1
|
Grb14 inhibits FGF receptor signaling through the regulation of PLCγ recruitment and activation. FEBS Lett 2010; 584:4383-8. [DOI: 10.1016/j.febslet.2010.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022]
|
2
|
Sánchez-González P, Jellali K, Villalobo A. Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 2009; 277:327-42. [PMID: 19951361 DOI: 10.1111/j.1742-4658.2009.07469.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we first describe the mechanisms by which the epidermal growth factor receptor generates a Ca(2+) signal and, subsequently, we compile the available experimental evidence regarding the role that the Ca(2+)/calmodulin complex, formed after the rise in cytosolic free Ca(2+) concentration, exerts on the receptor. We focus not only on the indirect action that Ca(2+)/calmodulin exerts on the epidermal growth factor receptor, as a result of the activation of distinct calmodulin-dependent kinases, but also, and more extensively, on the direct interaction of Ca(2+)/calmodulin with the receptor. We also describe several mechanistic models that could account for the Ca(2+)/calmodulin-mediated regulation of epidermal growth factor receptor activity. The control exerted by calmodulin on distinct epidermal growth factor receptor-mediated cellular functions is also discussed. Finally, the phosphorylation of this Ca(2+) sensor by the epidermal growth factor receptor is highlighted.
Collapse
Affiliation(s)
- Pablo Sánchez-González
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
3
|
Cailliau K, Browaeys-Poly E. A microinjectable biological system, the Xenopus oocyte, as an approach to understanding signal transduction protein function. Methods Mol Biol 2009; 518:43-55. [PMID: 19085133 DOI: 10.1007/978-1-59745-202-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study protein function in cellular signaling, manual microinjection is a direct technique, but limited by the small size of many cells. The giant vertebrate cell, the Xenopus laevis oocyte, is a perfect model system to perform these studies. Oocytes are numerous and synchronous cells, arrested in the G2 phase of the cell cycle and easily amenable to biochemical, electrophysiological, and cytological studies. We describe how to microinject proteins or peptides in this model and we study, as an example, the Grb2 transduction cascade.
Collapse
Affiliation(s)
- Katia Cailliau
- Université des Sciences et Technologies de Lille, Laboratoire de Régulation des Signaux de Division, Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
4
|
Browaeys-Poly E, Broutin I, Antoine AF, Marin M, Lescuyer A, Vilain JP, Ducruix A, Cailliau K. A non-canonical Grb2-PLC-gamma1-Sos cascade triggered by lipovitellin 1, an apolipoprotein B homologue. Cell Signal 2007; 19:2540-8. [PMID: 17869481 DOI: 10.1016/j.cellsig.2007.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022]
Abstract
The injection of the Grb2 adapter in Xenopus oocytes promotes G2/M transition without stimulation from a receptor only the first day after the oocytes removal from the ovaries. This cell cycle reinitiation is Ras-dependent and requires the SH2 and SH3 domains of Grb2. The SH2 domain of Grb2 binds the tyrosine phosphorylated lipovitellin1, a homologue of the human apolipoprotein B. The N-SH3 domain of Grb2 is linked to a proline-rich sequence of the C2 domain of PLC-gamma1, PLC-gamma1 itself is linked, through its SH3 domain, to the C-terminal proline-rich region of Sos. When Grb2-PLC-gamma1-Sos is associated, PLC-gamma1 is not phosphorylated on Y783 but shows a phospholipase activity. Inhibition of lipovitellin 1 or PLC-gamma1 avoids Grb2-induced cell cycle reinitiation. Therefore, the Grb2-lipovitellin 1 association is the starting point of a novel signaling pathway, where PLC-gamma1 binds Grb2 and recruits Sos.
