1
|
Gemler BT, Warner BR, Bundschuh R, Fredrick K. Identification of leader-trailer helices of precursor ribosomal RNA in all phyla of bacteria and archaea. RNA (NEW YORK, N.Y.) 2024; 30:1264-1276. [PMID: 39043438 PMCID: PMC11404451 DOI: 10.1261/rna.080091.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Ribosomal RNAs are transcribed as part of larger precursor molecules. In Escherichia coli, complementary RNA segments flank each rRNA and form long leader-trailer (LT) helices, which are crucial for subunit biogenesis in the cell. A previous study of 15 representative species suggested that most but not all prokaryotes contain LT helices. Here, we use a combination of in silico folding and covariation methods to identify and characterize LT helices in 4464 bacterial and 260 archaeal organisms. Our results suggest that LT helices are present in all phyla, including Deinococcota, which had previously been suspected to lack LT helices. In very few organisms, our pipeline failed to detect LT helices for both 16S and 23S rRNA. However, a closer case-by-case look revealed that LT helices are indeed present but escaped initial detection. Over 3600 secondary structure models, many well supported by nucleotide covariation, were generated. These structures show a high degree of diversity. Yet, all exhibit extensive base-pairing between the leader and trailer strands, in line with a common and essential function.
Collapse
MESH Headings
- Nucleic Acid Conformation
- RNA, Archaeal/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- Archaea/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- Bacteria/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Precursors/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Base Sequence
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/chemistry
- Base Pairing
Collapse
Affiliation(s)
- Bryan T Gemler
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin R Warner
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ralf Bundschuh
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Liu J, Li L, Wang Y, Li B, Cai X, Tang L, Dong S, Yang E, Wu H, Zhang B. Joint engineering of SACE_Lrp and its target MarR enhances the biosynthesis and export of erythromycin in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 2021; 105:2911-2924. [PMID: 33760930 DOI: 10.1007/s00253-021-11228-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
The Lrp and MarR families are two groups of transcriptional regulators widely distributed among prokaryotes. However, the hierarchical-regulatory relationship between the Lrp family and the MarR family remains unknown. Our previous study found that an Lrp (SACE_Lrp) from Saccharopolyspora erythraea indirectly repressed the biosynthesis of erythromycin. In this study, we characterized a novel MarR family protein (SACE_6745) from S. erythraea, which is controlled by SACE_Lrp and plays a direct regulatory role in erythromycin biosynthesis and export. SACE_Lrp directly regulated the expression of marR by specifically binding a precise site OM (5'-CTCCGGGAACCATT-3'). Gene disruption of marR increased the production of erythromycin by 45% in S. erythraea A226. We found that MarR has direct DNA-binding activity for the promoter regions of the erythromycin biosynthetic genes, as well as an ABC exporter SACE_2701-2702 which was genetically proved to be responsible for erythromycin efflux. Disruption of SACE_Lrp in industrial S. erythraea WB was an efficient strategy to enhance erythromycin production. Herein, we jointly engineered SACE_Lrp and its target MarR by deleting marR in WBΔSACE_Lrp, resulting in 20% increase in erythromycin yield in mutant WBΔLrpΔmarR compared to WBΔSACE_Lrp, and 39% to WB. Overall, our findings provide new insights into the hierarchical-regulatory relationship of Lrp and MarR proteins and new avenues for coordinating antibiotic biosynthesis and export by joint engineering regulators in actinomycetes. KEY POINTS: • The hierarchical-regulatory relationship between SACE_Lrp and MarR was identified. • MarR directly controlled the expression of erythromycin biosynthesis and export genes. • Joint engineering of SACE_Lrp-MarR regulatory element enhanced erythromycin production.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Long Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Bowen Li
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Xinlu Cai
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Lijuan Tang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shengnan Dong
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hang Wu
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Buchang Zhang
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
3
|
López AC, Alippi AM. Feasibility of using RFLP of PCR-amplified 16S rRNA gene(s) for rapid differentiation of isolates of aerobic spore-forming bacteria from honey. J Microbiol Methods 2019; 165:105690. [PMID: 31425714 DOI: 10.1016/j.mimet.2019.105690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 11/24/2022]
Abstract
This study aimed to assess the feasibility of using RFLP of PCR-amplified 16S rRNA gene (s) by using universal primers 27f/1492r and a combination of three restriction enzymes, AluI, CfoI, and TaqI, for a low-cost, rapid screen for a primarily differentiation of isolates of the complex of aerobic spore-forming bacteria commonly found in honey samples. The described method produced unique and distinguishable patterns to differentiate among 80 isolates belonging to 26 different species of Bacillus, Brevibacillus, Lysinibacillus, Rummeliibacillus, and Paenibacillus reported in honey and other apiarian sources.
