A, C197A and C12/15A mutants. All the mutants showed the loss of iron-sulfur cluster, except the C197A one which retained some unidentified type of iron-sulfur cluster. On addition of pyruvate to OFOR, the wild type enzyme exhibited a chromophore at 320nm and a stable large EPR signal corresponding to a hydroxyethyl-ThDP radical, while the mutant enzymes did not show formation of any radical intermediate or production of acetyl-CoA, suggesting that the intact [4Fe-4S] cluster is necessary for these processes. The stable radical intermediate in wild type OFOR was rapidly decomposed upon addition of CoA in the absence of an electron acceptor. Non-oxidative decarboxylation of pyruvate, yielding acetaldehyde, has been reported to require CoA for other OFORs, but StOFOR catalyzed acetaldehyde production from pyruvate independent of CoA, regardless of whether the iron-sulfur cluster is intact [4Fe-4S] type or not. A comprehensive reaction scheme for StOFOR with a single cluster was proposed.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Takayoshi Wakagi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| |
Collapse
|
9
|
Yan Z, Nam YW, Fushinobu S, Wakagi T. Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase. Extremophiles 2013; 18:99-110. [DOI: 10.1007/s00792-013-0601-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
10
|
Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. MICROBIOME 2013; 1:22. [PMID: 24450983 PMCID: PMC3971608 DOI: 10.1186/2049-2618-1-22] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sediments are massive reservoirs of carbon compounds and host a large fraction of microbial life. Microorganisms within terrestrial aquifer sediments control buried organic carbon turnover, degrade organic contaminants, and impact drinking water quality. Recent 16S rRNA gene profiling indicates that members of the bacterial phylum Chloroflexi are common in sediment. Only the role of the class Dehalococcoidia, which degrade halogenated solvents, is well understood. Genomic sampling is available for only six of the approximate 30 Chloroflexi classes, so little is known about the phylogenetic distribution of reductive dehalogenation or about the broader metabolic characteristics of Chloroflexi in sediment. RESULTS We used metagenomics to directly evaluate the metabolic potential and diversity of Chloroflexi in aquifer sediments. We sampled genomic sequence from 86 Chloroflexi representing 15 distinct lineages, including members of eight classes previously characterized only by 16S rRNA sequences. Unlike in the Dehalococcoidia, genes for organohalide respiration are rare within the Chloroflexi genomes sampled here. Near-complete genomes were reconstructed for three Chloroflexi. One, a member of an unsequenced lineage in the Anaerolinea, is an aerobe with the potential for respiring diverse carbon compounds. The others represent two genomically unsampled classes sibling to the Dehalococcoidia, and are anaerobes likely involved in sugar and plant-derived-compound degradation to acetate. Both fix CO2 via the Wood-Ljungdahl pathway, a pathway not previously documented in Chloroflexi. The genomes each encode unique traits apparently acquired from Archaea, including mechanisms of motility and ATP synthesis. CONCLUSIONS Chloroflexi in the aquifer sediments are abundant and highly diverse. Genomic analyses provide new evolutionary boundaries for obligate organohalide respiration. We expand the potential roles of Chloroflexi in sediment carbon cycling beyond organohalide respiration to include respiration of sugars, fermentation, CO2 fixation, and acetogenesis with ATP formation by substrate-level phosphorylation.
