Ai R, Sandoval A, Labhart P. Differential gene expression in human glioma cells: correlation with presence or absence of DNA-dependent protein kinase.
Gene Expr 2003;
11:35-45. [PMID:
12691524 PMCID:
PMC5991153 DOI:
10.3727/000000003783992306]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2002] [Indexed: 11/24/2022]
Abstract
The human glioma cell line M059J is deficient in DNA-dependent protein kinase (DNA-PK) due to a frame-shift mutation in PRKDC, the gene for its catalytic subunit, while cell line M059K, isolated from the same malignant tumor, has normal DNA-PK activity. DNA-PK is required for double-strand DNA break repair, and its absence is responsible for increased radiosensitivity of M059J. We show that transcripts of several melanoma antigen subfamily A (MAGE-A) genes, the expression of which is restricted to tumor and germ-line cells,are present in M059K, but that their expression is strongly downregulated in M059J. Normal levels of MAGE-A expression are restored in the PRKDC-complemented cell line M059J/Fus1, suggesting that the presence of DNA-PK is required for MAGE-A gene transcription. We also show that the MAGE-A1 promoter is methylated in M059J, while the promoter is demethylated in M059K and M059J/Fus1. Other genes, including all three major histocompatibility class I (HLA) genes, BENE, and an unnamed gene related to CNIL(CORNICHON-like), display an opposite expression profile (i.e., they are upregulated in the DNA-PK-deficient cell line, but show low levels of expression in both M059K and in the PRKDC-complemented cell line). For these genes, differential expression does not correlate with DNA methylation in upstream promoter sequences. Our results suggest that the presence of DNA-PK can exert effects on gene expression by various mechanisms and pathways, thus affecting overall cell physiology even in the absence of DNA damage.
Collapse