1
|
Rahman RJ, Rijal R, Jing S, Chen TA, Ismail I, Gomer RH. Polyphosphate uses mTOR, pyrophosphate, and Rho GTPase components to potentiate bacterial survival in Dictyostelium. mBio 2023; 14:e0193923. [PMID: 37754562 PMCID: PMC10653871 DOI: 10.1128/mbio.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ryan J. Rahman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Shiyu Jing
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Te-An Chen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Issam Ismail
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Aspergillus fumigatus versus Genus Aspergillus: Conservation, Adaptive Evolution and Specific Virulence Genes. Microorganisms 2021; 9:microorganisms9102014. [PMID: 34683335 PMCID: PMC8539515 DOI: 10.3390/microorganisms9102014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.
Collapse
|
4
|
Pal DS, Li X, Banerjee T, Miao Y, Devreotes PN. The excitable signal transduction networks: movers and shapers of eukaryotic cell migration. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:407-416. [PMID: 31840779 DOI: 10.1387/ijdb.190265pd] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In response to a variety of external cues, eukaryotic cells display varied migratory modes to perform their physiological functions during development and in the adult. Aberrations in cell migration result in embryonic defects and cancer metastasis. The molecular components involved in cell migration are remarkably conserved between the social amoeba Dictyostelium and mammalian cells. This makes the amoeba an excellent model system for studies of eukaryotic cell migration. These migration-associated components can be grouped into three networks: input, signal transduction and cytoskeletal. In migrating cells, signal transduction events such as Ras or PI3K activity occur at the protrusion tips, referred to as 'front', whereas events such as dissociation of PTEN from these regions are referred to as 'back'. Asymmetric distribution of such front and back events is crucial for establishing polarity and guiding cell migration. The triggering of these signaling events displays properties of biochemical excitability including all-or-nothing responsiveness to suprathreshold stimuli, refractoriness, and wave propagation. These signal transduction waves originate from a point and propagate towards the edge of the cell, thereby driving cytoskeletal activity and cellular protrusions. Any change in the threshold for network activation alters the range of the propagating waves and the size of cellular protrusions which gives rise to various migratory modes in cells. Thus, this review highlights excitable signal transduction networks as key players for coordinating cytoskeletal activities to drive cell migration in all eukaryotes.
Collapse
Affiliation(s)
- Dhiman S Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
5
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
6
|
Marinović M, Šoštar M, Filić V, Antolović V, Weber I. Quantitative imaging of Rac1 activity in Dictyostelium cells with a fluorescently labelled GTPase-binding domain from DPAKa kinase. Histochem Cell Biol 2016; 146:267-79. [DOI: 10.1007/s00418-016-1440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
|
7
|
Yin CP, Guan SH, Zhang B, Wang XX, Yue SW. Upregulation of HIF-1α protects neuroblastoma cells from hypoxia-induced apoptosis in a RhoA-dependent manner. Mol Med Rep 2015; 12:7123-31. [PMID: 26323527 DOI: 10.3892/mmr.2015.4267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
Hypoxic conditions regulate several metabolic enzymes and transcription factors that are involved in cancer, ischemia and pulmonary diseases. The Ras homolog (Rho) family, including Rho member A (RhoA), is involved in reorganization of the actin cytoskeleton, cell migration and in the regulation of apoptosis and gene transcription. The aim of the present study was to investigate the expression of hypoxia‑inducible factor (HIF)‑α and the activity of RhoA in PC12 neuroblastoma cells under hypoxic conditions. The upregulation of HIF‑α and RhoA by hypoxia was determined using reverse transcription‑quantitative polymerase chain reaction and western blot assays, cell apoptosis was analyzed using flow cytometry, and the activity of caspase 3 was examined using a western blot assay and caspase 3 activity assay kit. The PC12 cells were induced to apoptosis following exposure to hypoxia, and exhibited increased expression of HIF‑α and increased mRNA and protein expression levels of RhoA. The overexpression of HIF‑α attenuated the hypoxia‑induced apoptosis of the PC12 cells. In addition, RhoA knockdown using small interfering RNA abrogated the antagonism of HIF‑1α towards hypoxia‑induced apoptosis. The results of the present study confirmed the protective role of HIF‑1α and RhoA in hypoxia‑induced PC12 cell apoptosis, and that the upregulation of HIF‑1α by hypoxia is RhoA‑dependent.
