1
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
2
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
3
|
DelaCourt AT, Liang H, Drake RR, Angel PM, Mehta AS. Novel Combined Enzymatic Approach to Analyze Nonsialylated N-Linked Glycans through MALDI Imaging Mass Spectrometry. J Proteome Res 2022; 21:1930-1938. [PMID: 35766466 DOI: 10.1021/acs.jproteome.2c00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alterations to N-glycan expression are relevant to the progression of various diseases, particularly cancer. In many cases, specific N-glycan structural features such as sialylation, fucosylation, and branching are of specific interest. A novel MALDI imaging mass spectrometry workflow has been recently developed to analyze these features of N-glycosylation through the utilization of endoglycosidase enzymes to cleave N-glycans from associated glycoproteins. Enzymes that have previously been utilized to cleave N-glycans include peptide-N-glycosidase F (PNGase F) to target N-glycans indiscriminately and endoglycosidase F3 (Endo F3) to target core fucosylated N-glycans. In addition to these endoglycosidases, additional N-glycan cleaving enzymes could be used to target specific structural features. Sialidases, also termed neuraminidases, are a family of enzymes that remove terminal sialic acids from glycoconjugates. This work aims to utilize sialidase, in conjunction with PNGase F/Endo F3, to enzymatically remove sialic acids from N-glycans in an effort to increase sensitivity for nonsialylated N-glycan MALDI-IMS peaks. Improving detection of nonsialylated N-glycans allows for a more thorough analysis of specific structural features such as fucosylation or branching, particularly of low abundant structures. Sialidase utilization in MALDI-IMS dramatically increases sensitivity and increases on-tissue endoglycosidase efficiency, making it a very useful companion technique to specifically detect nonsialylated N-glycans.
Collapse
Affiliation(s)
- Andrew T DelaCourt
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, Pennsylvania 29425, United States
| | - Hongyan Liang
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, Pennsylvania 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, Pennsylvania 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, Pennsylvania 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, Pennsylvania 29425, United States
| |
Collapse
|
4
|
SAKAGUCHI Y. Derivatization LC for the Sensitivity and Accuracy Bioanalysis. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Eneva R, Engibarov S, Abrashev R, Krumova E, Angelova M. Sialic acids, sialoconjugates and enzymes of their metabolism in fungi. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1879678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Rumyana Eneva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stephan Engibarov
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Radoslav Abrashev
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ekaterina Krumova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Angelova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
6
|
Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnol Adv 2019; 37:787-800. [DOI: 10.1016/j.biotechadv.2019.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
|
7
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic Distribution of CMP-Neu5Ac Hydroxylase (CMAH), the Enzyme Synthetizing the Proinflammatory Human Xenoantigen Neu5Gc. Genome Biol Evol 2018; 10:207-219. [PMID: 29206915 PMCID: PMC5767959 DOI: 10.1093/gbe/evx251] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 01/25/2023] Open
Abstract
The enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH) is responsible for the synthesis of N-glycolylneuraminic acid (Neu5Gc), a sialic acid present on the cell surface proteins of most deuterostomes. The CMAH gene is thought to be present in most deuterostomes, but it has been inactivated in a number of lineages, including humans. The inability of humans to synthesize Neu5Gc has had several evolutionary and biomedical implications. Remarkably, Neu5Gc is a xenoantigen for humans, and consumption of Neu5Gc-containing foods, such as red meats, may promote inflammation, arthritis, and cancer. Likewise, xenotransplantation of organs producing Neu5Gc can result in inflammation and organ rejection. Therefore, knowing what animal species contain a functional CMAH gene, and are thus capable of endogenous Neu5Gc synthesis, has potentially far-reaching implications. In addition to humans, other lineages are known, or suspected, to have lost CMAH; however, to date reports of absent and pseudogenic CMAH genes are restricted to a handful of species. Here, we analyze all available genomic data for nondeuterostomes, and 322 deuterostome genomes, to ascertain the phylogenetic distribution of CMAH. Among nondeuterostomes, we found CMAH homologs in two green algae and a few prokaryotes. Within deuterostomes, putatively functional CMAH homologs are present in 184 of the studied genomes, and a total of 31 independent gene losses/pseudogenization events were inferred. Our work produces a list of animals inferred to be free from endogenous Neu5Gc based on the absence of CMAH homologs and are thus potential candidates for human consumption, xenotransplantation research, and model organisms for investigation of human diseases.
Collapse
Affiliation(s)
- Sateesh Peri
- Department of Biology, University of Nevada, Reno
| | | | | | | | | |
Collapse
|
9
|
Noel M, Gilormini PA, Cogez V, Lion C, Biot C, Harduin-Lepers A, Guérardel Y. MicroPlate Sialyltransferase Assay: A Rapid and Sensitive Assay Based on an Unnatural Sialic Acid Donor and Bioorthogonal Chemistry. Bioconjug Chem 2018; 29:3377-3384. [PMID: 30192128 DOI: 10.1021/acs.bioconjchem.8b00529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian sialyltransferases transfer sialic acids onto glycoproteins and glycolipids within the Golgi apparatus. Despite their key role in glycosylation, the study of their enzymatic activities is limited by the lack of appropriate tools. Herein, we developed a quick and sensitive sialyltransferase microplate assay based on the use of the unnatural CMP-SiaNAl donor substrate. In this assay, an appropriate acceptor glycoprotein is coated on the bottom of 96-well plate and the sialyltransferase activity is assessed using CMP-SiaNAl. The alkyne tag of SiaNAl enables subsequent covalent ligation of an azido-biotin probe via CuAAC and an antibiotin-HRP conjugated antibody is then used to quantify the amount of transferred SiaNAl by a colorimetric titration. With this test, we evaluated the kinetic characteristics and substrate preferences of two human sialyltransferases, ST6Gal I and ST3Gal I toward a panel of asialoglycoprotein acceptors, and identified cations that display a sialyltransferase inhibitory effect.
