1
|
Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research. Life (Basel) 2022; 12:life12091455. [PMID: 36143491 PMCID: PMC9501494 DOI: 10.3390/life12091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
The formation of gas vesicles has been investigated in bacteria and haloarchaea for more than 50 years. These air-filled nanostructures allow cells to stay at a certain height optimal for growth in their watery environment. Several gvp genes are involved and have been studied in Halobacterium salinarum, cyanobacteria, Bacillus megaterium, and Serratia sp. ATCC39006 in more detail. GvpA and GvpC form the gas vesicle shell, and additional Gvp are required as minor structural proteins, chaperones, an ATP-hydrolyzing enzyme, or as gene regulators. We analyzed the Gvp proteins of Hbt. salinarum with respect to their protein–protein interactions, and developed a model for the formation of these nanostructures. Gas vesicles are also used in biomedical research. Since they scatter waves and produce ultrasound contrast, they could serve as novel contrast agent for ultrasound or magnetic resonance imaging. Additionally, gas vesicles were engineered as acoustic biosensors to determine enzyme activities in cells. These applications are based on modifications of the surface protein GvpC that alter the mechanical properties of the gas vesicles. In addition, gas vesicles have been decorated with GvpC proteins fused to peptides of bacterial or viral pathogens and are used as tools for vaccine development.
Collapse
|
2
|
Xiaowen W, Sibo C, Lin F, Hao L, Si C, Xianfeng Y, Zhoukun L, Zhongli C, Huang Y. Characterization of a halotolerant GH2 family β-galactosidase GalM from Microvirga sp. strain MC18. Protein Expr Purif 2022; 194:106074. [PMID: 35218889 DOI: 10.1016/j.pep.2022.106074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
A new glycoside hydrolase family 2 (GH2) β-galactosidase encoding gene galM was cloned from Microvirga sp. strain MC18 and overexpressed in Escherichia coli. The recombinant β-galactosidase GalM showed optimal activity at pH 7.0 and 50 °C, with a stability at pH 6.0-9.0 and 20-40 °C, which are conditions suitable for the diary environment. The Km and Vmax values for o-nitrophenyl-β-d-galactopyranoside (oNPG) were 1.30 mmol/L and 15.974 μmol/(min·mg), respectively. GalM showed low product inhibition by galactose with a Ki of 73.18 mM and high tolerance for glucose that 86.5% activity retained in the presence of 500 mM glucose. It was also stable and active in 20% of methanol, ethanol and isopropanol. In addition, the enzyme activity of GalM was activated significantly over 0-2 mol/L NaCl (1.6-4.3 fold). These favorable properties make GalM a potential candidate for the industrial application.
Collapse
Affiliation(s)
- Wang Xiaowen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chen Sibo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Fan Lin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liu Hao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chen Si
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ye Xianfeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Li Zhoukun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cui Zhongli
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
3
|
Born J, Weitzel K, Suess B, Pfeifer F. A Synthetic Riboswitch to Regulate Haloarchaeal Gene Expression. Front Microbiol 2021; 12:696181. [PMID: 34211452 PMCID: PMC8241225 DOI: 10.3389/fmicb.2021.696181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, synthetic riboswitches have become increasingly important to construct genetic circuits in all three domains of life. In bacteria, synthetic translational riboswitches are often employed that modulate gene expression by masking the Shine-Dalgarno (SD) sequence in the absence or presence of a cognate ligand. For (halo-)archaeal translation, a SD sequence is not strictly required. The application of synthetic riboswitches in haloarchaea is therefore limited so far, also because of the molar intracellular salt concentrations found in these microbes. In this study, we applied synthetic theophylline-dependent translational riboswitches in the archaeon Haloferax volcanii. The riboswitch variants A through E and E∗ were chosen since they not only mask the SD sequence but also the AUG start codon by forming a secondary structure in the absence of the ligand theophylline. Upon addition of the ligand, the ribosomal binding site and start codon become accessible for translation initiation. Riboswitch E mediated a dose-dependent, up to threefold activation of the bgaH reporter gene expression. Raising the salt concentration of the culture media from 3 to 4 M NaCl resulted in a 12-fold increase in the switching capacity of riboswitch E, and switching activity increased up to 26-fold when the cultivating temperature was reduced from 45 to 30°C. To construct a genetic circuit, riboswitch E was applied to regulate the synthesis of the transcriptional activator GvpE allowing a dose-dependent activation of the mgfp6 reporter gene under P pA promoter control.
Collapse
Affiliation(s)
| | | | - Beatrix Suess
- Synthetic RNA Biology, Department of Biology, Technical University Darmstadt, Darmstadt, Germany.,Centre of Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
4
|
Analysis of Haloferax mediterranei Lrp Transcriptional Regulator. Genes (Basel) 2021; 12:genes12060802. [PMID: 34070366 PMCID: PMC8229911 DOI: 10.3390/genes12060802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.