Collapse
Affiliation(s)
- Cui-Ping Yin
- Department of Physical Medicine and Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shang-Hui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Zhang
- Department of Physical Medicine and Rehabilitation, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Xue-Xin Wang
- Department of Physical Medicine and Rehabilitation, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Shou-Wei Yue
- Department of Physical Medicine and Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
Liu X, Chen D, Liu G. Overexpression of RhoA promotes the proliferation and migration of cervical cancer cells. Biosci Biotechnol Biochem 2014; 78:1895-901. [PMID: 25104222 DOI: 10.1080/09168451.2014.943650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The pro-oncogenic role of RhoA has been well identified in other cancers, but rarely in cervical cancer (CC), one of the main causes of cancer-related death in women. In the present study, we identified the overexpression of RhoA and its downstream effectors, ROCK-1 and ROCK-II, in CC specimens using western blotting. Then, we determined the effect of RhoA on the proliferation and migration of Hela cells, one of CC cell lines, by upregulating or downregulating the RhoA expression in Hela cells. We found that there was an overexpression of RhoA, ROCK-I/II in CC, which was associated with the progression of CC. And we confirmed that RhoA promoted the proliferation and migration of CC cells. In conclusion, we found a positive correlation among RhoA with the progression of CC by in vivo and in vitro evidences. A high RhoA expression in CC may predict a high metastatic potential of CC.
Collapse
Affiliation(s)
- Xiaojun Liu
- a Department of Human Anatomy and Embryology , Basic Medical College, Jilin University , Changchun , China
| | | | | |
Collapse
|
9
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
10
|
Amarnath S, Kawli T, Mohanty S, Srinivasan N, Nanjundiah V. Pleiotropic roles of a ribosomal protein in Dictyostelium discoideum. PLoS One 2012; 7:e30644. [PMID: 22363460 PMCID: PMC3281849 DOI: 10.1371/journal.pone.0030644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022] Open
Abstract
The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over- or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over- or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect – specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels.
Collapse
Affiliation(s)
- Smita Amarnath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | | | | | |
Collapse
|
11
|
Díez D, Sánchez-Jiménez F, Ranea JAG. Evolutionary expansion of the Ras switch regulatory module in eukaryotes. Nucleic Acids Res 2011; 39:5526-37. [PMID: 21447561 PMCID: PMC3141262 DOI: 10.1093/nar/gkr154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ras proteins control many aspects of eukaryotic cell homeostasis by switching between active (GTP-bound) and inactive (GDP-bound) conformations, a reaction catalyzed by GTPase exchange factors (GEF) and GTPase activating proteins (GAP) regulators, respectively. Here, we show that the complexity, measured as number of genes, of the canonical Ras switch genetic system (including Ras, RasGEF, RasGAP and RapGAP families) from 24 eukaryotic organisms is correlated with their genome size and is inversely correlated to their evolutionary distances from humans. Moreover, different gene subfamilies within the Ras switch have contributed unevenly to the module’s expansion and speciation processes during eukaryote evolution. The Ras system remarkably reduced its genetic expansion after the split of the Euteleostomi clade and presently looks practically crystallized in mammals. Supporting evidence points to gene duplication as the predominant mechanism generating functional diversity in the Ras system, stressing the leading role of gene duplication in the Ras family expansion. Domain fusion and alternative splicing are significant sources of functional diversity in the GAP and GEF families but their contribution is limited in the Ras family. An evolutionary model of the Ras system expansion is proposed suggesting an inherent ‘decision making’ topology with the GEF input signal integrated by a homologous molecular mechanism and bifurcation in GAP signaling propagation.
Collapse
Affiliation(s)
- Diego Díez
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 Japan.
| | | | | |
Collapse
|
12
|
Kortholt A, Bolourani P, Rehmann H, Keizer-Gunnink I, Weeks G, Wittinghofer A, Van Haastert PJM. A Rap/phosphatidylinositol 3-kinase pathway controls pseudopod formation [corrected]. Mol Biol Cell 2010; 21:936-45. [PMID: 20089846 PMCID: PMC2836974 DOI: 10.1091/mbc.e09-03-0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
GbpD, a guanine exchange factor specific for Rap1, has been implicated in adhesion, cell polarity, and chemotaxis of Dictyostelium cells. Here it is shown that activated Rap1 directly binds to PI3K. The activation of PI3K by Rap1 and RasG regulates basal and chemoattractant-stimulated PIP3 levels and pseudopod formation. GbpD, a Dictyostelium discoideum guanine exchange factor specific for Rap1, has been implicated in adhesion, cell polarity, and chemotaxis. Cells overexpressing GbpD are flat, exhibit strongly increased cell-substrate attachment, and extend many bifurcated and lateral pseudopodia. Phg2, a serine/threonine-specific kinase, mediates Rap1-regulated cell-substrate adhesion, but not cell polarity or chemotaxis. In this study we demonstrate that overexpression of GbpD in pi3k1/2-null cells does not induce the adhesion and cell morphology phenotype. Furthermore we show that Rap1 directly binds to the Ras binding domain of PI3K, and overexpression of GbpD leads to strongly enhanced PIP3 levels. Consistently, upon overexpression of the PIP3-degradating enzyme PTEN in GbpD-overexpressing cells, the strong adhesion and cell morphology phenotype is largely lost. These results indicate that a GbpD/Rap/PI3K pathway helps control pseudopod formation and cell polarity. As in Rap-regulated pseudopod formation in Dictyostelium, mammalian Rap and PI3K are essential for determining neuronal polarity, suggesting that the Rap/PI3K pathway is a conserved module regulating the establishment of cell polarity.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Ogura T, Tan A, Tsubota T, Nakakura T, Shiotsuki T. Identification and expression analysis of ras gene in silkworm, Bombyx mori. PLoS One 2009; 4:e8030. [PMID: 19946625 PMCID: PMC2777509 DOI: 10.1371/journal.pone.0008030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/24/2009] [Indexed: 12/15/2022] Open
Abstract
Ras proteins play important roles in development especially for cell proliferation and differentiation in various organisms. However, their functions in the most insect species are still not clear. We identified three ras cDNAs from the silk worm, Bombyx mori. These sequences corresponded to three Ras of Drosophila melanogaster, but not to three mammalian Ras (H-Ras, K-Ras, N-Ras). Subsequently, the expression profiles of ras were investigated by quantitative real-time PCR using whole body of individuals from the embryonic to adult stages, and various tissues of 4th and 5th instar larvae. Each of three Bombyx ras showed different expression patterns. We also showed membrane localization of their products. These results indicate that the three Bombyx Ras are functional and have different roles.