Collapse
Affiliation(s)
- Maxence Noel
- Universite Lille , CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille , France
| | - Pierre-André Gilormini
- Universite Lille , CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille , France
| | - Virginie Cogez
- Universite Lille , CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille , France
| | - Cédric Lion
- Universite Lille , CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille , France
| | - Christophe Biot
- Universite Lille , CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille , France
| | - Anne Harduin-Lepers
- Universite Lille , CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille , France
| | - Yann Guérardel
- Universite Lille , CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille , France
| |
Collapse
|
10
|
Gruszewska E, Cylwik B, Gudowska M, Panasiuk A, Flisiak R, Chrostek L. The concentration of total sialic acid in chronic hepatitis B and C. Ann Clin Biochem 2018; 56:118-122. [PMID: 30027776 DOI: 10.1177/0004563218792292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The synthesis and glycosylation of glycoproteins and glycolipids take place in the liver. Thus, liver diseases may affect serum concentrations of some carbohydrate derivatives, especially the concentration of sialic acid which is attached to the end of oligosaccharide chains. The aim of this study was to measure and compare the serum concentration of total sialic acid in chronic hepatitis B and C. The hypothesis is that both viruses responsible for the development of inflammation work differently at the cellular level. METHODS Serum samples were obtained from 90 patients suffering from liver diseases: 50 from chronic hepatitis B and 40 from chronic hepatitis C at the time of diagnosis. The total sialic acid concentration in the serum was measured according to the enzymatic method using a colorimetric procedure. RESULTS The mean total sialic acid concentration in patients with chronic hepatitis B was significantly lower than the mean concentration in the healthy group, while in patients with chronic hepatitis C, it was significantly higher than that in healthy people and in patients suffering from chronic hepatitis B. There were no significant differences in total sialic acid concentrations in patients with chronic hepatitis B and C according to the grade of portal/periportal activity, the grade of lobular activity and the stage of fibrosis. CONCLUSIONS We conclude that chronic viral hepatitis affects the total serum concentration of sialic acid. Moreover, the concentration of total sialic acid may be a useful marker to differentiate between chronic hepatitis B and C but is not useful for evaluation of the progression of these diseases.
Collapse
Affiliation(s)
- Ewa Gruszewska
- 1 Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Bogdan Cylwik
- 2 Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Monika Gudowska
- 1 Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Anatol Panasiuk
- 3 Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Robert Flisiak
- 3 Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Lech Chrostek
- 1 Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
11
|
Kim HY, Kim MH, Kim HK, Park YC. Genotoxicity Study of Glycopeptide (G-7%NANA). Toxicol Res 2018; 34:259-266. [PMID: 30057700 PMCID: PMC6057297 DOI: 10.5487/tr.2018.34.3.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Glycomacropeptide (GMP), a whey protein of milk, has functions including differentiation and development of nervous system, and anticancer and antiviral effects. To develop new functions, N-acetylneuraminic acid (NANA) containing 7% sialic acid was separated from GMP to produce G-7%NANA. N-glycolylneuraminic acid (Neu5Gc) is another type of sialic acid separated from GMP, which has been linked to immune disorders and chronic inflammation-mediated diseases. Therefore, safety was a concern in the use of G-7%NANA in functional foods. To ensure safety, in this study, three genetic toxicity tests on G-7%NANA were conducted. In the reverse mutation test using Salmonella typhimurium TA98, TA100, TA1535, TA1537, and Escherichia coli WP2uvrA, and in the chromosome aberration test using CHO-K1 cells, no significant differences from negative control were found at all dose levels. Similarly, no dose-related differences were evident compared to negative control in the micronucleus test using ICR mice. There was no evidence of G-7%NANA-related genetic toxicity.
Collapse
Affiliation(s)
- Ha-Young Kim
- GLP center and Department of Toxicity Assessment, Daegu Catholic University, Gyeongsan, Korea
| | - Min-Hee Kim
- GLP center and Department of Toxicity Assessment, Daegu Catholic University, Gyeongsan, Korea
| | | | - Yeong-Chul Park
- GLP center and Department of Toxicity Assessment, Daegu Catholic University, Gyeongsan, Korea
| |
Collapse
|
12
|
Yang S, Jankowska E, Kosikova M, Xie H, Cipollo J. Solid-Phase Chemical Modification for Sialic Acid Linkage Analysis: Application to Glycoproteins of Host Cells Used in Influenza Virus Propagation. Anal Chem 2017; 89:9508-9517. [PMID: 28792205 DOI: 10.1021/acs.analchem.7b02514] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Differentiation between the sialyl linkages is often critical to understanding biological consequence. Here we present a facile method for determining these linkages in glycans. Analysis of sialic acids is challenging due to their labile nature during sample preparation and ionization. Derivatization is often required via chemical reaction. Amidation derivatizes all sialic acids regardless of linkage, while esterification enables differentiation between α2,3-linked and α2,6-linked sialic acids. Reactions have been primarily performed on free glycans in solution but have been recently adapted to solid-phase providing unique advantages such as simplified sample preparation, improved yield, and high throughput applications. Here, we immobilized glycoproteins on resin via reductive amination, modified α2,6-linked sialic acids through ethyl esterification, and α2,3-linked sialic acids via amidation. N-glycans and O-glycans were released via enzyme and chemical reactions. The method was applied for analysis of three different MDCK cell lines used for influenza propagation and where distributions of α2,3 and α2,6 sialic acids are critical for cell performance. Linkage specific distribution of these sialic acids was quantitatively determined and unique for each cell line. Our study demonstrates that protein sialylation can be reliably and quantitatively characterized in terms of sialic acid linkage of each glycan using the solid-phase esterification/amidation strategy.
Collapse
Affiliation(s)
- Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Ewa Jankowska
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Martina Kosikova
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Hang Xie
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - John Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| |
Collapse
|
13
|
Li Y, Wang W, Gou XL, Lin N, Le SF, Du N, Yan H, Zhang JH. Determination of N-acetylneuraminic acid in poultry eggs by ultra performance liquid chromatography–tandem mass spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817080081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Gruszewska E, Chrostek L. Serum Sialic Acid as a Biomarker in Liver Disease. BIOMARKERS IN DISEASE: METHODS, DISCOVERIES AND APPLICATIONS 2017. [DOI: 10.1007/978-94-007-7675-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Yuan S, Cao L, Ling H, Dang M, Sun Y, Zhang X, Chen Y, Zhang L, Su D, Wang X, Rao Z. TIM-1 acts a dual-attachment receptor for Ebolavirus by interacting directly with viral GP and the PS on the viral envelope. Protein Cell 2016; 6:814-24. [PMID: 26487564 PMCID: PMC4624681 DOI: 10.1007/s13238-015-0220-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/30/2015] [Indexed: 11/09/2022] Open
Abstract
Ebolavirus can cause hemorrhagic fever in humans with a mortality rate of 50%–90%. Currently, no approved vaccines and antiviral therapies are available. Human TIM1 is considered as an attachment factor for EBOV, enhancing viral infection through interaction with PS located on the viral envelope. However, reasons underlying the preferable usage of hTIM-1, but not other PS binding receptors by filovirus, remain unknown. We firstly demonstrated a direct interaction between hTIM-1 and EBOV GP in vitro and determined the crystal structures of the Ig V domains of hTIM-1 and hTIM-4. The binding region in hTIM-1 to EBOV GP was mapped by chimeras and mutation assays, which were designed based on structural analysis. Pseudovirion infection assays performed using hTIM-1 and its homologs as well as point mutants verified the location of the GP binding site and the importance of EBOV GP-hTIM-1 interaction in EBOV cellular entry.