Collapse
Affiliation(s)
- Ana C López
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, 1900 La Plata, Argentina
| | - Adriana M Alippi
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, 1900 La Plata, Argentina.
| |
Collapse
|
4
|
Almalki MA, Khalifa AY. Description of a methanotrophic strain BOH1, isolated from Al-Bohyriya well, Al-Ahsa City, Saudi Arabia. Saudi J Biol Sci 2017; 24:1704-1710. [PMID: 30294238 PMCID: PMC6169549 DOI: 10.1016/j.sjbs.2015.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 11/22/2022] Open
Abstract
Methanotrophic bacteria have a unique ability to utilize methane as their carbon and energy sources. Therefore, methanotrophs play a key role in suppressing methane emissions from different ecosystems and hence in alleviating the global climate change. Despite methanotrophs having many ecological, economical and biotechnological applications, little is known about this group of bacteria in Al-Ahsa. Therefore, the main objective of the current work was to expand our understanding of methane oxidizing bacteria in Al-Ahsa region. The specific aim was to describe a methanotrophic strain isolated from Al-Bohyriya well, Al-Ahsa using phenotypic, genotypic (such as 16S rRNA and pmoA gene sequencing) and phylogenetic characterization. The results indicated that the strain belongs to the genus Methylomonas that belongs to Gammaproteobacteria as revealed by the comparative sequence analysis of the 16S rRNA and pmoA genes. There is a general agreement in the profile of the phylogenetic trees based on the sequences of 16srRNA and pmoA genes of the strain BOH1 indicating that both genes are efficient taxonomic marker in methanotrophic phylogeny. The strain possesses the particulate but not the soluble methane monooxygenase as a key enzyme for methane metabolism. Further investigation such as DNA:DNA hybridization is needed to assign the strain as a novel species of the genus Methyomonas and this will open the door to explore the talents of the strain for its potential role in alleviating global warming and biotechnological applications in Saudi Arabia such as bioremediation of toxic by-products released in oil industry. In addition, the strain enhances our knowledge of methanotrophic bacteria and their adaptation to desert ecosystems.
Collapse
Affiliation(s)
- Mohammed A. Almalki
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
| | - Ashraf Y.Z. Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| |
Collapse
|
5
|
Huang CH, Huang L, Chang MT, Chen KL. Establishment and application of an analytical in-house database (IHDB) for rapid discrimination of Bacillus subtilis group (BSG) using whole-cell MALDI-TOF MS technology. Mol Cell Probes 2016; 30:312-319. [DOI: 10.1016/j.mcp.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
6
|
Isolation and characterization of an endophytic bacterium, Bacillus megaterium BMN1, associated with root-nodules of Medicago sativa L. growing in Al-Ahsaa region, Saudi Arabia. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0946-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
Antolinos V, Fernández PS, Ros-Chumillas M, Periago PM, Weiss J. Development of a High-Resolution Melting–Based Approach for Efficient Differentiation AmongBacillus cereusGroup Isolates. Foodborne Pathog Dis 2012; 9:777-85. [DOI: 10.1089/fpd.2012.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vera Antolinos
- Departamento Ingeniería Alimentos y del Equipamiento Agrícola, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Pablo S. Fernández
- Departamento Ingeniería Alimentos y del Equipamiento Agrícola, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - María Ros-Chumillas
- Departamento Ingeniería Alimentos y del Equipamiento Agrícola, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Paula M. Periago
- Departamento Ingeniería Alimentos y del Equipamiento Agrícola, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Julia Weiss
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
- Departamento de Ciencia y Tecnología Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
8
|
Huang CH, Chang MT, Huang L, Chu WS. Development of a novel PCR assay based on the gyrase B gene for species identification of Bacillus licheniformis. Mol Cell Probes 2012; 26:215-7. [PMID: 22580104 DOI: 10.1016/j.mcp.2012.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