Collapse
Affiliation(s)
- Takehiko Ogura
- Department of Applied Life Sciences, Kyoto University, Kyoto, Japan
| | - Anjiang Tan
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takuya Tsubota
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takayo Nakakura
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takahiro Shiotsuki
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Bolourani P, Spiegelman GB, Weeks G. Rap1 activation in response to cAMP occurs downstream of ras activation during Dictyostelium aggregation. J Biol Chem 2008; 283:10232-40. [PMID: 18180289 DOI: 10.1074/jbc.m707459200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have used a doubly disrupted rasC(-)/rasG(-) strain of Dictyostelium discoideum, which ectopically expresses the carA gene, to explore the relationship between the activation of RasC and RasG, the two proteins that are necessary for optimum cAMP signaling, and the activation of Rap1, a Ras subfamily protein, that is also activated by cAMP. The ectopic expression of carA restored early developmental gene expression to the rasC(-)/rasG(-) strain, rendering it suitable for an analysis of cAMP signal transduction. Because there was negligible signaling through both the cAMP chemotactic pathway and the adenylyl cyclase activation pathway in the rasC(-)/rasG(-)/[act15]:carA strain, it is clear that RasG and RasC are the only two Ras subfamily proteins that directly control these pathways. The position of Rap1 in the signal transduction cascade was clarified by the finding that Rap1 activation was totally abolished in rasC(-)/rasG(-)/[act15]:carA and rasG(-) cells but only slightly reduced in rasC(-) cells. Rap1 activation, therefore, occurs downstream of the Ras proteins and predominantly, if not exclusively, downstream of RasG. The finding that in vitro guanylyl cyclase activation is also abolished in the rasC(-)/rasG(-)/[act15]:carA strain identifies RasG/RasC as the presumptive monomeric GTPases required for this activation.
Collapse
Affiliation(s)
- Parvin Bolourani
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
15
|
Chen Y, McQuade KJ, Guan XJ, Thomason PA, Wert MS, Stock JB, Cox EC. Isoprenylcysteine carboxy methylation is essential for development in Dictyostelium discoideum. Mol Biol Cell 2007; 18:4106-18. [PMID: 17699599 PMCID: PMC1995708 DOI: 10.1091/mbc.e06-11-1006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the Ras superfamily of small GTPases and the heterotrimeric G protein gamma subunit are methylated on their carboxy-terminal cysteine residues by isoprenylcysteine methyltransferase. In Dictyostelium discoideum, small GTPase methylation occurs seconds after stimulation of starving cells by cAMP and returns quickly to basal levels, suggesting an important role in cAMP-dependent signaling. Deleting the isoprenylcysteine methyltransferase-encoding gene causes dramatic defects. Starving mutant cells do not propagate cAMP waves in a sustained manner, and they do not aggregate. Motility is rescued when cells are pulsed with exogenous cAMP, or coplated with wild-type cells, but the rescued cells exhibit altered polarity. cAMP-pulsed methyltransferase-deficient cells that have aggregated fail to differentiate, but mutant cells plated in a wild-type background are able to do so. Localization of and signaling by RasG is altered in the mutant. Localization of the heterotrimeric Ggamma protein subunit was normal, but signaling was altered in mutant cells. These data indicate that isoprenylcysteine methylation is required for intercellular signaling and development in Dictyostelium.