Collapse
|
16
|
Gilormini PA, Lion C, Noel M, Krzewinski-Recchi MA, Harduin-Lepers A, Guérardel Y, Biot C. Improved workflow for the efficient preparation of ready to use CMP-activated sialic acids. Glycobiology 2016; 26:1151-1156. [PMID: 27543325 DOI: 10.1093/glycob/cww084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 11/13/2022] Open
Abstract
Natural and synthetically modified cytidine monophosphate activated sialic acids (CMP-Sias) are essential research assets in the field of glycobiology: among other applications, they can be used to probe glycans, detect sialylation defects at the cell surface or carry out detailed studies of sialyltransferase activities. However, these chemical tools are notoriously unstable because of hydrolytic decomposition, and are very time-consuming and costly to obtain. They are nigh impossible to store with satisfactory purity, and their preparation requires multiple laborious purification steps that usually lead to heavy product loss. Using in situ time-resolved 31P phosphorus nuclear magnetic resonance (31P NMR), we precisely established the kinetics of formation and degradation of a number of CMP-Sias including CMP-Neu5Ac, CMP-Neu5Gc, CMP-SiaNAl and CMP-SiaNAz in several experimental conditions. 31P NMR can be carried out in undeuterated solvents and is a sensitive and nondestructive technique that allows for direct in situ monitoring and optimization of chemo-enzymatic syntheses that involve phosphorus-containing species. Thus, we showed that CMP-sialic acid derivatives can be robustly obtained in high yields using the readily available Neisseria meningitidis CMP-sialic acid synthase. This integrated workflow takes less than an hour, and the freshly prepared CMP-Sias can be directly transferred to sialylation biological assays without any purification step.
Collapse
Affiliation(s)
- Pierre-André Gilormini
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Cédric Lion
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Maxence Noel
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Marie-Ange Krzewinski-Recchi
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Anne Harduin-Lepers
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Yann Guérardel
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Christophe Biot
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| |
Collapse
|
17
|
Lee JE, Kim Y, Kim KH, Lee DY, Lee Y. Contribution of Drosophila TRPA1 to Metabolism. PLoS One 2016; 11:e0152935. [PMID: 27055172 PMCID: PMC4824436 DOI: 10.1371/journal.pone.0152935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neurons send signals to the SOGs. The signal is sent to the crop, which is an enlarged organ of the esophagus and functions as a storage place for food in the digestive system. To systematically investigate the role of TRPA1 in metabolism, we applied non-targeted metabolite profiling analysis together with gas-chromatography/time-of-flight mass spectrometry, with an aim to identify a wide range of primary metabolites. We effectively captured distinctive metabolomic phenotypes and identified specific metabolic dysregulation triggered by TRPA1 mutation based on reconstructed metabolic network analysis. Primarily, the network analysis pinpointed the simultaneous down-regulation of intermediates in the methionine salvation pathway, in contrast to the synchronized up-regulation of a range of free fatty acids. The gene dosage-dependent dynamics of metabolite levels among wild-type, hetero- and homozygous mutants, and their coordinated metabolic modulation under multiple gene settings across five different genotypes confirmed the direct linkages of TRPA1 to metabolism.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
| | - Yunjung Kim
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, Korea
| | - Do Yup Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
- * E-mail: (YL); (DYL)
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
- * E-mail: (YL); (DYL)
| |
Collapse
|
18
|
SCHAUER R. Sialic acids as link to Japanese scientists. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:109-20. [PMID: 27063181 PMCID: PMC4989050 DOI: 10.2183/pjab.92.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
This manuscript is dedicated to Prof. Tamio Yamakawa and describes my cooperations on sialic acid-related topics with Japanese scientists during the last 40 years. We studied sialic acids and their O-acetylated derivatives in the sea urchin Pseudocentrotus depressus, in Halocynthia species, and in human and bovine milk. In seafood we mainly searched for N-glycolylneuraminic acid. With synthetic substrates it was shown that sialic acid O-acetylation at C-4 hinders the activity of sialidases, with the exception of viral enzymes. The biosynthesis of Neu5Gc was discussed and the distribution of this sialic acid in dogs followed in modern literature and reviewed regarding their migration. An excellent source of sialic acids is edible bird nest substance (Collocalia mucin) which was used for the synthesis of sialylation inhibitors.
Collapse
Affiliation(s)
- Roland SCHAUER
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
19
|
Petit D, Teppa E, Mir AM, Vicogne D, Thisse C, Thisse B, Filloux C, Harduin-Lepers A. Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Mol Biol Evol 2014; 32:906-27. [PMID: 25534026 PMCID: PMC4379398 DOI: 10.1093/molbev/msu395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions.
Collapse
Affiliation(s)
- Daniel Petit
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Elin Teppa
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Anne-Marie Mir
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Dorothée Vicogne
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Christine Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Bernard Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Cyril Filloux
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Anne Harduin-Lepers
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Aamelfot M, Dale OB, Weli SC, Koppang EO, Falk K. The in situ distribution of glycoprotein-bound 4-O-Acetylated sialic acids in vertebrates. Glycoconj J 2014; 31:327-35. [PMID: 24833039 PMCID: PMC7088174 DOI: 10.1007/s10719-014-9529-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/02/2014] [Accepted: 05/04/2014] [Indexed: 11/29/2022]
Abstract
Sialic acids are located at the terminal branches of the cell glycocalyx and secreted glycan molecules. O-Acetylation is an important modification of the sialic acids, however very few studies have demonstrated the in situ distribution of the O-Acetylated sialic acids. Here the distribution of glycoprotein bound 4-O-Acetylated sialic acids (4-O-Ac sias) in vertebrates was determined using a novel virus histochemistry assay. The 4-O-Ac sias were found in the circulatory system, i.e. on the surface of endothelial cells and RBCs, of several vertebrate species, though most frequently in the cartilaginous fish (class Chondrichthyes) and the bony fish (class Osteichthyes). The O-Acetylated sialic acid was detected in 64 % of the examined fish species. Even though the sialic acid was found less commonly in higher vertebrates, it was found at the same location in the positive species. The general significance of this endothelial labelling pattern distribution is discussed. The seemingly conserved local position through the evolution of the vertebrates, suggests an evolutionary advantage of this sialic acid modification.