Collapse
Affiliation(s)
- Laura A Hug
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kelly C Wrighton
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Itai Sharon
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kyle R Frischkorn
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kenneth H Williams
- Geophysics Department, Earth Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Susannah G Tringe
- Metagenome Program, DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Eme L, Reigstad LJ, Spang A, Lanzén A, Weinmaier T, Rattei T, Schleper C, Brochier-Armanet C. Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota. Res Microbiol 2013; 164:425-38. [DOI: 10.1016/j.resmic.2013.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
|
12
|
Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T, Böhm C, Schmid M, Galushko A, Hatzenpichler R, Weinmaier T, Daniel R, Schleper C, Spieck E, Streit W, Wagner M. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 2012; 14:3122-45. [PMID: 23057602 DOI: 10.1111/j.1462-2920.2012.02893.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 01/21/2023]
Abstract
The cohort of the ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota is a diverse, widespread and functionally important group of microorganisms in many ecosystems. However, our understanding of their biology is still very rudimentary in part because all available genome sequences of this phylum are from members of the Nitrosopumilus cluster. Here we report on the complete genome sequence of Candidatus Nitrososphaera gargensis obtained from an enrichment culture, representing a different evolutionary lineage of AOA frequently found in high numbers in many terrestrial environments. With its 2.83 Mb the genome is much larger than that of other AOA. The presence of a high number of (active) IS elements/transposases, genomic islands, gene duplications and a complete CRISPR/Cas defence system testifies to its dynamic evolution consistent with low degree of synteny with other thaumarchaeal genomes. As expected, the repertoire of conserved enzymes proposed to be required for archaeal ammonia oxidation is encoded by N. gargensis, but it can also use urea and possibly cyanate as alternative ammonia sources. Furthermore, its carbon metabolism is more flexible at the central pyruvate switch point, encompasses the ability to take up small organic compounds and might even include an oxidative pentose phosphate pathway. Furthermore, we show that thaumarchaeota produce cofactor F420 as well as polyhydroxyalkanoates. Lateral gene transfer from bacteria and euryarchaeota has contributed to the metabolic versatility of N. gargensis. This organisms is well adapted to its niche in a heavy metal-containing thermal spring by encoding a multitude of heavy metal resistance genes, chaperones and mannosylglycerate as compatible solute and has the genetic ability to respond to environmental changes by signal transduction via a large number of two-component systems, by chemotaxis and flagella-mediated motility and possibly even by gas vacuole formation. These findings extend our understanding of thaumarchaeal evolution and physiology and offer many testable hypotheses for future experimental research on these nitrifiers.
Collapse
Affiliation(s)
- Anja Spang
- Department of Genetics in Ecology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pierce E, Becker DF, Ragsdale SW. Identification and characterization of oxalate oxidoreductase, a novel thiamine pyrophosphate-dependent 2-oxoacid oxidoreductase that enables anaerobic growth on oxalate. J Biol Chem 2010; 285:40515-24. [PMID: 20956531 PMCID: PMC3003350 DOI: 10.1074/jbc.m110.155739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/15/2010] [Indexed: 11/06/2022] Open
Abstract
Moorella thermoacetica is an anaerobic acetogen, a class of bacteria that is found in the soil, the animal gastrointestinal tract, and the rumen. This organism engages the Wood-Ljungdahl pathway of anaerobic CO(2) fixation for heterotrophic or autotrophic growth. This paper describes a novel enzyme, oxalate oxidoreductase (OOR), that enables M. thermoacetica to grow on oxalate, which is produced in soil and is a common component of kidney stones. Exposure to oxalate leads to the induction of three proteins that are subunits of OOR, which oxidizes oxalate coupled to the production of two electrons and CO(2) or bicarbonate. Like other members of the 2-oxoacid:ferredoxin oxidoreductase family, OOR contains thiamine pyrophosphate and three [Fe(4)S(4)] clusters. However, unlike previously characterized members of this family, OOR does not use coenzyme A as a substrate. Oxalate is oxidized with a k(cat) of 0.09 s(-1) and a K(m) of 58 μM at pH 8. OOR also oxidizes a few other 2-oxoacids (which do not induce OOR) also without any requirement for CoA. The enzyme transfers its reducing equivalents to a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. In conjunction with the well characterized Wood-Ljungdahl pathway, OOR should be sufficient for oxalate metabolism by M. thermoacetica, and it constitutes a novel pathway for oxalate metabolism.