Collapse
Affiliation(s)
- Ying Chen
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Kyle J. McQuade
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
- Department of Biology, Mesa State College, Grand Junction, CO 81501
| | - Xiao-Juan Guan
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Peter A. Thomason
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Michael S. Wert
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Jeffry B. Stock
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Edward C. Cox
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| |
Collapse
|
16
|
Xu MY, Liu JL, Zhang RL, Fu YC. Isolation of a novel ras gene from Trichomonas vaginalis: a possible evolutionary ancestor of the Ras and Rap genes of higher eukaryotes. Biochem Cell Biol 2007; 85:239-45. [PMID: 17534405 DOI: 10.1139/o07-008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ras subfamily proteins are small, monomeric GTP-binding proteins with vital roles in regulating eukaryotic signal transduction pathways. Gene duplication and divergence have been postulated as the mechanism by which such family members have evolved their specific functions. A cDNA clone of TvRsp was isolated and sequenced from a cDNA expression library of the primitive eukaryote Trichomonas vaginalis. The genomic DNA corresponding to the cDNA sequence was amplified by PCR and sequenced. Sequence analysis suggested that TvRsp was an intronless gene. This gene encoded a protein of 181 amino acids and contained the 5 conserved G domains that designated it as a Ras or Rap subfamily member. However, the deduced amino acid sequence shared only 34%-37% overall identity with other Ras subfamily members of different species, and the presence of motifs characteristic of both the Ras and Rap families of GTPase confused the familial classification of this gene. Phylogenetic analysis showed its origins at the divergence point of the Ras/Rap families and suggested that TvRsp was a possible evolutionary ancestral gene of the ras/rap genes of higher eukaryotes. This information was of importance not only from the perspective of understanding the evolution and diversity of eukaryotic signal transduction pathways but also in providing a framework by which to understand protein processing in the growth and differentiation of single-celled microorganisms.
Collapse
Affiliation(s)
- Ming-Yan Xu
- Laboratory of Cell Senescence, Shantou University Medical College, No.22, Xinling Road, Shantou 515041 Guangdong Province, China
| | | | | | | |
Collapse
|
17
|
Kortholt A, Rehmann H, Kae H, Bosgraaf L, Keizer-Gunnink I, Weeks G, Wittinghofer A, Van Haastert PJM. Characterization of the GbpD-activated Rap1 pathway regulating adhesion and cell polarity in Dictyostelium discoideum. J Biol Chem 2006; 281:23367-76. [PMID: 16769729 DOI: 10.1074/jbc.m600804200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of cell polarity plays an important role in chemotaxis. GbpD, a putative nucleotide exchange factor for small G-proteins of the Ras family, has been implicated in adhesion, cell polarity, and chemotaxis in Dictyostelium. Cells overexpressing GbpD are flat, exhibit strongly increased cell-substrate attachment, and extend many bifurcated and lateral pseudopodia. These cells overexpressing GbpD are severely impaired in chemotaxis, most likely due to the induction of many protrusions rather than an enhanced adhesion. The GbpD-overexpression phenotype is similar to that of cells overexpressing Rap1. Here we demonstrate that GbpD activates Rap1 both in vivo and in vitro but not any of the five other characterized Ras proteins. In a screen for Rap1 effectors, we overexpressed GbpD in several mutants defective in adhesion or cell polarity and identified Phg2 as Rap1 effector necessary for adhesion, but not cell polarity. Phg2, a serine/threonine-specific kinase, directly interacts with Rap1 via its Ras association domain.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Arigoni M, Bracco E, Lusche DF, Kae H, Weeks G, Bozzaro S. A novel Dictyostelium RasGEF required for chemotaxis and development. BMC Cell Biol 2005; 6:43. [PMID: 16336640 PMCID: PMC1325028 DOI: 10.1186/1471-2121-6-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 12/07/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ras proteins are guanine-nucleotide-binding enzymes that couple cell surface receptors to intracellular signaling pathways controlling cell proliferation and differentiation, both in lower and higher eukaryotes. They act as molecular switches by cycling between active GTP and inactive GDP-bound states, through the action of two classes of regulatory proteins: a) guanine nucleotide exchange factor (GEFs) and b) GTP-ase activating proteins (GAPs). Genome wide analysis of the lower eukaryote Dictyostelium discoideum revealed a surprisingly large number of Ras Guanine Nucleotide Exchange Factors (RasGEFs). RasGEFs promote the activation of Ras proteins by catalyzing the exchange of GDP for GTP, thus conferring to RasGEFs the role of main activator of Ras proteins. Up to date only four RasGEFs, which are all non-redundant either for growth or development, have been characterized in Dictyostelium. We report here the identification and characterization of a fifth non-redundant GEF, RasGEFM. RESULTS RasGEFM is a multi-domain protein containing six poly-proline stretches, a DEP, RasGEFN and RasGEF catalytic domain. The rasGEFM gene is differentially expressed during growth and development. Inactivation of the gene results in cells that form small, flat aggregates and fail to develop further. Expression of genes required for aggregation is delayed. Chemotaxis towards cAMP is impaired in the mutant, due to inability to inhibit lateral pseudopods. Endogenous cAMP accumulates during early development to a much lower extent than in wild type cells. Adenylyl cyclase activation in response to cAMP pulses is strongly reduced, by contrast guanylyl cyclase is stimulated to higher levels than in the wild type. The actin polymerization response to cAMP is also altered in the mutant. Cyclic AMP pulsing for several hours partially rescues the mutant. In vitro experiments suggest that RasGEFM acts downstream of the cAMP receptor but upstream of the G protein. CONCLUSION The data indicate that RasGEFM is involved in the establishment of the cAMP relay system. We propose that RasGEFM is a component of a Ras regulated pathway, which integrate signals acting as positive regulator for adenylyl cyclase and negative regulator for guanylyl cyclase. Altered guanylyl cyclase, combined with defective regulation of actin polymerization, results in altered chemotaxis.
