1
|
Liu K, Liu J, Su Y, Wang M, Long T, Fang L, Zhou Y, Sun J, Liao X. IncI2 plasmid transfer and changes of intestinal microbiota in mice under β-lactam antibiotic pressure. BMC Vet Res 2025; 21:343. [PMID: 40375072 DOI: 10.1186/s12917-025-04808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND β-lactam antibiotics represent the most widely utilized class of antimicrobial agents in livestock and poultry breeding. However, the effects of β-lactam antibiotics on conjugation transfer of IncI2 plasmids and the homeostasis of the mouse intestinal microbiota have not been thoroughly investigated. RESULTS The results revealed that the transfer of IncI2 plasmid was the highest for intra-specific E. coli and inter-specific transfer to Salmonella and K. pneumoniae occurred at much lower levels in the absence of β-lactam antibiotic selective pressure. Furthermore, inter-species and intra-species transfer of IncI2 plasmid was enhanced in the presence of sub-MIC levels of amoxicillin/clavulanate and cephalexin whereas ampicillin promoted only inter-species transfer. These results were consistent with in vivo observations where amoxicillin/clavulanate and cephalexin but not ampicillin promoted conjugation. Meanwhile, the intestinal microbiota was also disturbed following antibiotic treatment and Proteobacteria abundance increased while Bacteroides decreased. The gut microbiota could also be partially restored to initial levels after antibiotic cessation for 14 days. CONCLUSIONS These findings highlight the potential risk of β-lactam antibiotics in promoting the spread of resistance plasmids and causing disruption to the intestinal microbiota.
Collapse
Affiliation(s)
- Kaidi Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
| | - Junqi Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
| | - Yuting Su
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
| | - Minge Wang
- School of Agricultural Science and Engineering, Liaocheng University, No.1 Hunan Road, Liaocheng, Shandong, 252000, China
| | - Tengfei Long
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Yufeng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, P. R. China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R. China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, P. R. China.
| |
Collapse
|
2
|
Liu L, Zhang QH, Li MZ, Li RT, He Z, Dechesne A, Smets BF, Sheng GP. Single-cell analysis reveals antibiotic affects conjugative transfer by modulating bacterial growth rather than conjugation efficiency. ENVIRONMENT INTERNATIONAL 2025; 198:109385. [PMID: 40186988 DOI: 10.1016/j.envint.2025.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Antibiotic resistance genes (ARGs) pose a significant threat to human health and the environment. Quantifying the efficiency of horizontal gene transfer (HGT) is challenging due to diverse biological and environmental influences. Single-cell level approaches are well-suited for investigating conjugative transfer, given its reliance on cell-to-cell contact nature and its capacity to offer insights into population-level responses. This study introduces a self-developed system for automated time-lapse image acquisition and analysis. Using a custom dual-chamber microfluidic chip and Python-based image analysis pipeline, we dynamically quantify the ARGs conjugation efficiency at single-cell level. By combining experiments with individual-based modelling, we isolate the effects of subinhibitory antibiotic concentrations on conjugation efficiency from those related to bacterial growth dynamics. No significant variation in Escherichia coli conjugation efficiency was observed across kanamycin concentrations (0 to 50 mg l-1). Moreover, recipient cells with higher growth rates show a greater propensity for plasmid acquisition, suggesting the physiological state of cells pre-conjugation influences their susceptibility to gene transfer. Our methodology eliminates population growth bias, revealing the intrinsic nature of conjugation efficiency. This approach advances our understanding of the factors influencing HGT efficiency and holds promise for studying other microbial interactions. SYNOPSIS: This study employs single-cell analysis to reveal that subinhibitory concentrations of antibiotics affect the conjugative transfer of antibiotic resistance genes by modulating bacterial growth rate rather than conjugation efficiency.