Collapse
Affiliation(s)
- Maria Aamelfot
- Norwegian Veterinary Institute, PO Box 750 Sentrum, 0106, Oslo, Norway
| | | | | | | | | |
Collapse
|
21
|
Chrostek L, Supronowicz L, Panasiuk A, Cylwik B, Gruszewska E, Szmitkowski M. Serum sialic acids levels according to the severity of liver cirrhosis. J Clin Lab Anal 2014; 28:465-8. [PMID: 24659250 DOI: 10.1002/jcla.21711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/02/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The sialylation of serum proteins and lipids changes in liver diseases of different etiologies and could change the total sialic acid (TSA), lipid-bound SA (LSA), and free SA (FSA) levels in the sera. However, little is known of the relationship of serum SAs concentrations and the severity of liver disease. Therefore, the aim of this study was to investigate the SAs concentrations (TSA, LSA, and FSA) in liver cirrhosis in relation with the severity of liver disease. METHODS Tested group consisted of 91 consecutive patients suffering from liver cirrhosis. For each patient, the Child-Pugh score was calculated. TSA and LSA were determined by the enzymatic method on microplate reader, and FSA using the thiobarbituric method. RESULTS Among the SA forms, only the serum FSA level in liver cirrhosis appears to be different according to the severity of liver damage evaluated by the Child-Pugh score. It was the highest in score C, and was higher than that in scores B and A. The elevated levels of FSA significantly positively correlated with the Child-Pugh score. CONCLUSION In conclusion, the sialylation of serum proteins and lipids changes in liver cirrhosis, but only the serum concentrations of FSA are stage-related and reflect the severity of liver disease.
Collapse
Affiliation(s)
- Lech Chrostek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
22
|
van Leeuwen SS, Schoemaker RJW, Timmer CJAM, Kamerling JP, Dijkhuizen L. N- and o-glycosylation of a commercial bovine whey protein product. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12553-12564. [PMID: 23194161 DOI: 10.1021/jf304000b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine whey protein products are used as a base ingredient in infant formulas to optimize the amino acid pattern to a more human-like composition. Although the protein composition of bovine milk has been studied in detail, glycosylation details of commercial whey protein products are missing. To this end, both the N- and O-glycans of such a protein concentrate were sequentially released, the N-glycans enzymatically and the O-glycans chemically (reducing and nonreducing conditions). For the structural analysis of the N- and O-glycans a combination of MALDI-TOF-MS, one-dimensional (1)H NMR spectroscopy, Wisteria floribunda agglutinin affinity chromatography, HPAEC-PAD profiling, and HPLC-FD profiling (2-aminobenzamide derivatives), together with exoglycosidase treatments, were used. A mixture of over 60 N-glycans and 10 O-glycans was characterized, giving a detailed insight into the glycosylation of a bovine whey protein product, Deminal 90, which is applied as an ingredient for infant formulas.
Collapse
Affiliation(s)
- Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
24
|
Crocker PR, McMillan SJ, Richards HE. CD33-related siglecs as potential modulators of inflammatory responses. Ann N Y Acad Sci 2012; 1253:102-11. [DOI: 10.1111/j.1749-6632.2011.06449.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Guérardel Y, Chang LY, Fujita A, Coddeville B, Maes E, Sato C, Harduin-Lepers A, Kubokawa K, Kitajima K. Sialome analysis of the cephalochordate Branchiostoma belcheri, a key organism for vertebrate evolution. Glycobiology 2011; 22:479-91. [PMID: 22057003 DOI: 10.1093/glycob/cwr155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sialic acid, a common terminal substitution of glycoconjugates, has been so far consistently identified in all vertebrates as well as in a growing number of bacterial species. It is assumed to be widely distributed among animal species of the deuterostome phylum, based on its identification in few echinoderm and all vertebrate species. However, whole sections of deuterostome, especially those intermediate species between invertebrates and vertebrates including cephalochordates, urochordates and hemichordates, are still unexplored in term of sialylation capacities. The discovery of functional sialic acid machinery in some of these species may shed new light onto the evolution of glycosylation capacities in deuterostome lineage. In a first approach, we investigated the sialylation pattern of a cephalocordate species, Branchiostoma belcheri, which occupies a strategic phylogenetic position to understand the transition of invertebrates toward vertebrates. Structural analysis of B. belcheri glycoconjugates established that this organism synthesizes large quantities of various sialic acids, some of which present rare or novel structures such as methylated sialic acids. These sialic acids were shown to be mainly associated with mono- and disialylated core 1-type O-glycans. Moreover, screening of the animal organs revealed the existence of exquisite tissue specificity in the distribution of sialic acids. Description of sialylation profiles was then correlated with the expression patterns of key enzymes involved in the biosynthesis of major forms of sialic acids, which provides the first complete overview of the sialylation patterns in cephalochordates.
Collapse
Affiliation(s)
- Yann Guérardel
- Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
El-Nezhawy AOH, Adly FG, Eweas AF, Hanna AG, El-Kholy YM, El-Sayed SH, El-Naggar TBA. Synthesis of some novel D-glucuronic acid acetylated derivatives as potential anti-tumor agents. Arch Pharm (Weinheim) 2011; 344:648-57. [PMID: 21984015 DOI: 10.1002/ardp.201000367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/19/2011] [Indexed: 11/10/2022]
Abstract
A structurally diverse series of Δ(4,5) -uronamide derivatives have been chemically synthesized starting from D-glucuronic acid itself by means of acetylation, activation, amide bond formation and base-catalyzed elimination protocols. Structure elucidation for all products along with optimization of the synthetic steps is described. The synthesized compounds were evaluated for their in-vitro anti-tumor activity against MCF-7, TK-10 and UACC-62 cell lines. The compounds 5, 11, 13, 15 and 16 were the most active against TK-10 cell line. On the other hand, the most active compounds against the MCF-7 cell line were 11 and 15. However, compounds 5, 7, 11, 13, 15 and 16 were the most active against the UACC-62 cell line.