Collapse
Affiliation(s)
- Maddalena Arigoni
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Enrico Bracco
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Daniel F Lusche
- Faculty of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Helmut Kae
- Dept. Microbiology and Immunology, University of British Columbia, Canada V6T1Z3
| | - Gerald Weeks
- Dept. Microbiology and Immunology, University of British Columbia, Canada V6T1Z3
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| |
Collapse
|
19
|
Wessels D, Brincks R, Kuhl S, Stepanovic V, Daniels KJ, Weeks G, Lim CJ, Spiegelman G, Fuller D, Iranfar N, Loomis WF, Soll DR. RasC plays a role in transduction of temporal gradient information in the cyclic-AMP wave of Dictyostelium discoideum. EUKARYOTIC CELL 2005; 3:646-62. [PMID: 15189986 PMCID: PMC420135 DOI: 10.1128/ec.3.3.646-662.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To define the role that RasC plays in motility and chemotaxis, the behavior of a rasC null mutant, rasC-, in buffer and in response to the individual spatial, temporal, and concentration components of a natural cyclic AMP (cAMP) wave was analyzed by using computer-assisted two-dimensional and three-dimensional motion analysis systems. These quantitative studies revealed that rasC- cells translocate at the same velocity and exhibit chemotaxis up spatial gradients of cAMP with the same efficiency as control cells. However, rasC- cells exhibit defects in maintaining anterior-posterior polarity along the substratum and a single anterior pseudopod when translocating in buffer in the absence of an attractant. rasC- cells also exhibit defects in their responses to both the increasing and decreasing temporal gradients of cAMP in the front and the back of a wave. These defects result in the inability of rasC- cells to exhibit chemotaxis in a natural wave of cAMP. The inability to respond normally to temporal gradients of cAMP results in defects in the organization of the cytoskeleton, most notably in the failure of both F actin and myosin II to exit the cortex in response to the decreasing temporal gradient of cAMP in the back of the wave. While the behavioral defect in the front of the wave is similar to that of the myoA-/myoF- myosin I double mutant, the behavioral and cytoskeletal defects in the back of the wave are similar to those of the S13A myosin II regulatory light-chain phosphorylation mutant. Expression array data support the premise that the behavioral defects exhibited by the rasC- mutant are the immediate result of the absence of RasC function.
Collapse
Affiliation(s)
- Deborah Wessels
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Comer FI, Parent CA. Phosphoinositide 3-kinase activity controls the chemoattractant-mediated activation and adaptation of adenylyl cyclase. Mol Biol Cell 2005; 17:357-66. [PMID: 16267269 PMCID: PMC1345673 DOI: 10.1091/mbc.e05-08-0781] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The binding of chemoattractants to cognate G protein-coupled receptors activates a variety of signaling cascades that provide spatial and temporal cues required for chemotaxis. When subjected to uniform stimulation, these responses are transient, showing an initial peak of activation followed by a period of adaptation, in which activity subsides even in the presence of stimulus. A tightly regulated balance between receptor-mediated stimulatory and inhibitory pathways controls the kinetics of activation and subsequent adaptation. In Dictyostelium, the adenylyl cyclase expressed during aggregation (ACA), which synthesizes the chemoattractant cAMP, is essential to relay the signal to neighboring cells. Here, we report that cells lacking phosphoinositide 3-kinase (PI3K) activity are deficient in signal relay. In LY294002-treated cells, this defect is because of a loss of ACA activation. In contrast, in cells lacking PI3K1 and PI3K2, the signal relay defect is because of a loss of ACA adaptation. We propose that the residual low level of 3-phosphoinositides in pi3k(1-/2-) cells is sufficient to generate the initial peak of ACA activity, yet is insufficient to sustain the inhibitory phase required for its adaptation. Thus, PI3K activity is poised to regulate both ACA activation and adaptation, thereby providing a link to ensure the proper balance of counteracting signals required to maintain optimal chemoresponsiveness.