Collapse
Affiliation(s)
- Li Liu
- School of Chemistry, Beihang University, 100191 Beijing, PR China.
| | - Qiang-Hong Zhang
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Meng-Zi Li
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Rui-Tong Li
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Zhiming He
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Barth F Smets
- Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, PR China
| |
Collapse
|
3
|
Sanchez-Cid C, Ghaly TM, Gillings MR, Vogel TM. Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Sci Rep 2023; 13:8612. [PMID: 37244902 PMCID: PMC10224954 DOI: 10.1038/s41598-023-35074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW, 2109, Australia
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
4
|
Yang X, Shu R, Hou L, Ren P, Lu X, Huang Z, Zhong Z, Wang H. mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment. Antibiotics (Basel) 2022; 11:antibiotics11070875. [PMID: 35884129 PMCID: PMC9311533 DOI: 10.3390/antibiotics11070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Colistin is regarded as an antibiotic of last resort against multidrug-resistant Gram-negative bacteria, including Klebsiella pneumoniae and Escherichia coli. Colistin resistance is acquired by microorganisms via chromosome-mediated mutations or plasmid-mediated mobile colistin resistance (mcr) gene, in which the transfer of mcr is the predominant factor underlying the spread of colistin resistance. However, the factors that are responsible for the spread of the mcr gene are still unclear. In this study, we observed that mcr-1 inhibited the transfer of the pHNSHP45 backbone in liquid mating. Similar inhibitory effect of mcr-1.6 and chromosomal mutant ΔmgrB suggested that colistin resistance, acquired from either plasmid or chromosomal mutation, hindered the transfer of colistin resistance-related plasmid in vitro. Dual plasmid system further proved that co-existing plasmid transfer was reduced too. However, this inhibitory effect was reversed in vivo. Some factors in the gut, including bile salt and anaerobic conditions, could increase the transfer frequency of the mcr-1-containing plasmid. Our results demonstrated the potential risk for the spread of colistin resistance in the intestine, provide a scientific basis against the transmission of colistin resistance threat.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Rundong Shu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Leqi Hou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Panpan Ren
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China;
| | - Zhi Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Correspondence: ; Tel.: +86-25-84396645
| |
Collapse
|
5
|
Liu G, Thomsen LE, Olsen JE. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. J Antimicrob Chemother 2021; 77:556-567. [PMID: 34894259 DOI: 10.1093/jac/dkab450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) among pathogenic bacteria constitute an accelerating crisis for public health. The selective pressures caused by increased use and misuse of antimicrobials in medicine and livestock production have accelerated the overall selection of resistant bacteria. In addition, horizontal gene transfer (HGT) plays an important role in the spread of resistance genes, for example mobilizing reservoirs of AMR from commensal bacteria into pathogenic ones. Antimicrobials, besides antibacterial function, also result in undesirable effects in the microbial populations, including the stimulation of HGT. The main aim of this narrative review was to present an overview of the current knowledge of the impact of antimicrobials on HGT in bacteria, including the effects of transformation, transduction and conjugation, as well as other less well-studied mechanisms of HGT. It is widely accepted that conjugation plays a major role in the spread of AMR in bacteria, and the focus of this review is therefore mainly on the evidence provided that antimicrobial treatment affects this process. Other mechanisms of HGT have so far been deemed less important in this respect; however, recent discoveries suggest their role may be larger than previously thought, and the review provides an update on the rather limited knowledge currently available regarding the impact of antimicrobial treatment on these processes as well. A conclusion from the review is that there is an urgent need to investigate the mechanisms of antimicrobial-induced HGT, since this will be critical for developing new strategies to combat the spread of AMR.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA J 2021; 19:e06864. [PMID: 34729092 PMCID: PMC8546800 DOI: 10.2903/j.efsa.2021.6864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobials.