Collapse
|
5
|
Pastor-Soler S, Camacho M, Bautista V, Bonete MJ, Esclapez J. Towards the Elucidation of Assimilative nasABC Operon Transcriptional Regulation in Haloferax mediterranei. Genes (Basel) 2021; 12:genes12050619. [PMID: 33921943 PMCID: PMC8143581 DOI: 10.3390/genes12050619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022] Open
Abstract
The assimilatory pathway of the nitrogen cycle in the haloarchaeon Haloferax mediterranei has been well described and characterized in previous studies. However, the regulatory mechanisms involved in the gene expression of this pathway remain unknown in haloarchaea. This work focuses on elucidating the regulation at the transcriptional level of the assimilative nasABC operon (HFX_2002 to HFX_2004) through different approaches. Characterization of its promoter region using β-galactosidase as a reporter gene and site-directed mutagenesis has allowed us to identify possible candidate binding regions for a transcriptional factor. The identification of a potential transcriptional regulator related to nitrogen metabolism has become a real challenge due to the lack of information on haloarchaea. The investigation of protein–DNA binding by streptavidin bead pull-down analysis combined with mass spectrometry resulted in the in vitro identification of a transcriptional regulator belonging to the Lrp/AsnC family, which binds to the nasABC operon promoter (p.nasABC). To our knowledge, this study is the first report to suggest the AsnC transcriptional regulator as a powerful candidate to play a regulatory role in nasABC gene expression in Hfx. mediterranei and, in general, in the assimilatory nitrogen pathway.
Collapse
|
6
|
Aulitto M, Strazzulli A, Sansone F, Cozzolino F, Monti M, Moracci M, Fiorentino G, Limauro D, Bartolucci S, Contursi P. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase. Microb Cell Fact 2021; 20:71. [PMID: 33736637 PMCID: PMC7977261 DOI: 10.1186/s12934-021-01553-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
Background The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. Results In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as β-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant β-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. Conclusions Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and β-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01553-y.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ferdinando Sansone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.,Institute of Biosciences and BioResources-National Research Council of Italy, Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | | | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy. .,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy.
| |
Collapse
|
7
|
Murphy J, Ryan MP, Walsh G. Purification and Characterization of a Novel β-Galactosidase From the Thermoacidophile Alicyclobacillus vulcanalis. Appl Biochem Biotechnol 2020; 191:1190-1206. [DOI: 10.1007/s12010-020-03233-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
8
|
A novel glycoside hydrolase family 42 enzyme with bifunctional β-galactosidase and α-L-arabinopyranosidase activities and its synergistic effects with cognate glycoside hydrolases in plant polysaccharides degradation. Int J Biol Macromol 2019; 140:129-139. [DOI: 10.1016/j.ijbiomac.2019.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
|
9
|
Purification and characterization of a novel thermophilic β-galactosidase from Picrophilus torridus of potential industrial application. Extremophiles 2019; 23:783-792. [DOI: 10.1007/s00792-019-01133-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
|
10
|
Li M, Yin J, Mei S, Wang X, Tang XF, Tang B. Halolysin SptA, a Serine Protease, Contributes to Growth-Phase Transition of Haloarchaeon Natrinema sp. J7-2, and Its Expression Involves Cooperative Action of Multiple Cis-Regulatory Elements. Front Microbiol 2018; 9:1799. [PMID: 30123209 PMCID: PMC6085418 DOI: 10.3389/fmicb.2018.01799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Many haloarchaea produce extracellular subtilisin-like proteases (halolysins) during late log phase; however, the physiological function and regulatory mechanism of growth phase-dependent production of halolysins are unknown. Halolysin SptA, the major extracellular protease of Natrinema sp. J7-2, is capable of intracellular self-activation to affect haloarchaeal growth. Here, we report that deletion of sptA leads to loss of extracellular and intracellular protease activities against azocasein and/or suc-AAPF-pNA, as well as a change in growth-phase transition of the haloarchaeon. Our results suggest that SptA is important for strain J7-2 to enter the stationary and death phases. Deletion and mutational analyses of the 5'-flanking region of sptA revealed two partially overlapping, semi-palindromic sequences upstream of the TATA box act as positive and negative cis-regulatory elements, respectively, to mediate sptA expression in late log phase. Additionally, a negative cis-regulatory element covering WW motif and a distant enhancer contribute to the modulation of sptA expression. Our results demonstrate that SptA functions both extracellularly and intracellularly, and that sptA expression relies on the cooperative action of multiple cis-regulatory elements, allowing SptA to exert its function properly at different growth stages in strain J7-2.
Collapse
Affiliation(s)
- Moran Li
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sha Mei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuhong Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
11
|
Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj J 2018; 35:255-263. [DOI: 10.1007/s10719-018-9824-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023]
|
12
|
Cuebas-Irizarry MF, Irizarry-Caro RA, López-Morales C, Badillo-Rivera KM, Rodríguez-Minguela CM, Montalvo-Rodríguez R. Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH) from the Halophilic Archaeon Haloquadratum walsbyi. Life (Basel) 2017; 7:life7040046. [PMID: 29160840 PMCID: PMC5745559 DOI: 10.3390/life7040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 11/16/2022] Open
Abstract
We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi. A 2349 bp region (Hqrw_2071) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated into plasmid pET28b(+), expressed in E. coli Rosetta cells, and the resulting protein purified by Ni-NTA affinity chromatography. The recombinant protein showed an estimated molecular mass of 87 kDa, consistent with the expected value of the annotated protein, and an optimal activity for the hydrolysis of α-PNPG was detected at 40 °C, and at pH 6.0. Enzyme activity values were the highest in the presence of 3 M NaCl or 3-4 M KCl. However, specific activity values were two-fold higher in the presence of 3-4 M KCl when compared to NaCl suggesting a cytoplasmic localization. Phylogenetic analyses, with respect to other alpha-glucosidases from members of the class Halobacteria, showed that the Hqr. walsbyi MalH was most similar (up to 41%) to alpha-glucosidases and alpha-xylosidases of Halorubrum. Moreover, computational analyses for the detection of functional domains, active and catalytic sites, as well as 3D structural predictions revealed a close relationship with an E. coli YicI-like alpha-xylosidase of the GH31 family. However, the purified enzyme did not show alpha-xylosidase activity. This narrower substrate range indicates a discrepancy with annotations from different databases and the possibility of specific substrate adaptations of halophilic glucosidases due to high salinity. To our knowledge, this is the first report on the characterization of an alpha-glucosidase from the halophilic Archaea, which could serve as a new model to gain insights into carbon metabolism in this understudied microbial group.