Collapse
Affiliation(s)
- Frank I Comer
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | | |
Collapse
|
21
|
Lim CJ, Zawadzki KA, Khosla M, Secko DM, Spiegelman GB, Weeks G. Loss of the Dictyostelium RasC protein alters vegetative cell size, motility and endocytosis. Exp Cell Res 2005; 306:47-55. [PMID: 15878331 DOI: 10.1016/j.yexcr.2005.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 10/25/2022]
Abstract
In addition to its previously established roles in cAMP relay and cAMP chemotaxis, loss of signal transduction through the RasC protein was found to impact a number of vegetative cell functions. Vegetative rasC- cells exhibited reduced random motility, were less polarized and had altered F-actin distribution. Cells lacking RasC also contained more protein and were larger in size than wild type cells. These increases were associated with increased liquid phase endocytosis. Despite the increase in cell size, cytokinesis was relatively normal and there was no change in the rate of cell division. rasC- cells also chemotaxed poorly to folate and exhibited reduced F-actin accumulation, reduced ERK2 phosphorylation and reduced Akt/PKB phosphorylation in response to folate, indicating that RasC was also involved in transducing chemotactic signals in vegetative cells.
Collapse
Affiliation(s)
- Chinten James Lim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3.
| | | | | | | | | | | |
Collapse
|
22
|
Liu CI, Cheng TL, Chen SZ, Huang YC, Chang WT. LrrA, a novel leucine-rich repeat protein involved in cytoskeleton remodeling, is required for multicellular morphogenesis in Dictyostelium discoideum. Dev Biol 2005; 285:238-51. [PMID: 16051212 DOI: 10.1016/j.ydbio.2005.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 05/07/2005] [Accepted: 05/25/2005] [Indexed: 12/17/2022]
Abstract
Cell sorting by differential cell adhesion and movement is a fundamental process in multicellular morphogenesis. We have identified a Dictyostelium discoideum gene encoding a novel protein, LrrA, which composes almost entirely leucine-rich repeats (LRRs) including a putative leucine zipper motif. Transcription of lrrA appeared to be developmentally regulated with robust expression during vegetative growth and early development. lrrA null cells generated by homologous recombination aggregated to form loose mounds, but subsequent morphogenesis was blocked without formation of the apical tip. The cells adhered poorly to a substratum and did not form tight cell-cell agglomerates in suspension; in addition, they were unable to polarize and exhibit chemotactic movement in the submerged aggregation and Dunn chamber chemotaxis assays. Fluorescence-conjugated phalloidin staining revealed that both vegetative and aggregation competent lrrA(-) cells contained numerous F-actin-enriched microspikes around the periphery of cells. Quantitative analysis of the fluorescence-stained F-actin showed that lrrA(-) cells exhibited a dramatically increase in F-actin as compared to the wild-type cells. When developed together with wild-type cells, lrrA(-) cells were unable to move to the apical tip and sorted preferentially to the rear and lower cup regions. These results indicate that LrrA involves in cytoskeleton remodeling, which is needed for normal chemotactic aggregation and efficient cell sorting during multicellular morphogenesis, particularly in the formation of apical tip.
Collapse
Affiliation(s)
- Chia-I Liu
- Department of Biochemistry, National Cheng Kung University Medical College, Tainan 701, Taiwan, ROC
| | | | | | | | | |
Collapse
|
23
|
Wilkins A, Szafranski K, Fraser DJ, Bakthavatsalam D, Müller R, Fisher PR, Glöckner G, Eichinger L, Noegel AA, Insall RH. The Dictyostelium genome encodes numerous RasGEFs with multiple biological roles. Genome Biol 2005; 6:R68. [PMID: 16086850 PMCID: PMC1273635 DOI: 10.1186/gb-2005-6-8-r68] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/09/2005] [Accepted: 06/21/2005] [Indexed: 11/12/2022] Open
Abstract
A survey of the Dictyostelium genome reveals at least 25 RasGEFs, all of which appear to be expressed at some point in development. Disruption of several of these novel RasGEFs reveals that many have clear phenotypes, suggesting that the unexpectedly large number of RasGEF genes reflects an evolutionary expansion of the range of Ras signaling. Background Dictyostelium discoideum is a eukaryote with a simple lifestyle and a relatively small genome whose sequence has been fully determined. It is widely used for studies on cell signaling, movement and multicellular development. Ras guanine-nucleotide exchange factors (RasGEFs) are the proteins that activate Ras and thus lie near the top of many signaling pathways. They are particularly important for signaling in development and chemotaxis in many organisms, including Dictyostelium. Results We have searched the genome for sequences encoding RasGEFs. Despite its relative simplicity, we find that the Dictyostelium genome encodes at least 25 RasGEFs, with a few other genes encoding only parts of the RasGEF consensus domains. All appear to be expressed at some point in development. The 25 genes include a wide variety of domain structures, most of which have not been seen in other organisms. The LisH domain, which is associated with microtubule binding, is seen particularly frequently; other domains that confer interactions with the cytoskeleton are also common. Disruption of a sample of the novel genes reveals that many have clear phenotypes, including altered morphology and defects in chemotaxis, slug phototaxis and thermotaxis. Conclusion These results suggest that the unexpectedly large number of RasGEF genes reflects an evolutionary expansion of the range of Ras signaling rather than functional redundancy or the presence of multiple pseudogenes.