Collapse
|
7
|
Neil K, Allard N, Rodrigue S. Molecular Mechanisms Influencing Bacterial Conjugation in the Intestinal Microbiota. Front Microbiol 2021; 12:673260. [PMID: 34149661 PMCID: PMC8213034 DOI: 10.3389/fmicb.2021.673260] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial conjugation is a widespread and particularly efficient strategy to horizontally disseminate genes in microbial populations. With a rich and dense population of microorganisms, the intestinal microbiota is often considered a fertile environment for conjugative transfer and a major reservoir of antibiotic resistance genes. In this mini-review, we summarize recent findings suggesting that few conjugative plasmid families present in Enterobacteriaceae transfer at high rates in the gut microbiota. We discuss the importance of mating pair stabilization as well as additional factors influencing DNA transfer efficiency and conjugative host range in this environment. Finally, we examine the potential repurposing of bacterial conjugation for microbiome editing.
Collapse
Affiliation(s)
| | | | - Sébastien Rodrigue
- Départment de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Lazdins A, Maurya AP, Miller CE, Kamruzzaman M, Liu S, Stephens ER, Lloyd GS, Haratianfar M, Chamberlain M, Haines AS, Kreft JU, Webber MA, Iredell J, Thomas CM. Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR. PLoS One 2020; 15:e0225202. [PMID: 31940351 PMCID: PMC6961859 DOI: 10.1371/journal.pone.0225202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure.
Collapse
Affiliation(s)
- Alessandro Lazdins
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Anand Prakash Maurya
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Claire E. Miller
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Muhammad Kamruzzaman
- University of Sydney, Centre for Infectious Disease & Microbiology, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Shuting Liu
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Elton R. Stephens
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Georgina S. Lloyd
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Mona Haratianfar
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Melissa Chamberlain
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Anthony S. Haines
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Jan-Ulrich Kreft
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Mark. A. Webber
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Jonathan Iredell
- University of Sydney, Centre for Infectious Disease & Microbiology, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Christopher M. Thomas
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| |
Collapse
|
9
|
Headd B, Bradford SA. Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Front Microbiol 2018; 9:2122. [PMID: 30254617 PMCID: PMC6141735 DOI: 10.3389/fmicb.2018.02122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Horizontal gene transfer (HGT) of antibiotic resistance genes has received increased scrutiny from the scientific community in recent years owing to the public health threat associated with antibiotic resistant bacteria. Most studies have examined HGT in growing cultures. We examined conjugation in growing and non-growing cultures of E. coli using a conjugative multi antibiotic and metal resistant plasmid to determine physiochemical parameters that favor horizontal gene transfer. The conjugation frequency in growing and non-growing cultures was generally greater under shaken than non-shaken conditions, presumably due to increased frequency of cell collisions. Non-growing cultures in 9.1 mM NaCl had a similar conjugation frequency to that of growing cultures in Luria-Bertaini broth, whereas those in 1 mM or 90.1 mM NaCl were much lower. This salinity effect on conjugation was attributed to differences in cell-cell interactions and conformational changes in cell surface macromolecules. In the presence of antibiotics, the conjugation frequencies of growing cultures did not increase, but in non-growing cultures of 9.1 mM NaCl supplemented with Cefotaxime the conjugation frequency was as much as nine times greater than that of growing cultures. The mechanism responsible for the increased conjugation in non-growing bacteria was attributed to the likely lack of penicillin-binding protein 3 (the target of Cefotaxime), in non-growing cells that enabled Cefotaxime to interact with the plasmid and induce conjugation. Our results suggests that more attention may be owed to HGT in non-growing bacteria as most bacteria in the environment are likely not growing and the proposed mechanism for increased conjugation may not be unique to the bacteria/plasmid system we studied.