Collapse
Affiliation(s)
| | - Ricardo A Irizarry-Caro
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Carol López-Morales
- Biology Department, Box 9000, University of Puerto Rico, Mayagüez, PR 00681, USA.
| | | | | | | |
Collapse
|
13
|
Paul VG, Mormile MR. A case for the protection of saline and hypersaline environments: a microbiological perspective. FEMS Microbiol Ecol 2017; 93:3950317. [DOI: 10.1093/femsec/fix091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/09/2017] [Indexed: 11/12/2022] Open
|
14
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
15
|
Wakai S, Abe A, Fujii S, Nakasone K, Sambongi Y. Pyrophosphate hydrolysis in the extremely halophilic archaeon Haloarcula japonica is catalyzed by a single enzyme with a broad ionic strength range. Extremophiles 2017; 21:471-477. [DOI: 10.1007/s00792-017-0917-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/27/2017] [Indexed: 11/30/2022]
|
16
|
Ding H, Zeng Q, Zhou L, Yu Y, Chen B. Biochemical and Structural Insights into a Novel Thermostable β-1,3-Galactosidase from Marinomonas sp. BSi20414. Mar Drugs 2017; 15:md15010013. [PMID: 28075353 PMCID: PMC5295233 DOI: 10.3390/md15010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022] Open
Abstract
A novel β-1,3-galactosidase, designated as MaBGA (β-galactosidase from Marinomonas sp. BSi20414), was successfully purified to homogeneity from Marinomonas sp. BSi20414 isolated from Arctic sea ice by ammonium sulfate precipitation and anion exchange chromatography, resulting in an 8.12-fold increase in specific activity and 9.9% recovery in total activity. MaBGA displayed its maximum activity at pH 6.0 and 60 °C, and maintained at least 90% of its initial activity over the pH range of 5.0-8.0 after incubating for 1 h. It also exhibited considerable thermal stability, which retained 76% of its initial activity after incubating at 50 °C for 6 h. In contrast to other β-galactosidases, MaBGA displayed strict substrate specificity, not only for the glycosyl group, but also for the linkage type. To better understand the structure-function relationship, the encoding gene of MaBGA was obtained and subject to bioinformatics analysis. Multiple alignments and phylogenetic analysis revealed that MaBGA belonged to the glycoside hydrolase family 42 and had closer genetic relationships with thermophilic β-galactosidases of extremophiles. With the aid of homology modeling and molecular docking, we proposed a reasonable explanation for the linkage selectivity of MaBGA from a structural perspective. On account of the robust stability and 1,3-linkage selectivity, MaBGA would be a promising candidate in the biosynthesis of galacto-oligosaccharide with β1-3 linkage.
Collapse
Affiliation(s)
- Haitao Ding
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Qian Zeng
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Lili Zhou
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| |
Collapse
|
17
|
Alternative Translation Initiation of a Haloarchaeal Serine Protease Transcript Containing Two In-Frame Start Codons. J Bacteriol 2016; 198:1892-901. [PMID: 27137502 DOI: 10.1128/jb.00202-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent studies have shown that haloarchaea employ leaderless and Shine-Dalgarno (SD)-less mechanisms for translation initiation of leaderless transcripts with a 5' untranslated region (5' UTR) of <10 nucleotides (nt) and leadered transcripts with a 5' UTR of ≥10 nt, respectively. However, whether the two mechanisms can operate on the same naturally occurring haloarchaeal transcript carrying multiple potential start codons is unknown. In this study, the transcript of the sptA gene (encoding an extracellular serine protease of Natrinema sp. strain J7-2) was experimentally determined and found to contain two potential in-frame AUG codons (AUG(1) and AUG(2)) located 5 and 29 nt, respectively, downstream of the transcription start site. Mutational analysis revealed that both AUGs can function as the translation start codon for production of active SptA, although AUG(1) is more efficient than AUG(2) for translation initiation. Insertion of a stable stem-loop structure between the two AUGs completely abolished initiation at AUG(1) but did not affect initiation at AUG(2), indicating that AUG(2)-initiated translation does not involve ribosome scanning from the 5' end of the transcript. Furthermore, the efficiency of AUG(2)-initiated translation was not influenced by an upstream SD-like sequence. In addition, both AUG(1) and AUG(2) contribute to transcript stability, probably by recruiting ribosomes to protect the transcript against degradation. These data suggest that depending on which of two in-frame start codons is used, the sptA transcript can act as either a leaderless or a leadered transcript for SptA production in haloarchaea. IMPORTANCE In eukaryotes and bacteria, alternative translation start sites contribute to proteome complexity and can be used as a functional mechanism to increase translation efficiency. However, little is known about alternative translation initiation in archaea. Our results demonstrate that leaderless and SD-less mechanisms can be used for translation initiation of the sptA transcript from two in-frame start codons, raising the possibility that in haloarchaea, alternative translation initiation on one transcript functions to increase translation efficiency and/or contribute to proteome complexity.