Collapse
Affiliation(s)
- Ahmed O H El-Nezhawy
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Cairo, Egypt.
| | | | | | | | | | | | | |
Collapse
|
27
|
Schauer R, Srinivasan GV, Wipfler D, Kniep B, Schwartz-Albiez R. O-Acetylated sialic acids and their role in immune defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:525-48. [PMID: 21618128 PMCID: PMC7123180 DOI: 10.1007/978-1-4419-7877-6_28] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr 40, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
28
|
Mukherjee K, Chowdhury S, Mondal S, Mandal C, Chandra S, Mandal C. 9-O-Acetyl GD3 in Lymphoid and Erythroid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:317-34. [DOI: 10.1007/978-1-4419-7877-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Meinke S, Schroven A, Thiem J. Sialic acid C-glycosides with aromatic residues: Investigating enzyme binding and inhibition of Trypanosoma cruzi trans-sialidase. Org Biomol Chem 2011; 9:4487-97. [DOI: 10.1039/c0ob01176b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Eleutério I, Streicher H. Synthesis of Substrates for the Characterisation of Sialate-O-Acetyltransferases. JOURNAL OF CHEMICAL RESEARCH 2010. [DOI: 10.3184/030823410x12862035050403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The synthesis of a series of α- and β-configured sialosides using a Koenigs–Knorr methodology is described. The target compounds can serve as substrates for the investigation of biologically relevant sialate- O-acetyltransferase activity.
Collapse
Affiliation(s)
- Inês Eleutério
- Department of Chemistry and Biochemistry, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
31
|
|
32
|
Bernardin A, Cazet A, Guyon L, Delannoy P, Vinet F, Bonnaffé D, Texier I. Copper-Free Click Chemistry for Highly Luminescent Quantum Dot Conjugates: Application to in Vivo Metabolic Imaging. Bioconjug Chem 2010; 21:583-8. [DOI: 10.1021/bc900564w] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aude Bernardin
- CEA, LETI-MINATEC, Département des Technologies pour la Biologie et la Santé, 17 rue des Martyrs, F-38054 Grenoble, France, Université des Sciences et Technologies de Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France, and Université Paris-Sud 11, ICMMO UMR 8182, Laboratoire de Chimie Organique Multifonctionnelle, 91405 Orsay, France
| | - Aurélie Cazet
- CEA, LETI-MINATEC, Département des Technologies pour la Biologie et la Santé, 17 rue des Martyrs, F-38054 Grenoble, France, Université des Sciences et Technologies de Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France, and Université Paris-Sud 11, ICMMO UMR 8182, Laboratoire de Chimie Organique Multifonctionnelle, 91405 Orsay, France
| | - Laurent Guyon
- CEA, LETI-MINATEC, Département des Technologies pour la Biologie et la Santé, 17 rue des Martyrs, F-38054 Grenoble, France, Université des Sciences et Technologies de Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France, and Université Paris-Sud 11, ICMMO UMR 8182, Laboratoire de Chimie Organique Multifonctionnelle, 91405 Orsay, France
| | - Philippe Delannoy
- CEA, LETI-MINATEC, Département des Technologies pour la Biologie et la Santé, 17 rue des Martyrs, F-38054 Grenoble, France, Université des Sciences et Technologies de Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France, and Université Paris-Sud 11, ICMMO UMR 8182, Laboratoire de Chimie Organique Multifonctionnelle, 91405 Orsay, France
| | - Françoise Vinet
- CEA, LETI-MINATEC, Département des Technologies pour la Biologie et la Santé, 17 rue des Martyrs, F-38054 Grenoble, France, Université des Sciences et Technologies de Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France, and Université Paris-Sud 11, ICMMO UMR 8182, Laboratoire de Chimie Organique Multifonctionnelle, 91405 Orsay, France
| | - David Bonnaffé
- CEA, LETI-MINATEC, Département des Technologies pour la Biologie et la Santé, 17 rue des Martyrs, F-38054 Grenoble, France, Université des Sciences et Technologies de Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France, and Université Paris-Sud 11, ICMMO UMR 8182, Laboratoire de Chimie Organique Multifonctionnelle, 91405 Orsay, France
| | - Isabelle Texier
- CEA, LETI-MINATEC, Département des Technologies pour la Biologie et la Santé, 17 rue des Martyrs, F-38054 Grenoble, France, Université des Sciences et Technologies de Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d’Ascq, France, and Université Paris-Sud 11, ICMMO UMR 8182, Laboratoire de Chimie Organique Multifonctionnelle, 91405 Orsay, France
| |
Collapse
|
33
|
Enzymatic glycosylation, inhibitor design, and synthesis and formation of glyco-self assembled monolayers for simulation of recognition. Eur J Cell Biol 2010; 89:39-52. [DOI: 10.1016/j.ejcb.2009.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Borisov OV, Field M, Ling VT, Harris RJ. Characterization of Oligosaccharides in Recombinant Tissue Plasminogen Activator Produced in Chinese Hamster Ovary Cells: Two Decades of Analytical Technology Development. Anal Chem 2009; 81:9744-54. [DOI: 10.1021/ac901498k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oleg V. Borisov
- Protein Analytical Chemistry Department, Genentech, Incorporated, 1 DNA Way, South San Francisco, California 94080
| | - Matthew Field
- Protein Analytical Chemistry Department, Genentech, Incorporated, 1 DNA Way, South San Francisco, California 94080
| | - Victor T. Ling
- Protein Analytical Chemistry Department, Genentech, Incorporated, 1 DNA Way, South San Francisco, California 94080
| | - Reed J. Harris
- Protein Analytical Chemistry Department, Genentech, Incorporated, 1 DNA Way, South San Francisco, California 94080
| |
Collapse
|
35
|
Srinivasan GV, Schauer R. Assays of sialate-O-acetyltransferases and sialate-O-acetylesterases. Glycoconj J 2009; 26:935-44. [PMID: 18566887 DOI: 10.1007/s10719-008-9131-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 10/21/2022]
Abstract
The O-acetylation of sialic acids is one of the most frequent modifications of these monosaccharides and modulates many cell biological and pathological events. Sialic acid-specific O-acetyltransferases and O-acetylesterases are responsible for the metabolism of esterified sialic acids. Assays were developed for the analysis of the activities and specificities of these enzymes. The methods had to be varied in dependence on the substrate assayed, the kind of biological source, and the state of enzyme purity. With the new techniques the primary site of O-acetyl incorporation at C-7, catalyzed by the animal sialate-O-acetyltransferases studied, was ascertained. Correspondingly, this enzyme, for example from bovine submandibular gland, can be denominated as AcCoA:sialate-7-O-acetyltransferase (EC 2.3.1.45). Methods for assaying the activity of esterases de-O-acetylating sialic acids and their metabolic cooperation with the O-acetyltransferases are presented.
