1
|
Sun YH, Gao J, Shi JH, Cao SL, Yan ZP, Liu XD, Zhang HP, Li J, Guo WZ, Zhang SJ. Interaction analysis of FADS2 gene variants with chronic hepatitis B infection in Chinese patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105289. [PMID: 35489698 DOI: 10.1016/j.meegid.2022.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The risk of chronic hepatitis B (CHB) infection is often affected by polyunsaturated fatty acids (PUFAs) metabolism which is strongly influenced by single nucleotide polymorphisms (SNPs) within the PUFA metabolic pathway. Given this, we designed this study to determine the relationship between specific polymorphisms within fatty acid desaturase 2 (FADS2), a key enzyme in PUFA metabolism, and CHB infection. We completed this evaluation using a case-control study comprising 230 CHB patients and 234 unrelated healthy controls in which the genetic relationships between three previously identified SNPs, isolated via mass spectrometry, and CHB infection. Our data revealed that none of these three SNPs (rs174568, rs174601, and rs2727270) were significantly associated with susceptibility to CHB infection when compared to healthy controls. However, when we stratified our cohort by sex, male subjects with the TC genotype for FADS2 exhibited a decreased risk for CHB infection (OR = 0.62, 95%CI = 0.39-0.96; OR = 0.64, 95%CI = 0.41-1.00; OR = 0.57, 95%CI = 0.36-0.90). Furthermore, age stratification revealed that both the T allele and the TC genotypes for each of the three target SNPs were less common in Chinese CHB cases in people younger than 50 years old. Correlation analysis also revealed that there was no statistically significant relationship between these three SNPs and HBV-DNA replication or hepatitis B surface antigen (HBsAg) levels. Thus, our data suggests that rs174568, rs174601, and rs2727270 may affect the CHB outcomes in various age or sex subgroups, suggesting that they may be useful predictive or diagnostic biomarkers of CHB infection in some populations.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Sheng-Li Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Zhi-Ping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Xu-Dong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, China.
| |
Collapse
|
2
|
Lee BR, Paing MH, Sharma-Walia N. Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Front Physiol 2021; 12:640374. [PMID: 34335286 PMCID: PMC8320392 DOI: 10.3389/fphys.2021.640374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including PGA2, PGA1, PGJ2, and its metabolites. cyPGs are essential regulators of inflammation, cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity. cyPGs biologically act on multiple cellular targets, including transcription factors and signal transduction pathways. cyPGs regulate the inflammatory response by interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution of chronic inflammation associated with cancers and pathogen (bacterial, viral, and parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission, and reducing virus-induced inflammation. We summarize their anti-proliferative, pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-resolution, and anti-metastatic potential. These properties render them unique therapeutic value, especially in resolving inflammation and could be used in adjunct with other existing therapies. We also discuss other α, β -unsaturated carbonyl lipids and cyPGs like isoprostanes (IsoPs) compounds.
Collapse
|
3
|
Zhang X, Lin X, Qin C, Huang K, Sun X, Zhao L, Jin M. Avian Chaperonin Containing TCP1 Subunit 5 Supports Influenza A Virus Replication by Interacting With Viral Nucleoprotein, PB1, and PB2 Proteins. Front Microbiol 2020; 11:538355. [PMID: 33178142 PMCID: PMC7593399 DOI: 10.3389/fmicb.2020.538355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Humans and avian species are prone to influenza viral infection, which may cause serious clinical consequences. Many studies have documented the critical role of host factors in the influenza virus life cycle based on human models, but knowledge about their roles in birds is very limited. In this study, using immunoprecipitation coupled with mass spectrometry, a total of 72 potential interacting proteins of influenza nucleoprotein (NP) were identified in DF-1 cells. Among these proteins, avian chaperonin containing TCP1 subunit 5 (CCT5) was demonstrated to interact with influenza A virus (IAV) NP directly, as well as polymerase basic protein 1 (PB1) and polymerase basic protein 2 (PB2) but not with polymerase acidic protein (PA). Further investigation showed that viral infection profoundly elevated the expression level of cellular CCT5, whose expression, in turn, promoted the nuclear export of NP, as well as viral polymerase activity, thereby facilitating the replication of IAV. The obtained results suggested an important role of avian CCT5 in supporting influenza virus replication, which may serve as an anti-influenza target.
