1
|
Recombinant Technologies to Improve Ruminant Production Systems: The Past, Present and Future. Processes (Basel) 2020. [DOI: 10.3390/pr8121633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of recombinant technologies has been proposed as an alternative to improve livestock production systems for more than 25 years. However, its effects on animal health and performance have not been described. Thus, understanding the use of recombinant technology could help to improve public acceptance. The objective of this review is to describe the effects of recombinant technologies and proteins on the performance, health status, and rumen fermentation of meat and milk ruminants. The heterologous expression and purification of proteins mainly include eukaryotic and prokaryotic systems like Escherichia coli and Pichia pastoris. Recombinant hormones have been commercially available since 1992, their effects remarkably improving both the reproductive and productive performance of animals. More recently the use of recombinant antigens and immune cells have proven to be effective in increasing meat and milk production in ruminant production systems. Likewise, the use of recombinant vaccines could help to reduce drug resistance developed by parasites and improve animal health. Recombinant enzymes and probiotics could help to enhance rumen fermentation and animal efficiency. Likewise, the use of recombinant technologies has been extended to the food industry as a strategy to enhance the organoleptic properties of animal-food sources, reduce food waste and mitigate the environmental impact. Despite these promising results, many of these recombinant technologies are still highly experimental. Thus, the feasibility of these technologies should be carefully addressed before implementation. Alternatively, the use of transgenic animals and the development of genome editing technology has expanded the frontiers in science and research. However, their use and implementation depend on complex policies and regulations that are still under development.
Collapse
|
2
|
Seppälä S, Wilken SE, Knop D, Solomon KV, O’Malley MA. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab Eng 2017; 44:45-59. [DOI: 10.1016/j.ymben.2017.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
3
|
Abstract
Knowledge gained from early and recent studies that define the functions of microbial populations within the rumen microbiome is essential to allow for directed rumen manipulation strategies. A large number of omic studies have focused on carbohydrate active enzymes either for improved fiber digestion within the animal or for use in industries such as biofuels. Studies of the rumen microbiome with respect to methane production and abatement strategies have led to initiatives for defining the microbiome of low- and high-methane-emitting animals while ensuring optimal feed conversion. With advances in omic technologies, the ability to link host genetics and the rumen microbiome by studying all the biological components (holobiont) through the use of hologenomics has begun. However, a program to culture and isolate microbial species for the purpose of standard microbial characterization to aid in assigning function to genomic data remains critical, especially for genes of unknown function.
Collapse
Affiliation(s)
- Stuart E Denman
- The Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Brisbane, Queensland, 4067 Australia; ,
| | | |
Collapse
|
4
|
Jakob F, Lehmann C, Martinez R, Schwaneberg U. Increasing protein production by directed vector backbone evolution. AMB Express 2013; 3:39. [PMID: 23890095 PMCID: PMC3750827 DOI: 10.1186/2191-0855-3-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/11/2013] [Indexed: 01/04/2023] Open
Abstract
Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications.
Collapse
|
5
|
Ohta K, Tanaka H, Yamakawa D, Hamasuna H, Fujimoto H. Signal peptide of Aureobasidium pullulans xylanase: use for extracellular production of a fungal xylanase by Escherichia coli. J Ind Microbiol Biotechnol 2010; 38:967-73. [PMID: 20872041 DOI: 10.1007/s10295-010-0868-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/28/2010] [Indexed: 11/28/2022]
Abstract
An extracellular xylanase XynI of glycoside hydrolase family 11 from the dimorphic fungus Aureobasidium pullulans ATCC 20524 possesses an N-terminal extension of 34 amino acids (Ohta et al., J. Biosci. Bioeng. 92:262-270, 2001). The N-terminal extension includes three sites (Ala-X-Ala-X-Ala-X-Ala) that are potentially cleavable by signal peptidase I of Escherichia coli. The A. pullulans xynI signal sequence was fused in frame to the mature protein region of the equivalent xylanase gene xynA from the filamentous fungus Penicillium citrinum. The gene fusion xynI::A was inserted into the plasmid pET-26b(+) to yield pEXP401. An E. coli BL21(DE3) transformant harboring the pEXP401 exhibited xylanase activity (per ml of the culture) of 16.8 U in the fraction of culture supernatant as well as 4.29 U in the fraction of cell-free extract after 12 h of growth with isopropyl-β-D-thiogalactopyranoside at 30°C. N-terminal amino acid sequence analysis of the secreted recombinant proteins revealed cleavage at four distinct sites within the N-terminal extension of XynI, two of which conformed to the Ala-X-Ala motif prior to the cleavage site. The XynA proteins secreted into the culture medium showed high specific activities from 506 to 651 U/mg, which were twofold higher than that of the native enzyme.