Collapse
|
18
|
Kumar S, Grewal J, Sadaf A, Hemamalini R, K. Khare S. Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Maier LK, Benz J, Fischer S, Alstetter M, Jaschinski K, Hilker R, Becker A, Allers T, Soppa J, Marchfelder A. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells. Biochimie 2015; 117:129-37. [DOI: 10.1016/j.biochi.2015.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
|
20
|
Chen W, Yang G, He Y, Zhang S, Chen H, Shen P, Chen X, Huang YP. Nucleotides Flanking the Start Codon in hsp70 mRNAs with Very Short 5'-UTRs Greatly Affect Gene Expression in Haloarchaea. PLoS One 2015; 10:e0138473. [PMID: 26379277 PMCID: PMC4574771 DOI: 10.1371/journal.pone.0138473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Leaderless translation is prevalent in haloarchaea, with many of these leaderless transcripts possessing short 5'-untranslated regions (UTRs) less than 10 nucleotides. Whereas, little is known about the function of this very short 5'-UTR. Our previous studies determined that just four nucleotides preceded the start codon of hsp70 mRNA in Natrinema sp. J7, with residues -3A and +4G, relative to the A of the ATG start codon, acting as the preferred bases around the start codon of all known haloarchaeal hsp70 genes. Here, we examined the effects of nucleotides flanking the start codon on gene expression. The results revealed that shortening and deletion of the short 5'-UTR enhanced transcript levels; however, it led to significant reductions in overall translational efficiency. AUG was efficiently used as start codons, in both the presence and absence of short 5'-UTRs. GUG also could initiate translation, even though it was so inefficient that it would not be detected without considerably elevated transcript. Nucleotide substitutions at position -4 to +6 were shown to affect gene expression by transcript and/or translational levels. Notably, -3A and A/U nucleotides at position +4~+6 were more optimal for gene expression. Nucleotide transversions of -3A to -3C and +4G to +4T with hsp70 promoter from either Haloferax volcanii DS70 or Halobacterium salinarum NRC-1 showed the same effects on gene expression as that of Natrinema sp. J7. Taken together, our results suggest that the nucleotides flanking the start codon in hsp70 mRNAs with very short 5'-UTRs play an important role in haloarchaeal gene expression.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Guopeng Yang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yue He
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaoming Zhang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haiyan Chen
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ping Shen
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiangdong Chen
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ping Huang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Adamiak J, Otlewska A, Gutarowska B. Halophilic microbial communities in deteriorated buildings. World J Microbiol Biotechnol 2015; 31:1489-99. [DOI: 10.1007/s11274-015-1913-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
|
22
|
Isolation and Molecular Identification of Auxotrophic Mutants to Develop a Genetic Manipulation System for the Haloarchaeon Natrinema sp. J7-2. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:483194. [PMID: 26089742 PMCID: PMC4454726 DOI: 10.1155/2015/483194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
Our understanding of the genus Natrinema is presently limited due to the lack of available genetic tools. Auxotrophic markers have been widely used to construct genetic systems in bacteria and eukaryotes and in some archaeal species. Here, we isolated four auxotrophic mutants of Natrinema sp. J7-2, via 1-methyl-3-nitro-1-nitroso-guanidin mutagenesis, and designated them as J7-2-1, J7-2-22, J7-2-26, and J7-2-52, respectively. The mutant phenotypes were determined to be auxotrophic for leucine (J7-2-1), arginine (J7-2-22 and J7-2-52), and lysine (J7-2-26). The complete genome and the biosynthetic pathways of amino acids in J7-2 identified that the auxotrophic phenotype of three mutants was due to gene mutations in leuB (J7-2-1), dapD (J7-2-26), and argC (J7-2-52). These auxotrophic phenotypes were employed as selectable makers to establish a transformation method. The transformation efficiencies were determined to be approximately 10(3) transformants per µg DNA. And strains J7-2-1 and J7-2-26 were transformed into prototrophic strains with the wild type genomic DNA, amplified fragments of the corresponding genes, or the integrative plasmids carrying the corresponding genes. Additionally, exogenous genes, bgaH or amyH gene, were expressed successfully in J7-2-1. Thus, we have developed a genetic manipulation system for the Natrinema genus based on the isolated auxotrophic mutants of Natrinema sp. J7-2.
Collapse
|
23
|
Du X, Li M, Tang W, Zhang Y, Zhang L, Wang J, Li T, Tang B, Tang XF. Secretion of Tat-dependent halolysin SptA capable of autocatalytic activation and its relation to haloarchaeal growth. Mol Microbiol 2015; 96:548-65. [DOI: 10.1111/mmi.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Du
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Moran Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Wei Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Yaoxin Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Li Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Jian Wang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Tingting Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| |
Collapse
|
24
|
Raol GG, Raol B, Prajapati VS, Patel KC. Kinetic and thermodynamic characterization of a halotolerant β-galactosidase produced by halotolerant Aspergillus tubingensis GR1. J Basic Microbiol 2015; 55:879-89. [DOI: 10.1002/jobm.201400747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Gopalkumar G. Raol
- Department of Microbiology; Shri A.N. Patel P.G. Institute; Sardar Patel University; Anand Gujarat India
| | - B.V. Raol
- Department of Microbiology; Shri P. H. G. Muni. Arts and Science College; Gujarat University; Kalol Gujarat India
| | - Vimal S. Prajapati
- B.R.D. School of Biosciences; Sardar Patel University; Vallabh Vidyangar Gujarat India
| | - Kamlesh C. Patel
- B.R.D. School of Biosciences; Sardar Patel University; Vallabh Vidyangar Gujarat India
| |
Collapse
|
25
|
Haloarchaea and the formation of gas vesicles. Life (Basel) 2015; 5:385-402. [PMID: 25648404 PMCID: PMC4390858 DOI: 10.3390/life5010385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes.