Bacillus licheniformis is closely related to the Bacillus subtilis group, and could not be clearly identified using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone. Some strains of this species are considered to be probiotic and are widely applied in the food and feed industry. The objective of this study was to develop species-specific PCR based on the gyrB gene sequence for direct species identification of the B. licheniformis within the B. subtilis group. A pair of species-specific primer was designed and used to specifically detect B. licheniformis, but none of the other B. subtilis group strains. Our data indicate that the novel species-specific primer could be used to rapidly and accurately identify the species of B. licheniformis from B. subtilis group by a PCR based assay.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan, ROC
| | | | | | | |
Collapse
|
9
|
Xiao Y, Zeng GM, Yang ZH, Ma YH, Huang C, Shi WJ, Xu ZY, Huang J, Fan CZ. Effects of continuous thermophilic composting (CTC) on bacterial community in the active composting process. MICROBIAL ECOLOGY 2011; 62:599-608. [PMID: 21611687 DOI: 10.1007/s00248-011-9882-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/14/2011] [Indexed: 05/30/2023]
Abstract
The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp., during the composting. Denaturing gradient gel electrophoresis (DGGE) analysis was employed to investigate the effects of CTC on bacterial diversity, and a community dominated by fewer species was detected in a typical CTC run. The analysis of sequence and phylogeny based on DGGE indicated that the continuously high temperature had changed the structure of bacterial community and strengthened the mainstay role of the thermophilic and spore-forming Bacillus spp. in CTC run.
Collapse
Affiliation(s)
- Yong Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jeyaram K, Romi W, Singh TA, Adewumi GA, Basanti K, Oguntoyinbo FA. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance. J Microbiol Methods 2011; 87:161-4. [PMID: 21889958 DOI: 10.1016/j.mimet.2011.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species.
Collapse
Affiliation(s)
- Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat Institutional Area, Imphal-795001, Manipur, India.
| | | | | | | | | | | |
Collapse
|
11
|
Zeigler DR. The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. MICROBIOLOGY-SGM 2011; 157:2033-2041. [PMID: 21527469 DOI: 10.1099/mic.0.048520-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genome sequence of Bacillus subtilis subsp. spizizenii W23 has been determined. The sequence strongly suggests that W23 is a direct descendant of B. subtilis ATCC 6633. W23 shares a 3.6 Mb core genome with the intensively studied model organism B. subtilis subsp. subtilis 168, and gene order within this core has been strongly conserved. Additionally, the W23 genome has 157 accessory (that is, non-core) genome segments that are not found in 168, while the 168 genome has 141 segments not found in W23. The distribution of sequences similar to these accessory segments among other genomes of the B. subtilis species complex shows that those sequences having entered into the phylogeny of the complex more recently tend to be larger and more AT-rich than those having entered earlier. A simple model can account for these observations, in which parasitic or symbiotic DNAs are transferred into the genome and then are reduced in size and modified in base composition during speciation.
Collapse
Affiliation(s)
- Daniel R Zeigler
- Bacillus Genetic Stock Center, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Ling J, Zhang G, Sun H, Fan Y, Ju J, Zhang C. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1994-2000. [PMID: 21371739 DOI: 10.1016/j.scitotenv.2011.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/05/2011] [Accepted: 02/15/2011] [Indexed: 05/30/2023]
Abstract
The PAHs-degrading bacterium strain JY3A was newly isolated from the polluted soil in the Jinan Oil Refinery Factory, Shandong Province of China. The isolate was identified as Bacillus vallismortis with respect to its 16S rDNA sequence, DNA-DNA relatedness and fatty acid profiles, as well as various physiological characteristics. The strain was Gram-positive, motile, endospore forming, aerobic, oxidase and catalase-positive. The cells were 0.8-1.0μm wide and 2.0-2.5μm long, single or in pairs and sometimes in chains. Bacillus vallismortis strain JY3A could utilize naphthalene, phenanthrene, anthracene, pyrene, fluorene, benzene, toluene, phenol, methanol, ethanol, Tween 80, cyclohexane or catechol as sole carbon source. The strain alone removed 90.5% of pyrene at an initial concentration of 150ppm in 15days in the presence of 0.5% (w/w) Tween 80. However, in co-culture with Phanerochaete chrysosporium, JY3A reduced the concentration of pyrene by nearly 55.4% after 7days of incubation.