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chenghuang Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
4
|
Das UN. Beneficial role of bioactive lipids in the pathobiology, prevention, and management of HBV, HCV and alcoholic hepatitis, NAFLD, and liver cirrhosis: A review. J Adv Res 2019; 17:17-29. [PMID: 31193303 PMCID: PMC6526165 DOI: 10.1016/j.jare.2018.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic damage and cirrhosis and associated hypoalbuminemia, non-alcoholic fatty liver disease (NAFLD), and alcoholic fatty liver disease (AFLD) are due to an imbalance between pro-inflammatory and anti-inflammatory bioactive lipids. Increased tumour necrosis factor (TNF)-α production induced by HBV and HCV leads to a polyunsaturated fatty acid (PUFA) deficiency and hypoalbuminemia. Albumin mobilizes PUFAs from the liver and other tissues and thus may aid in enhancing the formation of anti-inflammatory lipoxins, resolvins, protectins, maresins and prostaglandin E1 (PGE1) and suppressing the production of pro-inflammatory PGE2. As PUFAs exert anti-viral and anti-bacterial effects, the presence of adequate levels of PUFAs could inactivate HCV and HBV and prevent spontaneous bacterial peritonitis observed in cirrhosis. PUFAs, PGE1, lipoxins, resolvins, protectins, and maresins suppress TNF-α and other pro-inflammatory cytokines, exert cytoprotective effects, and modulate stem cell proliferation and differentiation to promote recovery following hepatitis, NAFLD and AFLD. Based on this evidence, it is proposed that the administration of albumin in conjunction with PUFAs and their anti-inflammatory products could be beneficial for the prevention of and recovery from NAFLD, hepatitis and cirrhosis of the liver. NAFLD is common in obesity, type 2 diabetes mellitus, and metabolic syndrome, suggesting that even these diseases could be due to alterations in the metabolism of PUFAs and other bioactive lipids. Hence, PUFAs and co-factors needed for their metabolism and albumin may be of benefit in the prevention and management of HBV, HCV, alcoholic hepatitis and NAFLD, and liver cirrhosis.
Collapse
|
5
|
Tripathi S, Batra J, Lal SK. Interplay between influenza A virus and host factors: targets for antiviral intervention. Arch Virol 2015; 160:1877-91. [PMID: 26016443 DOI: 10.1007/s00705-015-2452-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
Influenza A viruses (IAVs) pose a major public health threat worldwide. Recent experience with the 2013 H7N9 outbreak in China and the 2009 "swine flu" pandemic have shown that antiviral vaccines and drugs fall short of controlling the spread of disease in a timely and effective manner. Major problems include rapid emergence of drug-resistant influenza virus strains and the slow process of vaccine production. With the threat of a highly pathogenic H5N1 bird-flu pandemic looming large, it is crucial to develop novel ways of combating influenza A viruses. Targeting the host factors critical for influenza A virus replication has shown promise as a strategy to develop novel antiviral molecules with broad-spectrum protection. In this review, we summarize the role of currently identified host factors that play a critical role in the influenza A virus life cycle and discuss the most promising candidates for anti-influenza therapeutics.
Collapse
Affiliation(s)
- Shashank Tripathi
- Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | |
Collapse
|
6
|
Gaudreault E, Gosselin J. Leukotriene B4-mediated release of antimicrobial peptides against cytomegalovirus is BLT1 dependent. Viral Immunol 2007; 20:407-20. [PMID: 17931111 DOI: 10.1089/vim.2006.0099] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Leukotriene B4 (LTB(4)) is a potent lipid mediator of inflammation that possesses antiviral activities. Here we provide evidence that LTB(4)-mediated defense against in vitro cytomegalovirus (CMV) infection of human leukocytes involves activation of the high-affinity LTB(4) receptor (BLT1) and neutrophil degranulation. Treatment of CMV-infected peripheral blood leukocytes with LTB(4) (10 nM) leads to a significant reduction in viral titers. This activity involves neutrophil activation through the BLT1 receptor, because no reduction in viral titers was observed after neutrophil depletion from cellular preparation or when leukocytes were pretreated with the BLT1 antagonist U75,302. Direct stimulation of neutrophils with LTB(4) (in the presence or absence of CMV) leads to the release of myeloperoxidase, alpha-defensins, eosinophil-derived neurotoxin, and the human cathelicidin LL-37 in a BLT1-dependent manner. LTB(4) does not act exclusively on the secretion of preformed antimicrobial peptides, but also acts on the synthesis of selected peptides as reflected by the increase in transcriptional levels of eosinophil-derived neurotoxin (EDN) and LL-37 in LTB(4)-treated neutrophils. Treatment of cell cultures with neutralizing antibodies directed against alpha-defensins, EDN, and LL-37 significantly reduces the antiviral effect of LTB(4), suggesting that LTB(4) may act through the release of antimicrobial peptides. Ex vivo experiments using LTB(4)-treated neutrophils from peritoneal washing of wild-type and BLT1 knockout mice further supported the role played by antimicrobial peptides in LTB(4)-mediated antiviral activity toward CMV. These results provide evidence of a mechanism by which LTB(4) induces host defense against viral infection.