Collapse
|
26
|
Johnsen U, Sutter JM, Schulz AC, Tästensen JB, Schönheit P. XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. Environ Microbiol 2014; 17:1663-76. [PMID: 25141768 DOI: 10.1111/1462-2920.12603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022]
Abstract
The haloarchaeon Haloferax volcanii degrades D-xylose and L-arabinose via oxidative pathways to α-ketoglutarate. The genes involved in these pathways are clustered and were transcriptionally upregulated by both D-xylose and L-arabinose suggesting a common regulator. Adjacent to the gene cluster, a putative IclR-like transcriptional regulator, HVO_B0040, was identified. It is shown that HVO_B0040, designated xacR, encodes an activator of both D-xylose and L-arabinose catabolism: in ΔxacR cells, transcripts of genes involved in pentose catabolism could not be detected; transcript formation could be recovered by complementation, indicating XacR dependent transcriptional activation. Upstream activation promoter regions and nucleotide sequences that were essential for XacR-mediated activation of pentose-specific genes were identified by in vivo deletion and scanning mutagenesis. Besides its activator function XacR acted as repressor of its own synthesis: xacR deletion resulted in an increase of xacR promoter activity. A palindromic sequence was identified at the operator site of xacR promoter, and mutation of this sequence also resulted in an increase and thus derepression of xacR promoter activity. It is concluded that the palindromic sequence represents the binding site of XacR as repressor. This is the first report of a transcriptional regulator of pentose catabolism in the domain of archaea.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, Kiel, D-24118, Germany
| | | | | | | | | |
Collapse
|
27
|
Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol (Praha) 2014; 59:455-63. [DOI: 10.1007/s12223-014-0320-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
|
28
|
Kong F, Wang Y, Cao S, Gao R, Xie G. Cloning, purification and characterization of a thermostable β-galactosidase from Thermotoga naphthophila RUK-10. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
|
30
|
Viborg AH, Katayama T, Abou Hachem M, Andersen MC, Nishimoto M, Clausen MH, Urashima T, Svensson B, Kitaoka M. Distinct substrate specificities of three glycoside hydrolase family 42 -galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology 2013; 24:208-16. [DOI: 10.1093/glycob/cwt104] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
31
|
Lv J, Wang S, Zeng C, Huang Y, Chen X. Construction of a shuttle expression vector with a promoter functioning in both halophilic Archaea and Bacteria. FEMS Microbiol Lett 2013; 349:9-15. [PMID: 24106795 DOI: 10.1111/1574-6968.12278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/12/2013] [Indexed: 11/27/2022] Open
Abstract
A shuttle expression vector, designated as pAJ, was constructed based on the Haloferax volcanii-Escherichia coli shuttle vector pSY1. This new construct contains the amyH promoter from Haloarcula hispanica and was able to confer the promoter activity in both Hfx. volcanii and E. coli. pAJ successfully expressed proteins in Hfx. volcanii or E. coli, rendering it feasible to express target proteins in corresponding domains. In addition, pAJ contains a multiple cloning site with 11 restriction sites and a 6×His tag sequence, and the vector size was decreased to 8903 bp. To the best of our knowledge, pAJ is the first reported shuttle expression vector that can express proteins in both Bacteria and Archaea. Importantly, pAJ can even express the haloarchaeal heat shock protein DnaK in both domains. In conclusion, this novel vector only provides researchers with a new means to manipulate genes or express proteins in Haloarchaea but also serves as a convenient tool for the comparative study of the function of some highly conserved genes in Haloarchaea and in Bacteria.
Collapse
Affiliation(s)
- Jie Lv
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
32
|
Schmidt I, Pfeifer F. Use of GFP-GvpE fusions to quantify the GvpD-mediated reduction of the transcriptional activator GvpE in haloarchaea. Arch Microbiol 2013; 195:403-12. [PMID: 23589224 DOI: 10.1007/s00203-013-0885-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/30/2022]
Abstract
Gas vesicle formation of Halobacterium salinarum is regulated by the transcriptional activator GvpE, and in the presence of the repressing protein GvpD, the amount of GvpE is strongly reduced. The green fluorescence protein was used to report this GvpD-mediated reduction of GvpE in vivo in Haloferax volcanii transformants. Both N- or C-terminal fusions of GFP to GvpE were tested, but only the N-terminal fusion reported the reduction. The fluorescence of GFP-GvpE was 62 % reduced with GvpD wild type (DWT), 78 % with the super-repressor D3-AAA, and only 10 % with the repression defect DMut6. Further analysis of D3-AAA indicated that the super-repression was due to the alteration R496A. GFP-GvpE variants defect in promoter activation was tested in the presence of DWT, D3-AAA and DMut6, and two of them were more stable. Overall, the GFP-GvpE fusion was suitable to study and quantify the amount of GvpE in vivo.
