1
|
Kim JE, Lee DS, Park H, Kim TH, Kang TC. AMPA Receptor Antagonists Facilitate NEDD4-2-Mediated GRIA1 Ubiquitination by Regulating PP2B-ERK1/2-SGK1 Pathway in Chronic Epilepsy Rats. Biomedicines 2021; 9:biomedicines9081069. [PMID: 34440273 PMCID: PMC8391511 DOI: 10.3390/biomedicines9081069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
The neural precursor cell expressed by developmentally downregulated gene 4-2 (NEDD4-2) is a ubiquitin E3 ligase that has a high affinity toward binding and ubiquitinating glutamate ionotropic receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type subunit 1 (GRIA1, also referred to GluR1 or GluA1). Since dysregulation of GRIA1 surface expression is relevant to the responsiveness to AMPA receptor (AMPAR) antagonists (perampanel and GYKI 52466) in chronic epilepsy rats, it is likely that NEDD4-2 may be involved in the pathogenesis of intractable epilepsy. However, the role of NEDD4-2-mediated GRIA1 ubiquitination in refractory seizures to AMPAR antagonists is still unknown. In the present study, both AMPAR antagonists recovered the impaired GRIA1 ubiquitination by regulating protein phosphatase 2B (PP2B)-extracellular signal-regulated kinase 1/2 (ERK1/2)-serum and glucocorticoid-regulated kinase 1 (SGK1)-NEDD4-2 signaling pathway in responders (whose seizure activities are responsive to AMPAR), but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). In addition, cyclosporin A (CsA, a PP2B inhibitor) co-treatment improved the effects of AMPAR antagonists in non-responders, independent of AKT signaling pathway. Therefore, our findings suggest that dysregulation of PP2B-ERK1/2-SGK1-NEDD4-2-mediated GRIA1 ubiquitination may be responsible for refractory seizures and that this pathway may be a potential therapeutic target for improving the treatment of intractable epilepsy in response to AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. & T.-C.K.)
| | | | | | | | - Tae-Cheon Kang
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. & T.-C.K.)
| |
Collapse
|
3
|
Du M, Liu J, Chen X, Xie Y, Yuan C, Xiang Y, Sun B, Lan K, Chen M, James SJ, Zhang Y, Zhong J, Xiao H. Casein kinase II controls TBK1/IRF3 activation in IFN response against viral infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4477-88. [PMID: 25810395 DOI: 10.4049/jimmunol.1402777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/19/2015] [Indexed: 01/12/2023]
Abstract
By sensing viral nucleic acids, host innate receptors elicit signaling pathways converging on TBK1-IFN regulatory factor (IRF)3 axis in mediating IFN-αβ induction and defense mechanisms. In contrast, viruses have evolved with diverse immune evasion/interference mechanisms to undermine innate receptor signaling and IFN response. In this regard, approaches enabling host to overcome such immune evasion/interference mechanisms are urgently needed to combat infections by epidemic/pandemic viruses. In this study, we report that protein kinase CK2 serves as a key component controlling TBK1 and IRF3 activation in IFN-inducing TLR, RIG-I-like receptors, and cGAS/STING signaling pathways. Accordingly, knocking down of CK2 expression or genetic ablation of its kinase activity resulted in elevated IFN-αβ response in response to infection by DNA and RNA viruses. Moreover, PP2A was identified as one of the intermediate phosphatases responsible for CK2-regulated IFN response, suggesting that CK2 may regulate TBK1 and IRF3 activation indirectly. Importantly, blockade of CK2 activity by small molecule inhibitor was able to activate TBK1, whereby eliciting effective host defense mechanisms against hepatitis C virus infection. Taken together, our results identify CK2 as a novel regulator of TBK1 and IRF3 and suggest that targeting CK2 by small molecular inhibitor may be a viable approach to prevent and treat viral infections.