Collapse
Affiliation(s)
- Jianya Ling
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| | | | | | | | | | | |
Collapse
|
13
|
Xiang SR, Cook M, Saucier S, Gillespie P, Socha R, Scroggins R, Beaudette LA. Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms. Appl Environ Microbiol 2010; 76:7126-35. [PMID: 20817796 PMCID: PMC2976230 DOI: 10.1128/aem.00574-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 08/27/2010] [Indexed: 01/21/2023] Open
Abstract
To augment the information on commercial microbial products, we investigated the persistence patterns of high-priority bacterial strains from the Canadian Domestic Substance List (DSL). Specific DNA markers for each of the 10 DSL bacterial strains were developed using the amplified fragment length polymorphism (AFLP) technique, and the fates of DSL strains introduced in soil were assessed by real-time quantitative PCR (qPCR). The results indicated that all DNA markers had high specificity at the functional strain level and that detection of the target microorganisms was sensitive at a detection limitation range from 1.3 × 10² to 3.25 × 10⁵ CFU/g of dry soil. The results indicated that all introduced strains showed a trend toward a declining persistence in soil and could be categorized into three pattern types. The first type was long-term persistence exemplified by Pseudomonas stutzeri (ATCC 17587) and Pseudomonas denitrificans (ATCC 13867) strains. In the second pattern, represented by Bacillus subtilis (ATCC 6051) and Escherichia hermannii (ATCC 700368), the inoculated strain populations dropped dramatically below the detection threshold after 10 to 21 days, while in the third pattern there was a gradual decrease, with the population falling below the detectable level within the 180-day incubation period. These patterns indicate a selection effect of a microbial community related to the ecological function of microbial strains introduced in soil. As a key finding, the DSL strains can be quantitatively tracked in soil with high sensitivity and specificity at the functional strain level. This provides the basic evidence for further risk assessment of the priority DSL strains.
Collapse
Affiliation(s)
- S.-R. Xiang
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - M. Cook
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - S. Saucier
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - P. Gillespie
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - R. Socha
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - R. Scroggins
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - L. A. Beaudette
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| |
Collapse
|
14
|
Ettoumi B, Raddadi N, Borin S, Daffonchio D, Boudabous A, Cherif A. Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J Basic Microbiol 2009; 49 Suppl 1:S13-23. [PMID: 19322832 DOI: 10.1002/jobm.200800306] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Members of the genus Bacillus and related genera are ubiquitous in nature. However, Bacillus species isolated from marine sediments have attracted less interest respect to their terrestrial relatives. Here, we report the phylogenetic diversity of a collection of 96 Bacilli, isolated from 17 distinct stations of 5 oceanographic campaigns. The diversity was analysed by phenotypic and molecular approaches based on the amplified rDNA restriction analysis (ARDRA), amplification of the internal transcribed spacers (ITS-PCR) and on 16S rRNA sequencing. Intra-specific polymorphism was efficiently detected by biochemical analysis and ARDRA while results of ITS-PCR were in agreement with 16S rRNA sequencing. The identification results assigned 68% of the isolates to the species B. subtilis, B. licheniformis, B. pumilus and B. cereus. Phylogenetic analysis allowed the separation of 9 isolates in a clade that may represent a group of obligate marine Bacillus since they clustered with B. firmus, B. foraminis and marine isolates with metal oxidation and bioaccumulation capabilities. The remaining isolates showed a close affiliation to the genera Virgibacillus, Gracilibacillus and Paenibacillus. The widespread of Bacilli and their high diversity level observed in this work point out the need of more extensive studies to understand their distribution and ecology in deep-sea environments.