Collapse
Affiliation(s)
- Edith Browaeys-Poly
- Laboratoire de Régulation des Signaux de Division, EA 4020, IFR 147, Bât. SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Cailliau K, Le Marcis V, Béréziat V, Perdereau D, Cariou B, Vilain JP, Burnol AF, Browaeys-Poly E. Inhibition of FGF receptor signalling in Xenopus oocytes: differential effect of Grb7, Grb10 and Grb14. FEBS Lett 2003; 548:43-8. [PMID: 12885405 DOI: 10.1016/s0014-5793(03)00726-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The role of Grb7 adapters, Grb7, Grb10, and Grb14, was investigated in Xenopus oocytes expressing fibroblast growth factor receptors (FGFR). FGF-induced maturation of FGFR-expressing oocytes was blocked by previous injection of Grb7 or Grb14, but not Grb10. This effect correlated with Grb7/14 binding to the receptor, and inhibition of the Ras-dependent pathway. Interestingly, the phosphorylated insulin receptor interacting region (PIR) and Src 2 homology domains (SH2) of Grb7 and Grb14 were differently implicated in the inhibition of FGFR signalling. This study provided further evidence for specificity of the biological action of the Grb7 adapters on receptor tyrosine kinase signalling.
Collapse
Affiliation(s)
- Katia Cailliau
- Université des Sciences; Technologies de Lille, Laboratoire de Biologie du Développement, UPRES UA 1033, IFR 118, Bâtiment SN3, Villeneuve d'Ascq, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Browaeys-Poly E, Cailliau K, Vilain JP. Transduction cascades initiated by fibroblast growth factor 1 on Xenopus oocytes expressing MDA-MB-231 mRNAs. Role of Grb2, phosphatidylinositol 3-kinase, Src tyrosine kinase, and phospholipase Cgamma. Cell Signal 2001; 13:363-8. [PMID: 11369518 DOI: 10.1016/s0898-6568(01)00149-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xenopus oocytes expressing fibroblast growth factor receptors (FGFRs) from the hormone-independent breast cancer cells, MDA-MB-231, are used as a biological system to analyze the signalling cascades initiated by FGF1. FGF1 induces ERK2 phosphorylation and G2/M transition. These events are dependent on the Shc/Grb2/Ras pathway, on Src and PI3Kinase (PI3K), as shown by the use of SH2 domains or dominant negative proteins, and on PLC gamma and calcium as demonstrated by a PLC gamma inhibitory peptide and BAPTA-AM. FGF1 mobilizes Ins(1,4,5)P3-sensitive calcium stores, as recorded through the inhibition by caffeine of a chloride calcium-dependent current in expressing oocytes. This study shows that the transduction cascades induced by FGF1 on FGFRs from MDA-MB-231 cells represent the sum of Ras, Src, PI3K, and PLC gamma pathways. It emphasizes the mitogenic effect of the PLC gamma-calcium cascade.
Collapse
Affiliation(s)
- E Browaeys-Poly
- Université des Sciences et Technologies de Lille, Laboratoire de Biologie du Développement, UPRES EA 1033, Bâtiment SN3, Cedex 59655, Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
7
|
Cailliau K, Browaeys-Poly E, Vilain JP. RasGAP is involved in signal transduction triggered by FGF1 inXenopusoocytes expressing FGFR1. FEBS Lett 2001; 496:161-5. [PMID: 11356202 DOI: 10.1016/s0014-5793(01)02410-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of RasGAP was investigated in the model system of Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) stimulated by fibroblast growth factor 1 (FGF1). The injection of the SH2-SH3-SH2 domains of RasGAP suppressed Ras activity, extracellular signal-regulated protein kinase 2 (ERK2) phosphorylation and Mos synthesis. The SH2 domain of Src, and PP2, an inhibitor of Src, also abolished Ras activity, ERK2 phosphorylation and Mos synthesis. In addition, Src activity was blocked by the SH2-SH3-SH2 domains of RasGAP. Immunoprecipitation of a chimera composed of the extracellular domain of the platelet-derived growth factor (PDGF) receptor and the intracellular domain of FGFR1 stimulated by PDGF-BB demonstrates the recruitment of phosphorylated RasGAP. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes involves RasGAP as a co-activator of Src to stimulate the Ras/mitogen-activated protein kinase cascade and Mos synthesis. It emphasises a new positive regulatory role for RasGAP in FGFR transduction.