Collapse
Affiliation(s)
- G Vinayaga Srinivasan
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, 24098 Kiel, Germany
| | | |
Collapse
|
36
|
Tiralongo J, Wohlschlager T, Tiralongo E, Kiefel MJ. Inhibition of Aspergillus fumigatus conidia binding to extracellular matrix proteins by sialic acids: a pH effect? Microbiology (Reading) 2009; 155:3100-3109. [DOI: 10.1099/mic.0.026997-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infection by Aspergillus fumigatus, which causes the life-threatening disease invasive aspergillosis, begins with the inhalation of conidia that adhere to and germinate in the lung. Previous studies have shown that A. fumigatus conidia express high levels of the negatively charged 9-carbon sugar sialic acid, and that sialic acid appears to mediate the binding of A. fumigatus conidia to basal lamina proteins. However, despite the ability of sialic acid to inhibit adherence of A. fumigatus conidia, the exact mechanism by which this binding occurs remains unresolved. Utilizing various free sialic acids and other carbohydrates, sialic acid derivatives, sialoglycoconjugates, glycoproteins, α-keto acid related compounds and amino acids we have found that the binding of A. fumigatus conidia to type IV collagen and fibrinogen was inhibited by (i) glycoproteins (in a sialic acid-independent manner), and (ii) free sialic acids, glucuronic acid and α-keto acid related compounds. However, inhibition by the latter was found to be the result of a shift in pH from neutral (pH 7.4) to acidic (less than pH 4.6) induced by the relatively high concentrations of free sialic acids, glucuronic acid and α-keto acid related compounds used in the binding assays. This suggests that previous reports describing inhibition of A. fumigatus conidia binding by free sialic acid may actually be due to a pH shift similar to that shown here. As previously reported, we found that A. fumigatus conidia express only N-acetylneuraminic acid, the most common sialic acid found in nature. However, A. fumigatus appears to do so by an alternative mechanism to that seen in other organisms. We report here that A. fumigatus (i) does not incorporate sialic acid obtained from the environment, (ii) does not synthesize and incorporate sialic acid from exogenous N-acetylmannosamine, and (iii) lacks homologues of known sialic acid biosynthesizing enzymes.
Collapse
Affiliation(s)
- Joe Tiralongo
- Institute for Glycomics, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Therese Wohlschlager
- Institute for Glycomics, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Evelin Tiralongo
- School of Pharmacy, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Milton J. Kiefel
- Institute for Glycomics, Gold Coast Campus, Griffith University, QLD 4222, Australia
| |
Collapse
|
37
|
Silva BA, Pereira FM, de Jesus JB, Branquinha MH, Santos AL, d'Avila-Levy CM. Sialoglycoconjugates inHerpetomonas megaseliae: role in the adhesion to insect host epithelial cells. FEMS Microbiol Lett 2009; 295:274-80. [DOI: 10.1111/j.1574-6968.2009.01606.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Developmental regulation of oligosialylation in zebrafish. Glycoconj J 2008; 26:247-61. [DOI: 10.1007/s10719-008-9161-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/27/2022]
|
39
|
Cross metathesis for the synthesis of novel C-sialosides. Carbohydr Res 2008; 343:1824-9. [DOI: 10.1016/j.carres.2008.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/20/2008] [Accepted: 03/30/2008] [Indexed: 11/21/2022]
|
40
|
Sialylation in protostomes: a perspective from Drosophila genetics and biochemistry. Glycoconj J 2008; 26:313-24. [PMID: 18568399 DOI: 10.1007/s10719-008-9154-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 12/20/2022]
Abstract
Numerous studies have revealed important functions for sialylation in both prokaryotes and higher animals. However, the genetic and biochemical potential for sialylation in Drosophila has only been confirmed recently. Recent studies suggest significant similarities between the sialylation pathways of vertebrates and insects and provide evidence for their common evolutionary origin. These new data support the hypothesis that sialylation in insects is a specialized and developmentally regulated process which likely plays a prominent role in the nervous system. Yet several key issues remain to be addressed in Drosophila, including the initiation of sialic acid de novo biosynthesis and understanding the structure and function of sialylated glycoconjugates. This review discusses our current knowledge of the Drosophila sialylation pathway, as compared to the pathway in bacteria and vertebrates. We arrive at the conclusion that Drosophila is emerging as a useful model organism that is poised to shed new light on the function of sialylation not only in protostomes, but also in a larger evolutionary context.
Collapse
|
41
|
Furukawa K, Aixinjueluo W, Kasama T, Ohkawa Y, Yoshihara M, Ohmi Y, Tajima O, Suzumura A, Kittaka D, Furukawa K. Disruption of GM2/GD2 synthase gene resulted in overt expression of 9-O-acetyl GD3 irrespective of Tis21. J Neurochem 2008; 105:1057-66. [PMID: 18194438 PMCID: PMC2408653 DOI: 10.1111/j.1471-4159.2008.05232.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 12/20/2007] [Indexed: 11/28/2022]
Abstract
GM2/GD2 synthase gene knockout mice lack all complex gangliosides, which are abundantly expressed in the nervous systems of vertebrates. In turn, they have increased precursor structures GM3 and GD3, probably replacing the roles of the depleted complex gangliosides. In this study, we found that 9-O-acetyl GD3 is also highly expressed as one of the major glycosphingolipids accumulating in the nervous tissues of the mutant mice. The identity of the novel component was confirmed by neuraminidase treatment, thin layer chromatography-immunostaining, two-dimensional thin layer chromatography with base treatment, and mass spectrometry. All candidate factors reported to be possible inducer of 9-O- acetylation, such as bitamine D binding protein, acetyl CoA transporter, or O-acetyl ganglioside synthase were not up-regulated. Tis21 which had been reported to be a 9-O-acetylation inducer was partially down-regulated in the null mutants, suggesting that Tis21 is not involved in the induction of 9-O-acetyl-GD3 and that accumulated high amount of GD3 might be the main factor for the dramatic increase of 9-O-acetyl GD3. The ability to acetylate exogenously added GD3 in the normal mouse astrocytes was examined, showing that the wild-type brain might be able to synthesize very low levels of 9-O-acetyl GD3. Increased 9-O-acetyl GD3, in addition to GM3 and GD3, may play an important role in the compensation for deleted complex gangliosides in the mutant mice.