Collapse
Affiliation(s)
- Ina Schmidt
- Fachbereich Biologie, Mikrobiologie und Archaea, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | |
Collapse
|
33
|
Karan R, Capes MD, DasSarma P, DasSarma S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 2013; 13:3. [PMID: 23320757 PMCID: PMC3556326 DOI: 10.1186/1472-6750-13-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 01/18/2023] Open
Abstract
Background Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures. Results Analysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2) gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C) with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol. Conclusion The H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is successful in a perennially cold, hypersaline environment, with relevance to astrobiology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
34
|
Tabachnikov O, Shoham Y. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J 2013; 280:950-64. [PMID: 23216604 DOI: 10.1111/febs.12089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/22/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED Type I galactan is a pectic polysaccharide composed of β-1,4 linked units of d-galactose and is part of the main plant cell wall polysaccharides, which are the most abundant sources of renewable carbon in the biosphere. The thermophilic bacterium Geobacillus stearothermophilus T-6 possesses an extensive system for the utilization of plant cell wall polysaccharides, including a 9.4-kb gene cluster, ganREFGBA, which encodes galactan-utilization elements. Based on enzyme activity assays, the ganEFGBA genes, which probably constitute an operon, are induced by short galactosaccharides but not by galactose. GanA is a glycoside hydrolase family 53 β-1,4-galactanase, active on high molecular weight galactan, producing galactotetraose as the main product. Homology modelling of the active site residues suggests that the enzyme can accommodate at least eight galactose molecules (at subsites -4 to +4) in the active site. GanB is a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4 galactosaccharides into galactose. Applying both GanA and GanB on galactan resulted in the full degradation of the polymer into galactose. The ganEFG genes encode an ATP-binding cassette sugar transport system whose sugar-binding lipoprotein, GanE, was shown to bind galacto-oligosaccharides. The utilization of galactan by G. stearothermophilus involves the extracellular galactanase GanA cleaving galactan into galacto-oligosaccharides that enter the cell via a specific transport system GanEFG. The galacto-oligosaccharides are further degraded by the intracellular β-galactosidase GanB into galactose, which is then metabolized into UDP-glucose via the Leloir pathway by the galKET gene products. DATABASE Nucleotide sequence data have been deposited in the GenBank database under the accession number JF327803.
Collapse
Affiliation(s)
- Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
35
|
Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R. Halophilic hydrolases as a new tool for the biotechnological industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2575-2580. [PMID: 22926924 DOI: 10.1002/jsfa.5860] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/05/2012] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Halophilic micro-organisms are able to survive in high salt concentrations because they have developed diverse biochemical, structural and physiological modifications, allowing the catalytic synthesis of proteins with interesting physicochemical and structural properties. The main characteristic of halophilic enzymes that allows them to be considered as a novel alternative for use in the biotechnological industries is their polyextremophilicity, i.e. they have the capacity to be thermostable, tolerate a wide range of pH, withstand denaturation and tolerate high salt concentrations. However, there have been relatively few studies on halophilic enzymes, with some being based on their isolation and others on their characterisation. These enzymes are scarcely researched because attention has been focused on other extremophile micro-organisms. Only a few industrial applications of halophilic enzymes, principally in the fermented food, textile, pharmaceutical and leather industries, have been reported. However, it is important to investigate applications of these enzymes in more biotechnological processes at both the chemical and the molecular level. This review discusses the modifications of these enzymes, their industrial applications and research perspectives in different biotechnological areas.
Collapse
Affiliation(s)
- Mariana Delgado-García
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | | | | | | | | |
Collapse
|
36
|
Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 900:32-7. [PMID: 22683026 DOI: 10.1016/j.jchromb.2012.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/25/2012] [Accepted: 05/16/2012] [Indexed: 12/29/2022]
Abstract
β-Galactosidase is a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into monosaccharides; its major application in the food industry is to reduce the content of lactose in lactic products. The aim of this work is to recover this enzyme from a cell lysate by adsorption onto Streamline-DEAE in an expanded bed, avoiding, as much as possible, biomass deposition onto the adsorbent matrix. So as to achieve less cell debris-matrix interaction, the adsorbent surface was covered with polyvinyl pyrrolidone. The enzyme showed to bind in the same extent to naked and covered Streamline-DEAE (65 mg β-gal/g matrix) in batch mode in the absence of any biomass. The kinetics of the adsorption process was studied and no effect of the polyvinyl pyrrolidone covering was found. The optimal conditions for the recovery were achieved by using a lysate made of 40% wet weight of cells, a polyvinyl pyrrolidone-covered matrix/lysate ratio of 10% and carrying out the adsorption process in expanded bed with recirculation over 2h in 20 mM phosphate buffer pH 7.4. The fraction recovered after the elution contained 65% of the initial amount of enzyme with a 12.6-fold increased specific activity with respect to the lysate. The polyvinyl pyrrolidone content in the eluate was determined and found negligible. The remarkable point of this work is that it was possible to partially purify the enzyme using a feedstock containing an unusually high biomass concentration in the presence of polyvinyl pyrrolidone onto weak anion exchangers.
Collapse
|
37
|
Kixmüller D, Greie JC. An ATP-driven potassium pump promotes long-term survival of Halobacterium salinarum within salt crystals. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:234-241. [PMID: 23757278 DOI: 10.1111/j.1758-2229.2012.00326.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many extremely halophilic archaea belonging to the Halobacteriales have remarkable longevity. They are even known to persist for millions of years within fluid inclusions of salt crystals. However, the key systems responsible for this remarkable ability and the underlying physiological mechanisms have not yet been deciphered. This study revealed that the ATP-dependent K(+) uptake system KdpFABC of Halobacterium salinarum is essential for survival under desiccation and salt crystal inclusion and, thus, can be identified as at least one of these systems in this organism. The presence of the kdp genes promoted survival of H. salinarum entombed in halite, compared with cells in which these genes were deleted. Expression of the kdp operon was found to be induced already under desiccating conditions without halite entombment. The morphology of cells included in halite resembled that of cells grown under potassium limitation. Therefore, a steady potassium supply, even under unfavourable energetic conditions, plays a key role in long-term survival and desiccation tolerance.