Collapse
Affiliation(s)
- Brendan Headd
- U.S. Salinity Lab, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Riverside, CA, United States
| | | |
Collapse
|
10
|
Cantas L, Midtlyng PJ, Sørum H. Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiol 2012; 12:37. [PMID: 22429905 PMCID: PMC3340321 DOI: 10.1186/1471-2180-12-37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/19/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The transfer of R plasmids between bacteria has been well studied under laboratory conditions and the transfer frequency has been found to vary between plasmids and under various physical conditions. For the first time, we here study the expression of the selected plasmid mobility genes traD, virB11 and virD4 in the 45 kb IncU plasmid, pRAS1, conferring resistance to tetracycline, trimethoprim and sulphonamide, using an in vivo zebrafish infection- treatment model. RESULTS Three days after oral infection of adult zebrafish with Aeromonas hydrophila harboring pRAS1, elevated expression of pro-inflammatory cytokine (TNF α, IL-1β and IL-8) and complement C3 genes in the intestine coincided with disease symptoms. Tetracycline, trimethoprim and an ineffective concentration of flumequine given 48 h prior to sampling, strongly increased expression of plasmid mobility genes, whereas an effective dosage of flumequine resulted in lower levels of mRNA copies of these genes relative to placebo treatment. Following effective treatment with flumequine, and ineffective treatments with a low concentration of flumequine, with trimethoprim or with sulphonamide, the intestinal expression of immune genes was strongly induced compared to placebo treated control fish. CONCLUSIONS Treatment of zebrafish infected with an antibiotic resistant (TcR, TmR, SuR) A. hydrophila with ineffective concentrations of flumequine or the ineffective antimicrobials tetracycline and trimethoprim strongly induced expression of genes mediating conjugative transfer of the R-plasmid pRAS1. Simultaneously, there was a strong induction of selected inflammatory and immune response genes, which was again evident in fish subjected to ineffective treatment protocols. Our findings point to the essential role of therapeutic practices in escalation or control of antibiotic resistance transfer, and suggest that antibiotic substances, even in sub-inhibitory concentrations, may stimulate innate defenses against bacterial infections.
Collapse
Affiliation(s)
- Leon Cantas
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Ullevålsveien 72, PO 8146, 0033 Oslo, Norway.
| | | | | |
Collapse
|
11
|
Ogilvie LA, Firouzmand S, Jones BV. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng Bugs 2012; 3:13-31. [PMID: 22126801 PMCID: PMC3329251 DOI: 10.4161/bbug.3.1.17883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | | |
Collapse
|
12
|
Haug MC, Tanner SA, Lacroix C, Stevens MJ, Meile L. Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. FEMS Microbiol Ecol 2011; 78:210-9. [DOI: 10.1111/j.1574-6941.2011.01149.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
13
|
Haug MC, Tanner SA, Lacroix C, Meile L, Stevens MJA. Construction and characterization of Enterococcus faecalis CG110/gfp/pRE25*, a tool for monitoring horizontal gene transfer in complex microbial ecosystems. FEMS Microbiol Lett 2010; 313:111-9. [PMID: 21029153 DOI: 10.1111/j.1574-6968.2010.02131.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Enterococci are among the most notorious bacteria involved in the spread of antibiotic resistance (ABR) determinants via horizontal gene transfer, a process that leads to increased prevalence of antibiotic-resistant bacteria. In complex microbial communities with a high background of ABR genes, detection of gene transfer is possible only when the ABR determinant is marked. Therefore, the conjugative multiresistance plasmid pRE25, originating from a sausage-associated Enterococcus faecalis, was tagged with a 34-bp random sequence marker spliced by tet(M). The plasmid constructed, designated pRE25(*) , was introduced into E. faecalis CG110/gfp, a strain containing a gfp gene as chromosomal marker. The plasmid pRE25(*) is fully functional compared with its parental pRE25, occurs at one to two copies per chromosome, and can be transferred to Listeria monocytogenes and Listeria innocua at frequencies of 6 × 10(-6) to 8 × 10(-8) transconjugants per donor. The markers on the chromosome and the plasmid enable independent quantification of donor and plasmid, even if ABR genes occur at high numbers in the background ecosystem. Both markers were stable for at least 200 generations, permitting application of the strain in long-running experiments. Enterococcus faecalis CG110/gfp/pRE25(*) is a potent tool for the investigation of horizontal ABR gene transfer in complex environments such as food matrices, biofilms or colonic models.