Collapse
Affiliation(s)
- Keiko Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Biomedical Science, College of Life and Health Science, Chubu University, KasugaiAichi, Japan
| | - Wei Aixinjueluo
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Takeshi Kasama
- Instrumental Analysis Research Center for Life Science, Tokyo Medical and Dental UniversityTokyo, Japan
| | - Yuki Ohkawa
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Michiko Yoshihara
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Yusuke Ohmi
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Orie Tajima
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Biomedical Science, College of Life and Health Science, Chubu University, KasugaiAichi, Japan
| | - Akio Suzumura
- Department of Immune System, Institute for Environmental MedicineNagoya, Japan
| | - Daiji Kittaka
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
42
|
Kiefel MJ, Thomson RJ, Radovanovic M, Itzstein MV. Synthesis of Carbohydrates with an Anomeric Thiol Moiety for Elaboration into Metabolically Stable Thioglycosides. J Carbohydr Chem 2008. [DOI: 10.1080/07328309908544045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Milton J. Kiefel
- a Department of Medicinal Chemistry , Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Robin J. Thomson
- a Department of Medicinal Chemistry , Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Milica Radovanovic
- a Department of Medicinal Chemistry , Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Mark von Itzstein
- a Department of Medicinal Chemistry , Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria, 3052, Australia
| |
Collapse
|
43
|
Isolation and properties of two sialate-O-acetylesterases from horse liver with 4- and 9-O-acetyl specificities. Glycoconj J 2008; 25:625-32. [PMID: 18246423 DOI: 10.1007/s10719-008-9109-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/11/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Sialate-O-acetylesterase was purified almost 900-fold from particle-free supernatants of horse liver by gel filtration, ion-exchange chromatography and isoelectric focussing. The native enzyme on gel filtration exhibits a molecular weight of 54,000 Da. It was separated by isoelectric focussing into two forms with pI values of 4.8 and 5.7, respectively. The esterase with a lower pI hydrolyses only 9-O-acetyl groups from sialic acids (K(M) 1.1 mM), while that with the higher pI esterifies both 4- and 9-O-acetylated monosaccharides at similar rates (K(M) 0.3 M and 1.3 mM, respectively). Both forms are inactive with 7-O-acetylated N-acetylneuraminic acid. Enzyme assays were carried out at the pH optimum (pH 8.4-8.6) using free O-acetylated sialic acids followed by direct analysis of the reaction products by isocratic anion-exchange HPLC. Glycosidically bound sialic acids can also be de-O-acetylated. Horse liver esterase seems to be an essential enzyme for the catabolism of 4-O-acetylated sialoglycoconjugates, since sialidase from this tissue cannot act on 4-O-acetylated sialic acids.
Collapse
|
44
|
Schroven A, Meinke S, Ziegelmüller P, Thiem J. Transsialidase fromTrypanosoma cruzi for Regio- and Stereoselective Synthesis of N-Acyl-Modified Sialylated Oligosaccharides and Measurement of Transfer Rates. Chemistry 2007; 13:9012-21. [PMID: 17680570 DOI: 10.1002/chem.200700439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recombinant transsialidase from Trypanosoma cruzi (TcTS) was used for the sialylation with natural and non-natural derivatives of neuraminic acid. Neu5Ac-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe was prepared in 80 % yield. Correspondingly, the modified trisaccharide derivatives Neu5Prop-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe (32 %) and Neu5Gc-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe (Prop=propanoyl, Gc=glycolyl) were obtained in 60 % yield, respectively.
Collapse
Affiliation(s)
- Andreas Schroven
- University of Hamburg, Faculty of Science, Department of Chemistry, Institute of Organic Chemistry, Martin-Luther-King Platz 6, 20146, Hamburg, Germany
| | | | | | | |
Collapse
|
45
|
Yu H, Chokhawala H, Huang S, Chen X. One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 2007; 1:2485-92. [PMID: 17406495 PMCID: PMC2586341 DOI: 10.1038/nprot.2006.401] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemoenzymatic synthesis, which combines the flexibility of chemical synthesis and the high selectivity of enzymatic synthesis, is a powerful approach to obtain complex carbohydrates. It is a preferred method for synthesizing sialic acid-containing structures, including those with diverse naturally occurring and non-natural sialic acid forms, different sialyl linkages and different glycans that link to the sialic acid. Starting from N-acetylmannosamine, mannose or their chemically or enzymatically modified derivatives, sialic acid aldolase-catalyzed condensation reaction leads to the formation of sialic acids and their derivatives. These compounds are subsequently activated by a CMP-sialic acid synthetase and transferred to a wide range of suitable acceptors by a suitable sialyltransferase for the formation of sialosides containing natural and non-natural functionalities. The three-enzyme coupled synthesis of sialosides can be carried out in one pot without the isolation of intermediates. The time for synthesis is 4-18 h. Purification and characterization of the product can be completed within 2-3 d.
Collapse
Affiliation(s)
| | | | | | - Xi Chen
- Correspondence should be addressed to X.C. , Tel: 530-754-6037; Fax: 530-752-8995; webpage: http://chemgroups.ucdavis.edu/~chen/home.htm
| |
Collapse
|
46
|
Santos ALS, Palmeira VF, Rozental S, Kneipp LF, Nimrichter L, Alviano DS, Rodrigues ML, Alviano CS. Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis. FEMS Microbiol Rev 2007; 31:570-91. [PMID: 17645522 DOI: 10.1111/j.1574-6976.2007.00077.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Treatment of the disease presents poor effectiveness and serious side effects. The disease is epidemiologically important in several regions, which has stimulated studies focused on the biology and pathogenic potential of its major causative agent. In this review, we summarize the current knowledge on the biological aspects of F. pedrosoi, including cell differentiation and pathogenic mechanisms during the interaction of fungi with different hosts' elements.
Collapse
Affiliation(s)
- André L S Santos
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, IMPPG/Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cylwik B, Chrostek L, Jakimiuk B, Popławska A, Szmitkowski M. Serum level of sialic acid (SA) and carbohydrate-deficient transferrin (CDT) in type 2 diabetes mellitus with microvascular complications. J Clin Lab Anal 2007; 20:68-73. [PMID: 16538641 PMCID: PMC6807578 DOI: 10.1002/jcla.20099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialic acid (SA) is responsible for the composition of different isoforms of transferrin and is reported to be a marker of microvascular complications in type 2 diabetes mellitus. Therefore, we explored the serum concentration of SA, and the less sialylated isoforms of transferrin, termed carbohydrate-deficient transferrin (CDT), in relation to the presence of microvascular complications in type 2 diabetes mellitus. We studied 21 patients with type 2 diabetes with microangiopathy and 22 patients without complications who were hospitalized at a diabetic clinic. The prevalence of microvascular complications was based on clinical history, fundoscopy, and laboratory tests. Blood samples were taken for measurements of SA, CDT, total transferrin, glucose, HbA1c, fibrinogen, C-reactive protein (CRP), and indicators of renal dysfunction (i.e., creatinine, urea, albumin excretion rate (AER), and glomerular filtration rate (GFR)). A rise in serum SA and a decrease in CDT concentrations were observed in both diabetic groups with and without complications, and there were no differences between the two groups of patients. There was a statistically significant correlation between serum SA and CDT in diabetic subjects with microvascular complications, but not in patients without such complications. This proves that the serum changes in CDT and SA levels in the course of type 2 diabetes mellitus are associated with each other in the presence of microangiopathy.