Collapse
Affiliation(s)
- Dorthe Kixmüller
- Department for Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany
| | | |
Collapse
|
38
|
Ozcan B, Ozyilmaz G, Cihan A, Cokmus C, Caliskan M. Phylogenetic analysis and characterization of lipolytic activity of halophilic archaeal isolates. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Construction and characterization of a gradually inducible expression vector for Halobacterium salinarum, based on the kdp promoter. Appl Environ Microbiol 2012; 78:2100-5. [PMID: 22287001 DOI: 10.1128/aem.07155-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gradually inducible expression vectors which are governed by variations of growth conditions are powerful tools for gene expression of conditionally lethal mutants. Furthermore, controlled expression allows monitoring of overproduction of proteins at various stages in their expressing hosts. For Halobacterium salinarum, which is often used as a paradigm for halophilic archaea, such an inducible expression system is not available to date. Here we show that the kdp promoter (Pkdp), which facilitates gene expression upon K(+) limitation, can be used to establish such a system for molecular applications. Pkdp features a rather high expression rate, with an approximately 50-fold increase that can be easily varied by K(+) concentrations in the growth medium. Besides the construction of an expression vector, our work describes the characterization of expression patterns and, thus, offers a gradually inducible expression system to the scientific community.
Collapse
|
40
|
Archaeal transcriptional regulation of the prokaryotic KdpFABC complex mediating K+ uptake in H. salinarum. Extremophiles 2011; 15:643-52. [DOI: 10.1007/s00792-011-0395-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
41
|
Halophilic enzyme activation induced by salts. Sci Rep 2011; 1:6. [PMID: 22355525 PMCID: PMC3216494 DOI: 10.1038/srep00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 11/08/2022] Open
Abstract
Halophilic archea (halobacteriae) thrive in hypersaline environments, avoiding osmotic shock by increasing the ion concentration of their cytoplasm by up to 3-6 M. To remain folded and active, their constitutive proteins have evolved towards a biased amino acid composition. High salt concentration affects catalytic activity in an enzyme-dependent way and a unified molecular mechanism remains elusive. Here, we have investigated a DNA ligase from Haloferax volcanii (Hv LigN) to show that K(+) triggers catalytic activity by preferentially stabilising a specific conformation in the reaction coordinate. Sodium ions, in turn, do not populate such isoform and the enzyme remains inactive in the presence of this co-solute. Our results show that the halophilic amino acid signature enhances the enzyme's thermodynamic stability, with an indirect effect on its catalytic activity. This model has been successfully applied to reengineer Hv LigN into an enzyme that is catalytically active in the presence of NaCl.
Collapse
|
42
|
Katrolia P, Zhang M, Yan Q, Jiang Z, Song C, Li L. Characterisation of a thermostable family 42 β-galactosidase (BgalC) family from Thermotoga maritima showing efficient lactose hydrolysis. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.08.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Lee JH, Kim YS, Yeom SJ, Oh DK. Characterization of a glycoside hydrolase family 42 β-galactosidase from Deinococcus geothermalis. Biotechnol Lett 2010; 33:577-83. [DOI: 10.1007/s10529-010-0459-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/18/2010] [Indexed: 11/28/2022]
|
44
|
Schwab C, Sørensen KI, Gänzle MG. Heterologous expression of glycoside hydrolase family 2 and 42 β-galactosidases of lactic acid bacteria in Lactococcus lactis. Syst Appl Microbiol 2010; 33:300-7. [DOI: 10.1016/j.syapm.2010.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
|
45
|
|
46
|
Furtwängler K, Tarasov V, Wende A, Schwarz C, Oesterhelt D. Regulation of phosphate uptake via Pst transporters in Halobacterium salinarum R1. Mol Microbiol 2010; 76:378-92. [PMID: 20199599 DOI: 10.1111/j.1365-2958.2010.07101.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The genome of the archaeon Halobacterium salinarum contains two copies of the pst (phosphate-specific transport) operon, the genes of which are related to well-studied bacterial homologues. Both operons (pst1 and pst2) were shown to be polycistronic and, when under P(i)-limited conditions, transcription initiated 1 bp upstream of the translational starts. Under P(i) saturation, the pst1 operon utilized an additional transcription start site 59 bp upstream of the first one. The leaderless pst1 transcript was found to be more efficiently translated than the leadered transcript. Promoter strengths differed significantly between the two operons and when P(i) levels changed. The basal pst1 promoter activity in P(i)-saturated conditions was minimal while the pst2 promoter was active. In contrast, phosphate limitation induced the pst1 operon threefold more than the pst2 operon. We identified basic and phosphate-dependent cis-acting elements in both promoters. Phosphate-uptake assays conducted with several Pst1 and Pst2 mutant strains revealed differences in the substrate affinities between the two transporters and also suggested that the P(i)-binding proteins PstS1 and PstS2 can interact with either of the two permease subunits of the transporters. The tactic behaviour of wild type and pst-deletion strains showed that the Pst1 transporter plays an important role for phosphate-directed chemotaxis.
Collapse
Affiliation(s)
- Katarina Furtwängler
- Max-Planck-Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
47
|
Pan Q, Zhu J, Liu L, Cong Y, Hu F, Li J, Yu X. Functional identification of a putative beta-galactosidase gene in the special lac gene cluster of Lactobacillus acidophilus. Curr Microbiol 2009; 60:172-8. [PMID: 19841976 DOI: 10.1007/s00284-009-9521-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/28/2009] [Indexed: 11/26/2022]
Abstract
The putative beta-galactosidase gene (lacZ) of Lactobacillus acidophilus has a very low degree of homology to the Escherichia coli beta-galactosidase gene (lacZ) and locates in a special lac gene cluster which contains two beta-galactosidase genes. No functional characteristic of the putative beta-galactosidase has been described so far. In this study, the lacZ gene of L. acidophilus was hetero-expressed in E. coli and the recombinant protein was purified by a three-step procedure. The product of the lacZ gene was also extracted from L. acidophilus ATCC 4356 and active staining was carried out. The enzymatic properties of the purified recombinant LacZ were assayed. The results of hetero-expression showed the recombinant LacZ without tag had beta-galactosidase activity. The purified recombinant LacZ had a specific activity of 43.2 U/mg protein. The result of active staining showed that the functional product of the lacZ gene did exist in L. acidophilus. The L. acidophilus beta-galactosidase (LacZ) had an optimal pH of 6, an optimal temperature of 37 degrees C and could hydrolyze 73% of lactose in milk in 30 h at 10 degrees C. The L. acidophilus beta-galactosidase (LacZ) was identified as cold-adapted beta-galactosidase in this study for the first time, and may be useful for lactose removal from dairy products at low temperatures.