Collapse
Affiliation(s)
- Eric Gaudreault
- Viral Immunology Laboratory, CHUL Research Center (CHUQ) and Université Laval, Québec, PQ, G1V 4G2 Canada
| | | |
Collapse
|
7
|
Stanley D, Shapiro M. Eicosanoid biosynthesis inhibitors increase the susceptibility of Lymantria dispar to nucleopolyhedrovirus LdMNPV. J Invertebr Pathol 2007; 95:119-24. [PMID: 17386933 DOI: 10.1016/j.jip.2007.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/24/2007] [Accepted: 02/06/2007] [Indexed: 11/24/2022]
Abstract
Eighteen pharmaceutical inhibitors of eicosanoid biosynthesis were tested for their effects on gypsy moth, Lymantria dispar and its susceptibility to the nucleopoly-hedrovirus LdMNPV. None of the inhibitors tested had any detrimental effects upon larval growth and development. Treatment with nine inhibitor/NPV combinations (e.g., bromophenacylbromide, clotrimazole, dexamethasone, esculetin, flufenamic acid, indomethacin, nimesulide, sulindac, tolfenamic acid) resulted in 3.5- to 6.6-fold reductions in LC(50)s. Larvae treated with several other COX inhibitors did not yield significant LC(50) reductions. We infer that eicosanoids act in insect defense responses to viral infection. Eicosanoids may act at three levels of insect immune reactions to viral infection, organismal (febrile response), cellular (hemocytic microaggregation, nodulation and plasmatocytes spreading reactions) and intracellular level (mechanisms responsible for insect permissiveness to viral replication).
Collapse
Affiliation(s)
- David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA.
| | | |
Collapse
|
8
|
Büyükgüzel E, Tunaz H, Stanley D, Büyükgüzel K. Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:99-105. [PMID: 17161422 DOI: 10.1016/j.jinsphys.2006.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 05/12/2023]
Abstract
Nodulation is the predominant insect cellular immune response to bacterial and fungal infections and it can also be induced by some viral infections. Treating seventh instar larvae of greater wax moth Galleria mellonella with Bovine herpes simplex virus-1 (BHSV-1) induced nodulation reactions in a dose-dependent manner. Because eicosanoids mediate nodulation reactions to bacterial and fungal infection, we hypothesized that eicosanoids also mediate nodulation reactions to viral challenge. To test this idea, we injected G. mellonella larvae with indomethacin, a nonsteroidal anti-inflammatory drug immediately prior to intrahemocoelic injection of BHSV-1. Relative to vehicle-treated controls, indomethacin-treated larvae produced significantly reduced numbers of nodules following viral infection (down from approximately 190 nodules/larva to <50 nodules/larva). In addition to injection treatments, increasing dietary indomethacin dosages (from 0.01% to 1%) were associated with decreasing nodulation (by 10-fold) and phenoloxidase activity (by 3-fold) reactions to BHSV-1 injection. We infer from these findings that cyclooxygenase products, prostaglandins, mediate nodulation response to viral infection in G. mellonella.
Collapse
Affiliation(s)
- Ender Büyükgüzel
- Department of Biology, Faculty of Arts and Science, Karaelmas University, Zonguldak, Turkey
| | | | | | | |
Collapse
|
9
|
Abstract
This review considers modern concepts on the structural-functional properties and antiproliferative, antitumor, and antiviral effects of cyclopentenone prostaglandins A and mechanisms underlying their actions. Possible directions of pharmacological application of these compounds and their analogs are discussed.
Collapse
|
10
|
|
11
|
Hirayama E, Atagi H, Hiraki A, Kim J. Heat shock protein 70 is related to thermal inhibition of nuclear export of the influenza virus ribonucleoprotein complex. J Virol 2004; 78:1263-70. [PMID: 14722281 PMCID: PMC321380 DOI: 10.1128/jvi.78.3.1263-1270.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza virus genome replicates and forms a viral ribonucleoprotein complex (vRNP) with nucleoprotein (NP) and RNA polymerases in the nuclei of host cells. vRNP is then exported into the cytoplasm for viral morphogenesis at the cell membrane. Matrix protein 1 (M1) and nonstructural protein 2/nuclear export protein (NS2/NEP) work in the nuclear export of vRNP by associating with it. It was previously reported that influenza virus production was inhibited in Madin-Darby canine kidney (MDCK) cells cultured at 41 degrees C because nuclear export of vRNP was blocked by the dissociation of M1 from vRNP (A. Sakaguchi, E. Hirayama, A. Hiraki, Y. Ishida, and J. Kim, Virology 306:244-253, 2003). Previous data also suggested that a certain protein(s) synthesized only at 41 degrees C inhibited the association of M1 with vRNP. The potential of heat shock protein 70 (HSP70) as a candidate obstructive protein was investigated. Induction of HSP70 by prostaglandin A1 (PGA1) at 37 degrees C caused the suppression of virus production. The nuclear export of viral proteins was inhibited by PGA1, and M1 was not associated with vRNP, indicating that HSP70 prevents M1 from binding to vRNP. An immunoprecipitation assay showed that HSP70 was bound to vRNP, suggesting that the interaction of HSP70 with vRNP is the reason for the dissociation of M1. Moreover, NS2 accumulated in the nucleoli of host cells cultured at 41 degrees C, showing that the export of NS2 was also disturbed at 41 degrees C. However, NS2 was exported normally from the nucleus, irrespective of PGA1 treatment at 37 degrees C, suggesting that HSP70 does not influence NS2.
Collapse
Affiliation(s)
- Etsuko Hirayama
- Institute of Molecular and Cellular Biology for Pharmaceutical Sciences, Kyoto Pharmaceutical University, 1, Shichonocho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | |
Collapse
|