Collapse
Affiliation(s)
- Min Du
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yadong Xie
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanping Yuan
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Xiang
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- Unit of Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Lan
- Unit of Tumor Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sharmy J James
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Yongliang Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Jin Zhong
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; Vaccine Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
5
|
Rajasagi M, von Au A, Singh R, Hartmann N, Zöller M, Marhaba R. Anti-CD44 induces apoptosis in T lymphoma via mitochondrial depolarization. J Cell Mol Med 2009; 14:1453-67. [PMID: 19765170 PMCID: PMC3829012 DOI: 10.1111/j.1582-4934.2009.00909.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A blockade of CD44 can interfere with haematopoietic and leukemic stem cell homing, the latter being considered as a therapeutic option in haematological malignancies. We here aimed to explore the molecular mechanism underlying the therapeutic efficacy of anti-CD44. We noted that in irradiated mice reconstituted with a bone marrow cell transplant, anti-CD44 exerts a stronger effect on haematopoietic reconstitution than on T lymphoma (EL4) growth. Nonetheless, in the non-reconstituted mouse anti-CD44 suffices for a prolonged survival of EL4-bearing mice, where anti-CD44-prohibited homing actively drives EL4 cells into apoptosis. In vitro, a CD44 occupancy results in a 2–4-fold increase in apoptotic EL4 cells. Death receptor expression (CD95, TRAIL, TNFRI) remains unaltered and CD95 cross-linking-mediated apoptosis is not affected. Instead, CD44 ligation promotes mitochondrial depolarization that is accompanied by caspase-9 cleavage and is inhibited in the presence of a caspase-9 inhibitor. Apoptosis becomes initiated by activation of CD44-associated phosphatase 2A (PP2A) and proceeds via ERK1/2 dephosphorylation without ERK1/2 degradation. Accordingly, CD44-induced apoptosis could be mimicked by ERK1/2 inhibition, that also promotes EL4 cell apoptosis through the mitochondrial pathway. Thus, during haematopoietic stem cell reconstitution care should be taken not to interfere by a blockade of CD44 with haematopoiesis, which could be circumvented by selectively targeting leukemic CD44 isoforms. Beyond homing/settlement in the bone marrow niche, anti-CD44 drives leukemic T cells into apoptosis via the mitochondrial death pathway by CD44 associating with PP2A. Uncovering this new pathway of CD44-induced leukemic cell death provides new options of therapeutic interference.
Collapse
Affiliation(s)
- Mohini Rajasagi
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Kimura R, Matsuki N. Protein kinase CK2 modulates synaptic plasticity by modification of synaptic NMDA receptors in the hippocampus. J Physiol 2008; 586:3195-206. [PMID: 18483072 DOI: 10.1113/jphysiol.2008.151894] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic plasticity is the foundation of learning and memory. The protein kinase CK2 phosphorylates many proteins related to synaptic plasticity, but whether it is directly involved in it has not been clarified. Here, we examined the role of CK2 in synaptic plasticity in hippocampal slices using the CK2 selective inhibitors 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and 4,5,6,7-tetrabromobenzotriazole (TBB). These significantly inhibited N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). DRB also inhibited NMDA receptor-mediated synaptic transmission, while leaving NMDA receptor-independent LTP unaffected. NMDA receptors thus appear to be the primary targets of CK2. Although both long-term depression (LTD) and LTP are induced by the influx of Ca(2+) through NMDA receptors, surprisingly, LTD was not affected by CK2 inhibitors. We postulated that the LTP-selective modulation by CK2 is due to selective modulation of NMDA receptors, and tested two hypotheses concerning the modulation of NMDA receptors: (i) CK2 selectively modulates NR2A subunits possibly related to LTP, but not NR2B subunits possibly related to LTD; and (ii) CK2 selectively affects synaptic but not extrasynaptic NMDA receptors whose activation is sufficient to induce LTD. DRB decreased NMDA receptor-mediated synaptic transmission in the presence of selective NR2A subunit antagonist. The former hypothesis thus appears unlikely to be correct. However, DRB decreased synaptic NMDA receptor responses in cultured hippocampal neurons without affecting extrasynaptic NMDA receptor current. These findings support the latter hypothesis, that CK2 selectively affects LTP by selective modification of synaptic NMDA receptors in a receptor-location-specific manner.
Collapse
Affiliation(s)
- Rie Kimura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
8
|
Abstract
Protein kinase CK2 is a ubiquitous and pleiotropic seryl/threonyl protein kinase which is highly conserved in evolution indicating a vital cellular role for this kinase. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. Special attention has been devoted to phosphorylation status and structure of these enzymic molecules, however, their regulation and roles remain intriguing. Until recently, CK2 was believed to represent a kinase especially required for cell cycle progression in non-neural cells. At present, with respect to recent findings, four essential features suggest potentially important roles for this enzyme in specific neural functions: (1) CK2 is much more abundant in brain than in any other tissue; (2) there appear to be a myriad of substrates for CK2 in both synaptic and nuclear compartments that have clear implications in development, neuritogenesis, synaptic transmission, synaptic plasticity, information storage and survival; (3) CK2 seems to be associated with mechanisms underlying long-term potentiation in hippocampus; and (4) neurotrophins stimulate activity of CK2 in hippocampus. In addition, some data are suggestive that CK2 might play a role in processes underlying progressive disorders due to Alzheimer's disease, ischemia, chronic alcohol exposure or immunodeficiency virus HIV. The present review focuses mainly on the latest data concerning the regulatory mechanisms and the possible neurophysiological functions of this enzyme.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France.
| |
Collapse
|