Collapse
Affiliation(s)
- Andrew Wilkins
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Karol Szafranski
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Derek J Fraser
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Deenadayalan Bakthavatsalam
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Rolf Müller
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Paul R Fisher
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Gernot Glöckner
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Angelika A Noegel
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Robert H Insall
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Abstract
Neutrophils and Dictyostelium discoideum share the ability to migrate directionally in response to external chemoattractant gradients. The binding of chemoattractants to specific receptors that are coupled to heterotrimeric G proteins leads to a wide range of biochemical responses that become highly localized as cells polarize and migrate by chemotaxis. The signaling mechanisms that lead to the predominant polymerization of F-actin at the front of cells for propulsion and to myosin II assembly at the sides to suppress lateral pseudopod formation and at the back for retraction are now beginning to emerge.
Collapse
Affiliation(s)
- Carole A Parent
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg37/Rm1E24, Bethesda MD 20892-4255, USA.
| |
Collapse
|
25
|
Postma M, Roelofs J, Goedhart J, Loovers HM, Visser AJWG, Van Haastert PJM. Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches. J Cell Sci 2004; 117:2925-35. [PMID: 15161938 DOI: 10.1242/jcs.01143] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The leading edge of Dictyostelium cells in chemoattractant gradients can be visualized using green fluorescent protein (GFP) tagged to the pleckstrin-homology (PH) domain of cytosolic regulator of adenylyl cyclase (CRAC), which presumable binds phosphatidylinositol-(3,4,5)triphosphate [PtdIns(3,4,5)P(3)]. Uniform cyclic AMP (cAMP) concentrations induce persistent translocation of PH(Crac)-GFP from the cytosol to multiple patches, which are similar to the single patch of PH(Crac)-GFP at the leading edge in a cAMP gradient. We show that cAMP determines the probability of patch formation (half-maximal effect at 0.5 nM cAMP) but not the size, lifetime or intensity of patches, indicating that patches are self-organizing structures. A pseudopod is extended from the area of the cell with a PH(Crac)-GFP patch at about 10 seconds after patch formation. Cells treated with the F-actin inhibitor latrunculin A are round without pseudopodia; uniform cAMP still induces localized patches of PH(Crac)-GFP. Inhibition of phosphoinositide-3-kinase (PI3K) activity with LY294002 inhibits PH(Crac)-GFP patches and inhibits chemotaxis towards nanomolar cAMP but has no effect at higher cAMP concentrations. Thus, very low cAMP concentrations induce self-organizing PH(Crac)-GFP patches that serve as a spatial cue for pseudopod formation, which enhances the sensitivity and amplitude of chemotactic movement.
Collapse
Affiliation(s)
- Marten Postma
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Kae H, Lim CJ, Spiegelman GB, Weeks G. Chemoattractant-induced Ras activation during Dictyostelium aggregation. EMBO Rep 2004; 5:602-6. [PMID: 15143344 PMCID: PMC1299071 DOI: 10.1038/sj.embor.7400151] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 01/08/2004] [Accepted: 03/25/2004] [Indexed: 11/08/2022] Open
Abstract
Ras proteins are highly conserved molecular switches that regulate cellular response to external stimuli. Dictyostelium discoideum contains an extensive family of Ras proteins that function in regulation of mitosis, cytoskeletal function and motility, and the onset of development. Little is known about the events that lead to the activation of Ras proteins in Dictyostelium, primarily owing to a lack of a biochemical assay to measure the levels of activated Ras. We have adapted an assay, used successfully to measure activated Ras in mammalian cells, to monitor activation of two Dictyostelium Ras proteins, RasC and RasG. We have found that the Ras-binding domain (RBD) of mammalian Raf1 was capable of binding to the activated form of RasG, but not to the activated form of RasC; however, the RBD of Schizosaccharomyces pombe Byr2 was capable of binding preferentially to the activated forms of both RasC and RasG. Using this assay, we discovered that RasC and RasG showed a rapid and transient activation when aggregation-competent cells were stimulated with the chemoattractant cAMP, and this activation did not occur in a number of cAMP signalling mutants. These data provide further evidence of a role for both RasC and RasG in the early development of Dictyostelium.