Collapse
Affiliation(s)
- Qu Pan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Zeng C, Zhao YZ, Cui CZ, Zhang H, Zhu JY, Tang XF, Shen P, Huang YP, Chen XD. Characterization of the Haloarcula hispanica amyH gene promoter, an archaeal promoter that confers promoter activity in Escherichia coli. Gene 2009; 442:1-7. [PMID: 19376209 DOI: 10.1016/j.gene.2009.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/28/2022]
Abstract
Archaea form a third domain of life that is distinct from Bacteria and Eukarya. According to the current knowledge, the basal transcription machinery of Archaea (including the core promoter architecture, the RNA polymerase, and the basal transcription factors) closely resembles that of Eukarya in structure and function, while differing considerably from the bacterial paradigm. In the present study, the promoter region of the halophilic archaeon Haloarcula hispanica's amyH gene was isolated and characterized, and it was surprisingly revealed that the amyH gene promoter could confer promoter activity (i.e., drive transcription) in haloarchaea (Archaea) as well as in Escherichia coli (Bacteria), where the transcriptions driven are initiated at the same adenine base. Further investigation revealed that the core structure of the amyH gene promoter possesses a combination of the typical structural characteristics of archaeal promoter, which are eukaryotic-like, and those of bacterial promoter. Our results indicate that the core promoter structures of some archaeal genes may possess a combination of eukaryotic- and bacterial-like features, and moreover, suggest a possible evolutionary relationship between basal transcription signals and transcription mechanisms of Archaea and the other two domains of life.
Collapse
|
49
|
Hechler T, Frech M, Pfeifer F. Glucose inhibits the formation of gas vesicles in Haloferax volcanii transformants. Environ Microbiol 2008; 10:20-30. [PMID: 18211264 DOI: 10.1111/j.1462-2920.2007.01426.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of glucose on the formation of gas vesicles was investigated in Haloferax mediterranei and Hfx.volcanii transformants containing the mc-gvp gene cluster of Hfx. mediterranei (mc-vac transformants). Increasing amounts of glucose in the medium resulted in a successive decrease in the amount of gas vesicles in both species, with a complete inhibition of their formation at glucose concentrations of > 70 mM in mc-vac transformants, and 100 mM in Hfx. mediterranei. Maltose and sucrose imposed a similar inhibitory effect, whereas xylose, arabinose, lactose, pyruvate and 2-deoxy-glucose had no influence on the gas vesicle formation in mc-vac transformants. The activities of the two mc-vac promoters were strongly reduced in mc-vac transformants grown in the presence of > 50 mM glucose. The gas vesicle overproducing Delta D transformant (lacking the repressing protein GvpD) also showed a glucose-induced lack of gas vesicles, indicating that GvpD is not involved in the repression. The addition of glucose was useful to block gas vesicle formation at a certain stage during growth, and vice versa, gas vesicle synthesis could be induced when a glucose-grown culture was shifted to medium lacking glucose. Both procedures will enable the investigation of defined stages during gas vesicle formation.
Collapse
Affiliation(s)
- Torsten Hechler
- Institut für Mikrobiologie und Genetik, TU Darmstadt, D-64287 Darmstadt, Germany
| | | | | |
Collapse
|
50
|
Bauer M, Marschaus L, Reuff M, Besche V, Sartorius-Neef S, Pfeifer F. Overlapping activator sequences determined for two oppositely oriented promoters in halophilic Archaea. Nucleic Acids Res 2007; 36:598-606. [PMID: 18056077 PMCID: PMC2241852 DOI: 10.1093/nar/gkm1077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription of the genomic region involved in gas vesicle formation in Halobacterium salinarum (p-vac) and Haloferax mediterranei (mc-vac) is driven by two divergent promoters, P(A) and P(D), separated by only 35 nt. Both promoters are activated by the transcription activator GvpE which in the case of P(mcA) requires a 20-nt sequence (UAS) consisting of two conserved 8-nt sequence portions located upstream of BRE. Here, we determined the two UAS elements in the promoter region of p-vac by scanning mutageneses using constructs containing P(pD) (without P(pA)) fused to the bgaH reporter gene encoding an enzyme with beta-galactosidase activity, or the dual reporter construct pApD with P(pD) fused to bgaH and P(pA) to an altered version of gvpA. The two UAS elements found exhibited a similar extension and distance to BRE as previously determined for the UAS in P(mcA). Their distal 8-nt portions almost completely overlapped in the centre of P(pD)-P(pA), and mutations in this region negatively affected the GvpE-mediated activation of both promoters. Any alteration of the distance between BRE and UAS resulted in the loss of the GvpE activation, as did a complete substitution of the proximal 8-nt portion, underlining that a close location of UAS and BRE was very important.
Collapse
Affiliation(s)
- Martina Bauer
- Institut für Mikrobiologie und Genetik, TU Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|