Collapse
Affiliation(s)
- Kazuyoshi Ohta
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan.
| | | | | | | | | |
Collapse
|
6
|
Kobayashi Y, Taguchi H, Goto TN, Koike S, Ohmiya K. Expression and export of aRuminococcus albuscellulase inButyrivibrio fibrisolvensthrough the use of an alternative gene promoter and signal sequence. Can J Microbiol 2003; 49:375-82. [PMID: 14569291 DOI: 10.1139/w03-050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ruminococcal cellulase (Ruminococcus albus F-40 endoglucanase EgI) was successfully expressed in Butyrivibrio fibrisolvens OB156C, using the erm promoter from pAMβ1. A newly identified signal peptide coding region of xynA from B. fibrisolvens 49 allowed efficient translocation of the foreign EgI into the extracellular fraction. First, B. fibrisolvens xynA with or without its own putative signal peptide (XynA SP) coding region was cloned into a shuttle vector to transform B. fibrisolvens OB156C. Both plasmids caused a 2- to 2.4-fold increase in xylanase activity. The transformant expressing XynA with the signal peptide showed a significantly higher proportion of activity in the extracellular fraction than the transformant with XynA lacking the signal peptide (75% vs. 19%), demonstrating the significance of XynA SP in the translocation of the expressed enzyme. Second, using the XynA SP coding region, secretion of EgI was attempted in B. fibrisolvens. Since the signal peptide of R. albus EgI did not function in B. fibrisolvens, it was replaced with the XynA SP. A high activity variant of EgI containing the XynA SP was transcribed using the erm promoter, resulting in a 27-fold increase in endoglucanase activity, most of which (>93%) was in the extracellular fraction of the B. fibrisolvens transformant. EgI without the XynA SP was scarcely detected in the extracellular fraction (<10%).Key words: Butyrivibrio fibrisolvens, Ruminococcus albus, cellulase, gene promoter, signal peptide.
Collapse
Affiliation(s)
- Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
7
|
Gobius KS, Xue GP, Aylward JH, Dalrymple BP, Swadling YJ, McSweeney CS, Krause DO. Transformation and expression of an anaerobic fungal xylanase in several strains of the rumen bacterium Butyrivibrio fibrisolvens. J Appl Microbiol 2002; 93:122-33. [PMID: 12067381 DOI: 10.1046/j.1365-2672.2002.01662.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To obtain reliable transformation of a range of Butyrivibrio fibrisolvens strains and to express a Neocallimastix patriciarum xylanase gene in the recipients. METHODS AND RESULTS Eight strains (H17c, E14, LP1309, LP1028, AR11a, OB156, LP210B and LP461A) of Bu. fibrisolvens were transformed by the Gram-positive vector pUB110. A xylanase expression/secretion cassette containing Bu. fibrisolvens promoter and signal peptide elements fused to catalytic domain II of the N. patriciarum xylanase A cDNA (xynANp) was inserted into pUB110 to create the plasmid pUBxynA. pUBxynA was used to transform seven of the Bu. fibrisolvens strains transformed by pUB110. In strain H17c pUBxynA, which produced native xylanase, 2.46 U mg-1 total xylanase activity was produced with 45% extracellular xylanase. In strain H17c pUMSX, 0.74 U mg-1 total xylanase activity was produced with 98% extracellular xylanase. H17c pUBxynA exhibited increased (28.7%) degradation of neutral detergent fibre compared with unmodified H17c; however, progressive loss of pUBxynA was observed in long-term cultivation. CONCLUSIONS A stable transformation system was developed that was applicable for a range of Bu. fibrisolvens strains and high levels of expression of a recombinant xylanase were obtained in H17c which lead to increased fibre digestion. SIGNIFICANCE AND IMPACT OF THE STUDY This stable transformation system with the accompanying recombinant plasmids will be a useful tool for further investigation aimed at improving ruminal fibre digestion.