Collapse
Affiliation(s)
- Besma Ettoumi
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, 2092, Tunis, Tunisia
| | | | | | | | | | | |
Collapse
|
15
|
Liaqat I, Sabri AN. Isolation and characterization of biocides resistant bacteria from dental unit water line biofilms. J Basic Microbiol 2009; 49:275-84. [DOI: 10.1002/jobm.200800212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Ki JS, Zhang W, Qian PY. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Methods 2009; 77:48-57. [PMID: 19166882 DOI: 10.1016/j.mimet.2009.01.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/11/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
Abstract
Systematic studies of the Bacillus group have been biased towards terrestrial and pathogenic isolates, and relatively few studies have examined Bacillus species from marine environments. Here we took twenty Bacillus strains from diverse marine environments and sequenced their 16S rRNA. Using molecular comparisons, we separated the strains into thirteen Bacillus genotypes and identified 9 species: B. aquaemaris. B. badius, B. cereus group, B. firmus, B. halmapalus, B. hwajinpoensis, B. litoralis, B. sporothermodurans, B. vietnamensis, and three indistinguishable Bacilli. In addition, we sequenced the DNA-directed RNA polymerase beta subunit (rpoB) gene and assessed its discriminative power in identifying Bacilli. Phylogenetic trees of Bacillus rpoB genes separated each Bacillus according to their taxonomic positions and were supported statistically. The resolution of Bacillus on the rpoB phylogenetic tree was approximately 4.5 times greater than on the 16S rRNA phylogenetic tree. These results demonstrate that the polymorphism of the Bacillus rpoB gene can be used to identify Bacillus species, providing an improved identification scheme for Bacillus species.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Biology, Coastal Marine Laboratory, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | | | | |
Collapse
|
17
|
Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis. Antonie van Leeuwenhoek 2007; 93:297-304. [PMID: 17922298 DOI: 10.1007/s10482-007-9204-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to compare the ability of commonly used conventional biochemical tests, sequencing analysis of 16S rRNA genes and tDNA-intergenic spacer length polymorphism (tDNA-PCR) to identify species of the genus Bacillus recovered from marine sediments. While biochemical tests were not sufficiently sensitive to distinguish between the 23 marine strains analyzed, partial 16S rRNA gene sequences allowed a correct identification, clustering them into four species belonging to Bacillus licheniformis (n = 6), Bacillus cereus (n = 9), Bacillus subtilis (n = 7) and Bacillus pumilus (n = 1). The identification results obtained with 16S rRNA sequencing were validated by tDNA-PCR analysis of 23 marine isolates that were identified by the similarities of their fingerprints to those of reference strains. tDNA-PCR fingerprinting was as discriminatory as 16S rRNA sequencing analysis. Although it was not able to distinguish among the species of the B. cereus and B. subtilis groups, it should be considered a rapid and easy approach for the reliable identification of unknown Bacillus isolates or at least for the primary differentiation of Bacillus groups.
Collapse
|
18
|
Saikaly PE, Barlaz MA, de Los Reyes FL. Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Appl Environ Microbiol 2007; 73:6557-65. [PMID: 17720820 PMCID: PMC2075066 DOI: 10.1128/aem.00779-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R(2) > 0.98) over a 7-log-unit dynamic range down to 10(1) B. atrophaeus cells or spores. Quantification of S. marcescens (R(2) > 0.98) was linear over a 6-log-unit dynamic range down to 10(2) S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can be used for monitoring the fate and transport of the BW surrogates B. atrophaeus and S. marcescens in building debris and leachate.