Collapse
Affiliation(s)
- Elizabeth Pierce
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606 and
| | - Donald F. Becker
- the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664
| | - Stephen W. Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606 and
| |
Collapse
|
14
|
Peeters E, Albers SV, Vassart A, Driessen AJM, Charlier D. Ss-LrpB, a transcriptional regulator fromSulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol Microbiol 2009; 71:972-88. [DOI: 10.1111/j.1365-2958.2008.06578.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO. A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 2008; 9:R158. [PMID: 19000309 PMCID: PMC2614490 DOI: 10.1186/gb-2008-9-11-r158] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/21/2008] [Accepted: 11/10/2008] [Indexed: 01/03/2023] Open
Abstract
Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans. Background The relationship between the hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans is the only known example of a specific association between two species of Archaea. Little is known about the mechanisms that enable this relationship. Results We sequenced the complete genome of I. hospitalis and found it to be the smallest among independent, free-living organisms. A comparative genomic reconstruction suggests that the I. hospitalis lineage has lost most of the genes associated with a heterotrophic metabolism that is characteristic of most of the Crenarchaeota. A streamlined genome is also suggested by a low frequency of paralogs and fragmentation of many operons. However, this process appears to be partially balanced by lateral gene transfer from archaeal and bacterial sources. Conclusions A combination of genomic and cellular features suggests highly efficient adaptation to the low energy yield of sulfur-hydrogen respiration and efficient inorganic carbon and nitrogen assimilation. Evidence of lateral gene exchange between N. equitans and I. hospitalis indicates that the relationship has impacted both genomes. This association is the simplest symbiotic system known to date and a unique model for studying mechanisms of interspecific relationships at the genomic and metabolic levels.
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo J, Fukuda E, Takase H, Fushinobu S, Shoun H, Wakagi T. Identification of the lysine residue responsible for coenzyme A binding in the heterodimeric 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus tokodaii, a thermoacidophilic archaeon, using 4-fluoro-7-nitrobenzofurazan as an affinity label. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:335-40. [PMID: 19027887 DOI: 10.1016/j.bbapap.2008.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/17/2008] [Accepted: 10/23/2008] [Indexed: 11/24/2022]
Abstract
The heterodimeric 2-oxoacid:ferredoxin oxidoreductase (StOFOR) from Sulfolobus tokodaii, a thermoacidophilic archaeon, was inactivated by low concentrations of 4-fluoro-7-nitrobenzofurazan (NBD-F), with concomitant increase in fluorescence in subunit-b. The inactivation was prevented by CoA, suggesting that NBD-F covalently bound to the Lys which is responsible for CoA binding. The NBD-labeled subunit-b was isolated and digested with endoproteinase Lys-C. The resulting polypeptide mixture was separated by reverse phase HPLC and the fluorescent fraction was isolated. Amino acid sequencing of the fraction revealed that it comprised a mixture of two polypeptides containing Lys125 and Lys173, respectively. Two StOFOR mutants, K125A and K173A, were constructed, expressed and purified. K125A showed a large increase in the K(m) value for CoA and showed poor inactivation by NBD-F, compared with K173A and wild type StOFOR, indicating Lys125 in subunit-b is the critical residue that interacts with CoA.
Collapse
Affiliation(s)
- Jing Luo
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Snijders APL, Walther J, Peter S, Kinnman I, de Vos MGJ, van de Werken HJG, Brouns SJJ, van der Oost J, Wright PC. Reconstruction of central carbon metabolism inSulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 2006; 6:1518-29. [PMID: 16447154 DOI: 10.1002/pmic.200402070] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade, an increasing number of sequenced archaeal genomes have become available, opening up the possibility for functional genomic analyses. Here, we reconstructed the central carbon metabolism in the hyperthermophilic crenarchaeon Sulfolobus solfataricus (glycolysis, gluconeogenesis and tricarboxylic acid cycle) on the basis of genomic, proteomic, transcriptomic and biochemical data. A 2-DE reference map of S. solfataricus grown on glucose, consisting of 325 unique ORFs in 255 protein spots, was created to facilitate this study. The map was then used for a differential expression study based on (15)N metabolic labelling (yeast extract + tryptone-grown cells (YT) vs. glucose-grown cells (G)). In addition, the expression ratio of the genes involved in carbon metabolism was studied using DNA microarrays. Surprisingly, only 3 and 14% of the genes and proteins, respectively, involved in central carbon metabolism showed a greater than two-fold change in expression level. All results are discussed in the light of the current understanding of central carbon metabolism in S. solfataricus and will help to obtain a system-wide understanding of this organism.