Collapse
Affiliation(s)
- K S Gobius
- CSIRO Livestock Industries, Long Pocket Laboratories, Indooroopilly, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Krause DO, Bunch RJ, Dalrymple BD, Gobius KS, Smith WJ, Xue GP, McSweeney CS. Expression of a modified Neocallimastix patriciarum xylanase in Butyrivibrio fibrisolvens digests more fibre but cannot effectively compete with highly fibrolytic bacteria in the rumen. J Appl Microbiol 2001; 90:388-96. [PMID: 11298234 DOI: 10.1046/j.1365-2672.2001.01257.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS This study investigated the competitive abilities of two Neocallimastix patriciarum-derived xylanases constructs in Butyrivibrio fibrisolvens H17c (xynA and pUMSX) and their ability to compete in vivo. METHODS AND RESULTS The digestibility of neutral detergent fibre (NDF) increased during co-culture of xynA or pUMSX and weakly cellulolytic, but not with highly cellulolytic, ruminococci. Competition studies among xynA, pUMSX and cellulolytic consortia demonstrated that xynA was the fittest. XynA did not persist at high levels in the rumen and was undetectable after 22 days. CONCLUSION The construction of recombinant xylanolytic B. fibrisolvens does improve the digestibility of fibre above that of the native, but digestibility is still less than that of the most potent fibre digesters such as ruminococci. SIGNIFICANCE AND IMPACT OF THE STUDY Fibre digestion may be improved by genetic manipulation of ruminal bacteria but ecological parameters, such as persistence in vivo and the niche of the organism, must be taken into account.
Collapse
Affiliation(s)
- D O Krause
- CSIRO Livestock Industries, Long Pocket Laboratories, Indooroopilly, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Dalrymple BP, Swadling Y, Layton I, Gobius KS, Xue GP. Distribution and evolution of the xylanase genes xynA and xynB and their homologues in strains of Butyrivibrio fibrisolvens. Appl Environ Microbiol 1999; 65:3660-7. [PMID: 10427063 PMCID: PMC91548 DOI: 10.1128/aem.65.8.3660-3667.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ruminal bacterium Butyrivibrio fibrisolvens is being engineered by the introduction of heterologous xylanase genes in an attempt to improve the utilization of plant material in ruminants. However, relatively little is known about the diversity and distribution of the native xylanase genes in strains of B. fibrisolvens. In order to identify the most appropriate hosts for such modifications, the xylanase genotypes of 28 strains from the three 16S ribosomal DNA (rDNA) subgroups of Butyrivibrio fibrisolvens have been investigated. Only 4 of the 20 strains from 16S rDNA group 2 contained homologues of the strain Bu49 xynA gene. However, these four xynA-containing strains, and two other group 2 strains, contained members of a second xylanase gene family clearly related to xynA (subfamily I). Homologues of xynB, a second previously described xylanase gene from B. fibrisolvens, were identified only in three of the seven group 1 strains and not in the group 2 and 3 strains. However, six of the group 1 strains contained one or more members of the two subfamilies of homologues of xynA. The distribution of genes and the nucleotide sequence relationships between the members of the two xynA subfamilies are consistent with the progenitor of all strains of B. fibrisolvens having contained a xynA subfamily I gene. Since many xylanolytic strains of B. fibrisolvens did not contain members of either of the xynA subfamilies or of the xynB family, at least one additional xylanase gene family remains to be identified in B. fibrisolvens.