Collapse
Affiliation(s)
- Bogdan Cylwik
- Department of Biochemical Diagnostics, Medical University, Bialystok, Poland.
| | | | | | | | | |
Collapse
|
48
|
Rinninger A, Richet C, Pons A, Kohla G, Schauer R, Bauer HC, Zanetta JP, Vlasak R. Localisation and distribution of O-acetylated N-acetylneuraminic acids, the endogenous substrates of the hemagglutinin-esterases of murine coronaviruses, in mouse tissue. Glycoconj J 2006; 23:73-84. [PMID: 16575524 PMCID: PMC7088067 DOI: 10.1007/s10719-006-5439-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infections by mouse hepatitis viruses result in disease of the liver, the gastrointestinal tract, respiratory tract, and the central nervous system. Coronaviruses related to mouse hepatitis virus express a hemagglutinin-esterase surface glycoprotein, which specifically hydrolyses either 5-N-acetyl-4-O-acetyl neuraminic acid (Neu4,5Ac2) or 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2). Moreover, these sialic acids represent potential cellular receptor determinants for murine coronaviruses. Until now, the distribution of these sialic acids in mouse brain was not thoroughly investigated. Particularly Neu4,5Ac2 was not yet found in mouse brain. Using a sensitive method of gas chromatography coupled to mass spectrometry in the electron impact mode of ionization this manuscript demonstrates the occurrence of 13 different sialic acids varying in their alkyl and acyl substituents in mouse tissues including 5-N-acetyl-4-O-acetyl-9-O-lactyl-neuraminic acid (Neu4,5Ac29Lt), 5-N-acetyl-9-O-lactyl-neuraminic acid (Neu5Ac9Lt), 5-N-acetyl-8-O-methyl-neuraminic acid (Neu5Ac8Me) and the 1,7-lactone (Neu5Ac1,7L) of neuraminic acid. Neu4,5Ac2, relatively abundant in the gut, was present as a minor compound in all tissues, including liver, olfactory lobe, telencephalon, metencephalon and hippocampus. Neu5,9Ac2 was also found in these tissues, except in the liver. It is suggested that these sialic acids represent the endogenous substrate and receptor determinants for murine coronaviruses.
Collapse
Affiliation(s)
- Andreas Rinninger
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| | | | - Alexandre Pons
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Guido Kohla
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Hans-Christian Bauer
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| | - Jean-Pierre Zanetta
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Reinhard Vlasak
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
49
|
Yu YP, Cheng MC, Wu SH. High-performance CE: an effective method to study lactonization of alpha2,8-linked oligosialic acid. Electrophoresis 2006; 27:4487-99. [PMID: 17054086 DOI: 10.1002/elps.200600080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A sensitive and efficient method using high-performance CE (HPCE) and neuraminidase hydrolysis was developed to study the lactonization and hydrolysis of alpha2,8-pentasialic acid. Eleven lactone species of pentasialic acid formed in glacial acetic acid were detected and classified into three groups based on the number of carboxylic acids: monolactones with four carboxylic acids, dilactones with three carboxylic acids, and trilactones with two carboxylic acids. These lactones eluted between the original pentamer (with five carboxylic acids) and the fully lactonized species (with one carboxylic acid) in HPCE. Eight of the isomers were identified by hydrolysis with neuraminodase. Results obtained from previous reports and from this study together reveal a general rule for predicting the subtle difference in the acidity of each carboxylic acid in oligosialic acids: the closer the carboxylic acid is to the nonreducing end, the more acidic it is. Therefore, the elution order of lactone isomers having the same number of carboxylic groups can be predicted from the position of the free carboxylic groups in pentasialic acid. We used this principle and the results of hydrolysis with neuraminidase to identify hexamer lactone isomers separated by HPCE.
Collapse
Affiliation(s)
- Yi-Ping Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
50
|
Inoue S, Kitajima K. KDN (Deaminated neuraminic acid): Dreamful past and exciting future of the newest member of the sialic acid family. Glycoconj J 2006; 23:277-90. [PMID: 16897172 DOI: 10.1007/s10719-006-6484-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/23/2005] [Accepted: 12/05/2005] [Indexed: 10/24/2022]
Abstract
KDN is an abbreviation for 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, and its natural occurrence was revealed in 1986 by a research group including the present authors. Since sialic acid was used as a synonym for N-acylneuraminic acid at that time, there was an argument if this deaminated neuraminic acid belongs to the family of sialic acids. In this review, we describe the 20 years history of studies on KDN (KDNology), through which KDN has established its position as a distinct member of the sialic acid family. These studies have clarified that: (1) KDN occurs widely among vertebrates and bacteria similar to the occurrence of the more common sialic acid, N-acetylneuraminic acid (Neu5Ac), but its abundant occurrence in animals is limited to lower vertebrates. (2) KDN is found in almost all types of glycoconjugates, including glycolipids, glycoproteins and capsular polysaccharides. (3) KDN residues are linked to almost all glycan structures in place of Neu5Ac. All linkage types known for Neu5Ac; alpha2,3-, alpha2,4-, alpha2,6-, and alpha2,8- are also found for KDN. (4) KDN is biosynthesized de novo using mannose as a precursor sugar, which is activated to CMP-KDN and transferred to acceptor sugar residues. These reactions are catalyzed by enzymes, some of which preferably recognize KDN, but many others prefer Neu5Ac to KDN. In addition to these basic findings, elevated expression of KDN was found in fetal human red blood cells compared with adult red blood cells, and ovarian tumor tissues compared with normal controls. KDNase, an enzyme which specifically cleaves KDN-linkages, was discovered in a bacterium and monoclonal antibodies that specifically recognize KDN residues in KDNalpha2,3-Gal- and KDNalpha2,8-KDN-linkages have been developed. These have been used for identification of KDN-containing molecules. Based on past basic studies and variety of findings, future perspective of KDNology is presented.
Collapse
Affiliation(s)
- Sadako Inoue
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|