Collapse
Affiliation(s)
- Ambrosius P L Snijders
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nishizawa Y, Yabuki T, Fukuda E, Wakagi T. Gene expression and characterization of two 2-oxoacid:ferredoxin oxidoreductases from Aeropyrum pernix K1. FEBS Lett 2005; 579:2319-22. [PMID: 15848165 DOI: 10.1016/j.febslet.2004.11.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 11/11/2004] [Accepted: 11/20/2004] [Indexed: 10/25/2022]
Abstract
A hyperthermophilic and aerobic crenarchaeon, Aeropyrum pernix K1, has two sets of genes possibly encoding 2-oxoacid:ferredoxin oxidoreductases. One is encoded in open reading frames (ORFs) ape2126 and ape2128, and the other in ORFs ape1473 and ape1472. The two sets of genes were expressed. The product enzymes, Ape2126/2128 and Ape1473/1472, showed optimal temperatures of 105 and over 110 degrees C, and optimal pHs of 8.5 and 9.0, respectively, using pyruvate as a substrate. Pyruvate, 2-oxobutyrate, and glyoxylate were the best substrates for both enzymes, and additionally Ape1473/1472 was able to act on 2-oxoglutarate, suggesting the enzyme operates in the TCA cycle.
Collapse
|
19
|
Wood AP, Aurikko JP, Kelly DP. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 2004; 28:335-52. [PMID: 15449607 DOI: 10.1016/j.femsre.2003.12.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We assess the use to which bioinformatics in the form of bacterial genome sequences, functional gene probes and the protein sequence databases can be applied to hypotheses about obligate autotrophy in eubacteria. Obligate methanotrophy and obligate autotrophy among the chemo- and photo-lithotrophic bacteria lack satisfactory explanation a century or more after their discovery. Various causes of these phenomena have been suggested, which we review in the light of the information currently available. Among these suggestions is the absence in vivo of a functional alpha-ketoglutarate dehydrogenase. The advent of complete and partial genome sequences of diverse autotrophs, methylotrophs and methanotrophs makes it possible to probe the reasons for the absence of activity of this enzyme. We review the role and evolutionary origins of the Krebs cycle in relation to autotrophic metabolism and describe the use of in silico methods to probe the partial and complete genome sequences of a variety of obligate genera for genes encoding the subunits of the alpha-ketoglutarate dehydrogenase complex. Nitrosomonas europaea and Methylococcus capsulatus, which lack the functional enzyme, were found to contain the coding sequences for the E1 and E2 subunits of alpha-ketoglutarate dehydrogenase. Comparing the predicted physicochemical properties of the polypeptides coded by the genes confirmed the putative gene products were similar to the active alpha-ketoglutarate dehydrogenase subunits of heterotrophs. These obligate species are thus genomically competent with respect to this enzyme but are apparently incapable of producing a functional enzyme. Probing of the full and incomplete genomes of some cyanobacterial and methanogenic genera and Aquifex confirms or suggests the absence of the genes for at least one of the three components of the alpha-ketoglutarate dehydrogenase complex in these obligate organisms. It is recognized that absence of a single functional enzyme may not explain obligate autotrophy in all cases and may indeed be only be one of a number of controls that impose obligate metabolism. Availability of more genome sequences from obligate genera will enable assessment of whether obligate autotrophy is due to the absence of genes for a few or many steps in organic compound metabolism. This problem needs the technologies and mindsets of the present generation of molecular microbiologists to resolve it.
Collapse
Affiliation(s)
- Ann P Wood
- Department of Life Sciences, King's College London, Franklin Wills Building, 150 Stamford Street, London SE1 9NN, UK
| | | | | |
Collapse
|