Collapse
Affiliation(s)
- Martina C Haug
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Intra- and interspecies conjugal transfer of Tn916-like elements from Lactococcus lactis in vitro and in vivo. Appl Environ Microbiol 2009; 75:6352-60. [PMID: 19666731 DOI: 10.1128/aem.00470-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetracycline-resistant Lactococcus lactis strains originally isolated from Polish raw milk were analyzed for the ability to transfer their antibiotic resistance genes in vitro, using filter mating experiments, and in vivo, using germfree rats. Four of six analyzed L. lactis isolates were able to transfer tetracycline resistance determinants in vitro to L. lactis Bu2-60, at frequencies ranging from 10(-5) to 10(-7) transconjugants per recipient. Three of these four strains could also transfer resistance in vitro to Enterococcus faecalis JH2-2, whereas no transfer to Bacillus subtilis YBE01, Pseudomonas putida KT2442, Agrobacterium tumefaciens UBAPF2, or Escherichia coli JE2571 was observed. Rats were initially inoculated with the recipient E. faecalis strain JH2-2, and after a week, the L. lactis IBB477 and IBB487 donor strains were introduced. The first transconjugants were detected in fecal samples 3 days after introduction of the donors. A subtherapeutic concentration of tetracycline did not have any significant effect on the number of transconjugants, but transconjugants were observed earlier in animals dosed with this antibiotic. Molecular analysis of in vivo transconjugants containing the tet(M) gene showed that this gene was identical to tet(M) localized on the conjugative transposon Tn916. Primer-specific PCR confirmed that the Tn916 transposon was complete in all analyzed transconjugants and donors. This is the first study showing in vivo transfer of a Tn916-like antibiotic resistance transposon from L. lactis to E. faecalis. These data suggest that in certain cases food lactococci might be involved in the spread of antibiotic resistance genes to other lactic acid bacteria.
Collapse
|
15
|
Impact of therapeutic treatment with beta-lactam on transfer of the bla(CTX-M-9) resistance gene from Salmonella enterica serovar Virchow to Escherichia coli in gnotobiotic rats. Appl Environ Microbiol 2009; 75:5523-8. [PMID: 19581466 DOI: 10.1128/aem.00020-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative transfer of the plasmid carrying the bla(CTX-M-9) gene from Salmonella enterica serovar Virchow isolated from a chicken farm to a recipient Escherichia coli strain was evaluated in vitro and in axenic rats inoculated with both strains, with or without selective pressure due to therapeutic doses of cefixime. The transfer of the bla(CTX-M-9) gene of S. enterica serovar Virchow to E. coli was confirmed in vitro, at a low frequency of 5.9 x 10(-8) transconjugants/donors. This transfer rate was higher in gnotobiotic rats and reached approximately 10(-5) transconjugants/donors without selective pressure. This frequency was not affected by the addition of therapeutic doses of cefixime. Thus, estimates of in vitro transfer underestimated potential transfer in the digestive tract, and therapeutic doses of cefixime did not increase the selection for transconjugants.