Collapse
Affiliation(s)
- Pascal E Saikaly
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
19
|
Maslunka C, Carr E, Gürtler V, Kämpfer P, Seviour R. Estimation of ribosomal RNA operon (rrn) copy number in Acinetobacter isolates and potential of patterns of rrn operon-containing fragments for typing strains of members of this genus. Syst Appl Microbiol 2005; 29:216-28. [PMID: 16564958 DOI: 10.1016/j.syapm.2005.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Indexed: 11/23/2022]
Abstract
The copy number of the rrn operon in 70 strains of Acinetobacter including the type strains of almost all the genomic species with validated names was estimated after digestion of their genomic DNA by the restriction enzymes BglII and PstI, and Southern blotting. Copy number estimates varied between and among species, with between 3 and 7 rrn operon copies detected. Copy number estimates obtained from the same strain with the two enzymes sometimes varied. BglII generated RFLP patterns of the rrn containing fragments obtained from Southern blots after agarose gel electrophoresis were examined for their value in identifying Acinetobacter isolates. This method was very reproducible with the same fragment pattern always generated from the same isolate on repeated analysis. Often multiple strains of the same genomic species gave identical or very similar patterns (e.g. Acinetobacter baylyi), clustering closest together on the dendrogram generated after numerical analysis of these patterns. However, with some, like BG5 and BG8, the patterns derived from the different strains, some of which had been placed in this genomic species from DNA:DNA hybridization data, varied considerably to each other and to the type strain. Little similarity was seen when relationships between these strains based on these patterns were compared to those using DNA:DNA hybridization data. Often these patterns could be used to question earlier identification of strains using phenotypic characters. Thus, strain AB82 thought to belong to genomic species 5 gave an identical pattern to A. bouvetii(T) (DSM 14964). In some cases this pattern analysis suggested that novel species of Acinetobacter might exist among the strains examined.
Collapse
Affiliation(s)
- Christopher Maslunka
- Biotechnology Research Centre, La Trobe University, Bendigo Victoria 3552, Australia
| | | | | | | | | |
Collapse
|
20
|
Nishijima T, Toyota K, Mochizuki M. Predominant Culturable Bacillus Species in Japanese Arable Soils and Their Potential as Biocontrol Agents. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Takanori Nishijima
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Koki Toyota
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | | |
Collapse
|
21
|
łaganowska M, Kaznowski A. Restriction Fragment Length Polymorphism of 16S–23S rDNA Intergenic Spacer of Aeromonas spp. Syst Appl Microbiol 2004; 27:549-57. [PMID: 15490556 DOI: 10.1078/0723202041748226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We analyzed restriction fragment length polymorphism (RFLP) of 16S-23S rDNA intergenic spacer region (ISR) of Aeromonas species. A total of 69 isolates belonging to 18 DNA hybridization groups (HG; equivalent of genomic species) were used in this study. ISRs were amplified by PCR and the products were digested with four restriction endonucleases: Hin6I, Csp6I, TaqI, and TasI. The RFLP patterns obtained after digesting by particular enzymes revealed ISR polymorphism of isolates allocated to individual genomic species. The combined Hin6I, Csp6I, TaqI, and TasI restriction profiles were examined by Dice coefficient (SD) and unweighted pair group method of clustering (UPGMA). The isolates were allocated into 15 groups, three strains were unclustered. The strains belonging to the following genomic species: A. hydrophila, A. bestiarum, A. salmonicida, A. caviae, A. media, A. schubertii, A. allosaccharophila, A. popoffii, and A. culicicola formed distinct clusters. Strains belonging to HG 6, HG 7, HG 11, and HG 16 revealed similar combined RFLP patterns and constituted one group. Similarly, the strains of A. jandaei (HG 9) and the type strain of A. trota were allocated into one cluster. Two isolates of HG 14 formed distinct cluster. We noticed a genetic diversity among A. veronii isolates, the strains were clustered in two groups. Our study showed that combined ISR-RFLP analysis may be used for identification of some species of Aeromonas.