Collapse
Affiliation(s)
- K Cailliau
- Université des Sciences et Technologies de Lille, Laboratoire de Biologie du Développement, UE 1033, Bâtiment SN3, 59655 Cedex, Villeneuve D'Ascq, France.
| | | | | |
Collapse
|
8
|
Cailliau K, Browaeys-Poly E, Vilain JP. Fibroblast growth factors 1 and 2 differently activate MAP kinase in Xenopus oocytes expressing fibroblast growth factor receptors 1 and 4. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1538:228-33. [PMID: 11336793 DOI: 10.1016/s0167-4889(01)00074-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.
Collapse
Affiliation(s)
- K Cailliau
- Université des Sciences et Technologies de Lille, Laboratoire de Biologie du Développement, UE 1033, Bâtiment SN3, 59655 Cedex, Villeneuve D'Ascq, France
| | | | | |
Collapse
|
9
|
Cailliau K, Browaeys-Poly E, Broutin-L'Hermite I, Nioche P, Garbay C, Ducruix A, Vilain JP. Grb2 promotes reinitiation of meiosis in Xenopus oocytes. Cell Signal 2001; 13:51-5. [PMID: 11257447 DOI: 10.1016/s0898-6568(00)00138-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein Grb2 plays a central role in cell proliferation and/or cell cycle progression. In this study, we investigate the role of Grb2 in signalling pathways involved in meiotic reinitiation. For that purpose, Xenopus Grb2 cRNA and its mutated forms or human Grb2 protein was microinjected into immature Xenopus oocytes. Reinitiation of meiosis was seen in unstimulated oocytes. Induction of the meiosis was time dependent and Ras dependent, and the presence in Grb2 of SH2 and SH3 domains was required. Several tyrosine phosphorylated proteins were solely detected in oocytes responsive to Grb2 injection. Our results are in favour of an unusual recruitment and initiation of the Grb2 transduction cascade independent of a receptor tyrosine kinase (RTK) stimulation.
Collapse
Affiliation(s)
- K Cailliau
- Laboratoire de Biologie du Développement, Université des Sciences et Technologies de Lille, UE 1033, Bâtiment SN3, 59655 Villeneuve D'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Browaeys-Poly E, Cailliau K, Vilain JP. Signal transduction pathways triggered by fibroblast growth factor receptor 1 expressed in Xenopus laevis oocytes after fibroblast growth factor 1 addition. Role of Grb2, phosphatidylinositol 3-kinase, Src tyrosine kinase, and phospholipase Cgamma. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6256-63. [PMID: 11012680 DOI: 10.1046/j.1432-1327.2000.01710.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) were used as a biological model system to analyse the signal transduction pathways that are triggered by fibroblast growth factor 1 (FGF1). Germinal vesicle breakdown (GVBD) and phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) occured 15 h after FGF1 addition. These events were Ras-dependent as they were blocked by a Ras dominant negative form. The Ras activity was promoted by three upstream effectors, growth factor-bound protein 2 (Grb2), phosphatidylinositol 3-kinase (PI3K) and Src cytoplasmic kinase. Ras activation was inhibited by a Grb2 dominant negative form (P49L), by PI3K inhibitors, including wortmannin, LY294002, the N-SH2 domain of p85alpha PI3K and by the SH2 domain of Src. Src activation induced by FGF1 was blocked by the SH2 domain of Src and PP2, a specific inhibitor of Src. The Grb2 adaptor was recruited by the upstream Src homology 2/alpha-collagen-related (Shc) effector, as the SH2-Shc domain prevented the GVBD and the ERK2 phosphorylation induced by FGF1. The importance of another signalling pathway involving phospholipase Cgamma (PLCgamma) was also investigated. The use of the PLCgamma inhibitory peptide, neomycin and the calcium chelator BAPTA-AM on oocytes expressing FGFR1 or the stimulation by PDGF-BB of oocytes expressing PDGFR-FGFR1 mutated on the PLCgamma binding site, prevented GVBD and ERK2 phosphorylation. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes represents the sum of Ras-dependent and PLCgamma-dependent pathways. It emphasizes the role played by PI3K and Src and their connections with the Ras cascade in the FGFR1 signal transduction.
Collapse
Affiliation(s)
- E Browaeys-Poly
- Université des Sciences et Technologies de Lille, Laboratoire de Biologie du Développement, Villeneuve d'Ascq, France
| | | | | |
Collapse
|