Collapse
|
16
|
Meta-analysis of experimental data concerning antimicrobial resistance gene transfer rates during conjugation. Appl Environ Microbiol 2008; 74:6085-90. [PMID: 18708517 DOI: 10.1128/aem.01036-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper presents the results of a meta-analysis of published transfer rates of antimicrobial resistance genes. A total of 34 papers were identified, of which 28 contained rates estimated in relation to either donor or recipient bacterial counts. The published rates ranged from 10(-2) to 10(-9). Generalized linear modeling was conducted to identify the factors influencing this variation. Highly significant associations between transfer frequency and both the donor (P = 1.2 x 10(-4)) and recipient (P = 1.0 x 10(-5)) genera were found. Also significant was whether the donor and recipient strains were of the same genus (P = 0.023) and the nature of the genetic element (P = 0.0019). The type of experiment, in vivo or in vitro, approached statistical significance (P = 0.12). Parameter estimates from a general linear model were used to estimate the probability of transfer of antimicrobial resistance genes to potential pathogens in the intestine following oral ingestion. The mean logarithms of these probabilities are in the range of [-7.0, -3.1]. These probability distributions are suitable for use in the quantitative assessment of the risk of transfer of antimicrobial resistance genes to the intestinal flora of humans and animals.
Collapse
|
17
|
Schjørring S, Struve C, Krogfelt KA. Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. J Antimicrob Chemother 2008; 62:1086-93. [PMID: 18703526 PMCID: PMC2566516 DOI: 10.1093/jac/dkn323] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives and methods Klebsiella pneumoniae is a nosocomial pathogen and is considered the most common Gram-negative bacterium that exhibits multiple antimicrobial resistances. In this study, the transfer of antimicrobial resistance genes from the clinical multiresistant K. pneumoniae MGH75875 isolate was assessed in vitro and in vivo in an intestinal colonization animal model. The ability to colonize and transfer was tested under different antimicrobial treatments. The frequency of the horizontal gene transfer was also examined in vitro. Results The clinical isolate of K. pneumoniae colonized the intestine of mice at levels up to 109 cfu/g faeces in antimicrobial-treated mice. In mice without antimicrobial treatment, the strain quickly decreased to below the detection limit due to competitive exclusion by the indigenous mouse flora. Onset of antimicrobial treatment gave immediate rise to detectable levels of the strain in the faeces of up to 109 cfu/g faeces. The experiment clearly shows that the treatment selects resistant strains and gives advantages to colonize the gastrointestinal tract. Furthermore, high transfer frequency of different plasmids was observed during colonization of the mouse intestine. The blaSHV and blaTEM genotypes were transferred to both an indigenous recipient in the in vivo setting and to an MG1655 Escherichia coli recipient strain in vitro. Conclusions K. pneumoniae is an excellent colonizer of the intestine and is extremely promiscuous with respect to the transferability of its numerous plasmids. Antimicrobial treatment enhances the selection of resistant strains and results in an increase in the resistance gene pool, which ultimately raises the risk of spreading resistance genes.
Collapse
Affiliation(s)
- Susanne Schjørring
- Department of Bacteriology, Mycology and Parasitology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | | | | |
Collapse
|
18
|
|
19
|
Mc Mahon M, Blair I, Moore J, Mc Dowell D. The rate of horizontal transmission of antibiotic resistance plasmids is increased in food preservation-stressed bacteria. J Appl Microbiol 2007; 103:1883-8. [DOI: 10.1111/j.1365-2672.2007.03412.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 2006; 59:158-66. [PMID: 17014680 DOI: 10.1111/j.1574-6941.2006.00212.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two wild-type strains of Lactobacillus plantarum previously isolated from fermented dry sausages were analysed for their ability to transfer antibiotic resistance plasmids in the gastrointestinal tract. For this purpose, we used gnotobiotic rats as an in vivo model. Rats were initially inoculated with the recipient Enterococcus faecalis JH2-2 at a concentration of 10(10) CFU mL(-1). After a week, either of the two donors L. plantarum DG 522 (harbouring a tet(M)-containing plasmid of c. 40 kb) or L. plantarum DG 507 [harbouring a tet(M)-containing plasmid of c. 10 kb and an erm(B)-containing plasmid of c. 8.5 kb] was introduced at concentrations in the range of 10(8)-10(10) CFU mL(-1). Two days after donor introduction, the first transconjugants (TCs) were detected in faecal samples. The detected numbers of tet(M)-TCs were comparable for the two donors. In both cases, this number increased to c. 5 x 10(2) CFU g(-1) faeces towards the end of the experiment. For erm(B)-TCs, the number was significantly higher and increased to c. 10(3) CFU g(-1) faeces. To our knowledge, this is the first study showing in vivo transfer of wild-type antibiotic resistance plasmids from L. plantarum to E. faecalis.