Collapse
Affiliation(s)
- Marzena łaganowska
- Department of Microbiology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
22
|
Schloss PD, Hay AG, Wilson DB, Gossett JM, Walker LP. Quantifying bacterial population dynamics in compost using 16S rRNA gene probes. Appl Microbiol Biotechnol 2004; 66:457-63. [PMID: 15368083 DOI: 10.1007/s00253-004-1727-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/12/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Composting provides a dynamic setting for studying ecological topics such as succession, competition, and community stability in a relatively short period of time. This study used hierarchical small sub-unit-based rRNA gene probes to quantify the change in the relative abundance of phylogenetic groups common to compost in laboratory scale reactors. Bacterial 16S rRNA gene targets accounted for only 37% of all small subunit (SSU) rRNA genes initially, but increased to a maximum of 83% of the total at 84 h. The sum of rRNA genes detected using probes specific to Pseudomonas and low-G+C Gram-positive rRNA genes represented between 16% and 87% of the total. The lack of hybridization to the taxon-specific probes was most pronounced between 36 h and 60 h, when the pH was between 4.6 and 4.8. During this period the relative abundance of taxon-specific gene targets accounted for only 17-33% of the total bacterial rRNA gene targets. Pseudomonas-type 16S rRNA genes were the most abundant of the groups measured until 72 h. Those genes had their highest relative abundance at 12 h (78% of bacterial rRNA genes; 30% of all rRNA genes), after which time their relative abundance began to decline as the temperature increased. Prior to 72 h, 16S rRNA genes from low-G+C Gram-positive bacteria (LGC-GPB) represented less than 7% of the bacterial rRNA genes. However, by 84 h the relative abundance of LGC-GPB and Bacillus rRNA genes had increased to 60% and 18% of the bacterial rRNA gene targets, respectively (50% and 15% of all rRNA genes, respectively).
Collapse
Affiliation(s)
- Patrick D Schloss
- Department of Biological and Environmental Engineering, Riley-Robb Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
23
|
Messaoud E, Ali M, Elleuch N, Masmoudi N, Bejar S. Purification and properties of a maltoheptaose- and maltohexaose-forming amylase produced by Bacillus subtilis US116. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Fox A, Stewart GC, Waller LN, Fox KF, Harley WM, Price RL. Carbohydrates and glycoproteins of Bacillus anthracis and related bacilli: targets for biodetection. J Microbiol Methods 2003; 54:143-52. [PMID: 12782370 DOI: 10.1016/s0167-7012(03)00095-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The spore is the form released in a bioterrorism attack. There is a real need for definition of new targets for Bacillus anthracis that might be incorporated into emerging biodetection technologies. Particularly of interest are macromolecules found in B. anthracis that are (1) spore-specific, (2) readily accessible on the spore surface and (3) distinct from those present in related organisms. One of the few biochemical methods to identify the spores of B. anthracis is based on the presence of rhamnose and 3-O-methyl rhamnose as determined by gas chromatography-mass spectrometry. Related organisms additionally contain 2-O-methyl rhamnose and fucose. Carbohydrates and glycoproteins of the B. cereus group of organisms and the related B. subilis group are reviewed here. It is hypothesized that the spore-specific carbohydrate is a component of the newly described glycoprotein of the exosporium of B. anthracis. Further work to define the protein and carbohydrate components of the glycoprotein of B. anthracis could be highly useful in developing new technologies for rapid biodetection.
Collapse
Affiliation(s)
- Alvin Fox
- Department of Pathology and Microbiology, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Thompson SE, Foster NS, Johnson TJ, Valentine NB, Amonette JE. Identification of bacterial spores using statistical analysis of Fourier transform infrared photoacoustic spectroscopy data. APPLIED SPECTROSCOPY 2003; 57:893-899. [PMID: 14661830 DOI: 10.1366/000370203322258832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) has been applied for the first time to the identification and speciation of bacterial spores. A total of forty specimens representing five strains of Bacillus spores (Bacillus subtilis ATCC 49760, Bacillus atrophaeus ATCC 49337, Bacillus subtilis 6051, Bacillus thuringiensis subsp. kurstaki, and Bacillus globigii Dugway) were analyzed. Spores were deposited, with minimal preparation, into the photoacoustic sample cup and their spectra recorded. Principal component analysis (PCA), classification and regression trees (CART), and Mahalanobis distance calculations were used on this spectral library to develop algorithms for step-wise classification at three levels: (1) bacterial/nonbacterial, (2) membership within the spore library, and (3) bacterial strain. Internal cross-validation studies on library spectra yielded classification success rates of 87% or better at each of these three levels. Analysis of fifteen blind samples, which included five samples of spores already in the spectral library, two samples of closely related Bacillus globigii 01 spores not in the library, and eight samples of nonbacterial materials, yielded 100% accuracy in distinguishing among bacterial/nonbacterial samples, membership in the library, and bacterial strains within the library.
Collapse
Affiliation(s)
- Sandra E Thompson
- Pacific Northwest National Laboratory, P.O. Box 999, MS K8-96, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|