Collapse
Affiliation(s)
- B P Dalrymple
- CSIRO Tropical Agriculture, Indooroopilly, Queensland 4068, Australia.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Hemicellulolytic microorganisms play a significant role in nature by recycling hemicellulose, one of the main components of plant polysaccharides. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. Recently cellulase-free xylanases have received great attention in the development of environmentally friendly technologies in the paper and pulp industry. In microorganisms that produce xylanases low molecular mass fragments of xylan and their positional isomers play a key role in regulating its biosynthesis. Xylanase and cellulase production appear to be regulated separately, although the pleiotropy of mutations, which causes the elimination of both genes, suggests some linkage in the synthesis of the two enzymes. Xylanases are found in a cornucopia of organisms and the genes encoding them have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Sequence analyses of xylanases have revealed distinct catalytic and cellulose binding domains, with a separate non-catalytic domain that has been reported to confer enhanced thermostability in some xylanases. Analyses of three-dimensional structures and the properties of mutants have revealed the involvement of specific tyrosine and tryptophan residues in the substrate binding site and of glutamate and aspartate residues in the catalytic mechanism. Many lines of evidence suggest that xylanases operate via a double displacement mechanism in which the anomeric configuration is retained, although some of the enzymes catalyze single displacement reactions with inversion of configuration. Based on a dendrogram obtained from amino acid sequence similarities the evolutionary relationship between xylanases is assessed. In addition the properties of xylanases from extremophilic organisms have been evaluated in terms of biotechnological applications.
Collapse
Affiliation(s)
- N Kulkarni
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
11
|
McSweeney C, Dalrymple B, Gobius K, Kennedy P, Krause D, Mackie R, Xue G. The application of rumen biotechnology to improve the nutritive value of fibrous feedstuffs: pre- and post-ingestion. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0301-6226(99)00032-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Aylward JH, Gobius KS, Xue GP, Simpson GD, Dalrymple BP. The Neocallimastix patriciarum cellulase, CelD, contains three almost identical catalytic domains with high specific activities on Avicel. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00167-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Xue GP, Johnson JS, Dalrymple BP. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 1999. [DOI: 10.1016/s0167-7012(98)00087-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Kobayashi Y, Okuda N, Matsumoto M, Inoue K, Wakita M, Hoshino S. Constitutive expression of a heterologous Eubacterium ruminantium xylanase gene (xynA) in Butyrivibrio fibrisolvens. FEMS Microbiol Lett 1998; 163:11-7. [PMID: 9631539 DOI: 10.1111/j.1574-6968.1998.tb13019.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
An Eubacterium ruminantium xylanase gene (xynA) was inserted into pYK4, a shuttle vector replicable in both Escherichia coli and Butyrivibrio fibrisolvens, and the resultant chimeric plasmid (pYK4XT) was electroporated into B. fibrisolvens OB156C in an attempt to obtain a more xylanolytic B. fibrisolvens. Electrotransformants were screened by the development of erythromycin resistance, followed by an activity staining and Southern hybridization. The presence of mRNA from xynA in the transformant, B. fibrisolvens NO4, was confirmed by Northern hybridization. Xylanase activity of the transformant NO4 was apparently enhanced regardless of carbon sources in the medium. When grown on glucose or cellobiose. NO4 had approximately 5-6 times higher intracellular activity than the parent OB156C on a culture volume basis as well as protein basis. The transformant showed extracellular xylanase activity much higher (between 7- and 10(4)-fold) than the parent. Transformant NO4 recorded the highest activity when grown on xylan. Most (> 90%) of the activity was extracellular. The extracellular activity was 2-fold greater in NO4. These findings indicate that the introduced xynA was expressed constitutively and the xylanase protein was exported into the culture supernatant. Growth of NO4 on glucose was similar to that of OB156C, which suggests little extra load for plasmid maintenance and foreign xylanase production in the transformant. The plasmid pYK4XT was maintained stably in the transformant for more than 100 generations.
Collapse
Affiliation(s)
- Y Kobayashi
- Faculty of Bioresources, Mie University, Japan.
| | | | | | | | | | | |
Collapse
|