Collapse
Affiliation(s)
- Louise Jacobsen
- Department of Microbiology and Risk Assessment, Danish Institute for Food and Veterinary Research, Søborg, Denmark
| | | | | | | | | | | |
Collapse
|
21
|
Hart WS, Heuzenroeder MW, Barton MD. A Study of the Transfer of Tetracycline Resistance Genes Between Escherichia coli in the Intestinal Tract of a Mouse and a Chicken Model. ACTA ACUST UNITED AC 2006; 53:333-40. [PMID: 16930278 DOI: 10.1111/j.1439-0450.2006.00967.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments to demonstrate the transfer of genes within a natural environment are technically difficult because of the unknown numbers and strains of bacteria present, as well as difficulties designing adequate control experiments. The results of such studies should be viewed within the limits of the experimental design. Most experiments to date have been based on artificial models, which only give approximations of the real-life situation. The current study uses more natural models and provides information about tetracycline resistance as it occurs in wild-type bacteria within the environment of the normal intestinal tract of an animal. Tetracycline sensitive, nalidixic acid resistant Escherichia coli isolates of human origin were administered to mice and chicken animal models. They were monitored for acquisition of tetracycline resistance from indigenous or administered donor E. coli. Five sets of in vivo experiments demonstrated unequivocal transfer of tetracycline resistance to tetracycline sensitive recipients. The addition of tetracycline in the drinking water of the animals increased the probability of transfer between E. coli strains originating from the same animal species. The co-transfer of unselected antibiotic resistance in animal models was also demonstrated.
Collapse
Affiliation(s)
- W S Hart
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
22
|
Licht TR, Wilcks A. Conjugative Gene Transfer in the Gastrointestinal Environment. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:77-95. [PMID: 16543030 DOI: 10.1016/s0065-2164(05)58002-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tine Rask Licht
- Department of Microbiological Food Safety Danish Institute for Food and Veterinary Research DK‐2860 Søborg, Denmark
| | | |
Collapse
|
23
|
Bahl MI, Sørensen SJ, Hansen LH, Licht TR. Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl Environ Microbiol 2004; 70:758-64. [PMID: 14766552 PMCID: PMC348894 DOI: 10.1128/aem.70.2.758-764.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 10/23/2003] [Indexed: 11/20/2022] Open
Abstract
We have investigated the transfer of Tn916 among strains of Enterococcus faecalis OG1 colonizing in the intestines of gnotobiotic rats. This animal model allows a low limit of detection and efficient colonization of the chosen bacteria. The animals continuously received tetracycline in drinking water. A tetracycline-sensitive recipient strain was allowed to colonize the animals before the resistant donor was introduced. The numbers of donors, recipients, and transconjugants in fecal samples and intestinal segments were estimated. The bioavailable amounts of tetracycline in fecal samples and intestinal segments were monitored by using bacterial biosensors carrying a transcriptional fusion of a tetracycline-regulated promoter and a lacZ reporter gene. Chromosomal locations of Tn916 in transconjugants isolated either from the same animal or from different animals were compared by Southern blot analysis. Our results indicated that selection for the resistant phenotype was the major factor causing higher numbers of transconjugants in the presence of tetracycline. Tetracycline-sensitive E. faecalis cells colonized the intestine even when the concentrations of tetracycline in feces and intestinal luminal contents exceeded growth-inhibitory concentrations. This suggests the existence of tetracycline-depleted microhabitats in the intestinal environment.
Collapse
Affiliation(s)
- Martin Iain Bahl
- Department of General Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | | | | | | |
Collapse
|