Collapse
Affiliation(s)
- Helmut Kae
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3
| | - Chinten James Lim
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3
| | - George B Spiegelman
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3
| | - Gerald Weeks
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3
- Tel: +1 604 822 0997; Fax +1 604 822 6041; E-mail:
| |
Collapse
|
27
|
Brzostowski JA, Parent CA, Kimmel AR. A G alpha-dependent pathway that antagonizes multiple chemoattractant responses that regulate directional cell movement. Genes Dev 2004; 18:805-15. [PMID: 15059962 PMCID: PMC387420 DOI: 10.1101/gad.1173404] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chemotactic cells, including neutrophils and Dictyostelium discoideum, orient and move directionally in very shallow chemical gradients. As cells polarize, distinct structural and signaling components become spatially constrained to the leading edge or rear of the cell. It has been suggested that complex feedback loops that function downstream of receptor signaling integrate activating and inhibiting pathways to establish cell polarity within such gradients. Much effort has focused on defining activating pathways, whereas inhibitory networks have remained largely unexplored. We have identified a novel signaling function in Dictyostelium involving a Galpha subunit (Galpha9) that antagonizes broad chemotactic response. Mechanistically, Galpha9 functions rapidly following receptor stimulation to negatively regulate PI3K/PTEN, adenylyl cyclase, and guanylyl cyclase pathways. The coordinated activation of these pathways is required to establish the asymmetric mobilization of actin and myosin that typifies polarity and ultimately directs chemotaxis. Most dramatically, cells lacking Galpha9 have extended PI(3,4,5)P(3), cAMP, and cGMP responses and are hyperpolarized. In contrast, cells expressing constitutively activated Galpha9 exhibit a reciprocal phenotype. Their second message pathways are attenuated, and they have lost the ability to suppress lateral pseudopod formation. Potentially, functionally similar Galpha-mediated inhibitory signaling may exist in other eukaryotic cells to regulate chemoattractant response.
Collapse
Affiliation(s)
- Joseph A Brzostowski
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive Kidney Diseases, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
28
|
Lim CJ, Spiegelman GB, Weeks G. Cytoskeletal regulation by Dictyostelium Ras subfamily proteins. J Muscle Res Cell Motil 2003; 23:729-36. [PMID: 12952071 DOI: 10.1023/a:1024471527153] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ras subfamily proteins are monomeric GTPases that function as molecular switches in cellular signal transduction. The roles of six of these proteins in regulating actin cytoskeletal functions in Dictyostelium discoideum are discussed in this review.
Collapse
Affiliation(s)
- Chinten James Lim
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
29
|
Rivero F, Somesh BP. Signal transduction pathways regulated by Rho GTPases in Dictyostelium. J Muscle Res Cell Motil 2003; 23:737-49. [PMID: 12952072 DOI: 10.1023/a:1024423611223] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches, cycling between an active GTP-bound state and an inactive GDP-bound state. Activation enables Rho GTPases to interact with a multitude of effectors that relay upstream signals to cytoskeletal and other components, eliciting rearrangements of the actin cytoskeleton and diverse other cellular responses. In Dictyostelium the Rho family comprises 15 members. Some of them (Rac1a/b/c, RacF1/F2, RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily, however the Rho and Cdc42 subfamilies are not represented. Dictyostelium Rho GTPases regulate actin polymerization, cell morphology, endocytosis, cytokinesis, cell polarity and chemotaxis. Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) modulate the activation/inactivation cycle of the GTPases. In addition, guanine nucleotide-dissociation inhibitors (GDIs) regulate cycling of the GTPases between membranes and cytosol. Members of these three classes of regulatory molecules along with some effectors have been identified in Dictyostelium during the last years and their role in Rho signaling pathways has been investigated.
Collapse
Affiliation(s)
- Francisco Rivero
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany.
| | | |
Collapse
|
30
|
Weeks G, Spiegelman GB. Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal 2003; 15:901-9. [PMID: 12873703 DOI: 10.1016/s0898-6568(03)00073-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Ras subfamily proteins are monomeric GTPases that function as molecular switches in cellular signal transduction pathways. This review describes our current knowledge of the roles that these proteins play in the growth and differentiation of single celled microorganisms.
Collapse
Affiliation(s)
- Gerald Weeks
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
31
|
Blagg SL, Stewart M, Sambles C, Insall RH. PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Curr Biol 2003; 13:1480-7. [PMID: 12956949 DOI: 10.1016/s0960-9822(03)00580-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The WASP/SCAR family of adaptor proteins coordinates actin reorganization by coupling different signaling molecules, including Rho-family GTPases, to the activation of the Arp2/3 complex. WASP binds directly to Cdc42 through its GTPase binding domain (GBD), but SCAR does not contain a GBD, and no direct binding has been found. However, SCAR has recently been found to copurify with four other proteins in a complex. One of these, PIR121, binds directly to Rac. RESULTS We have identified four of the members of this complex in Dictyostelium and disrupted the pirA gene, which encodes PIR121. The resulting mutant cells are unusually large, maintain an excessive proportion of their actin in a polymerized state and display severe defects in movement and chemotaxis. They also continually extend new pseudopods by widening and splitting existing leading edges rather than by initiating new pseudopods. Comparing these cells to scar null mutants shows behavior that is broadly consistent with overactivation of SCAR. Deletion of the pirA gene in a scar(-) mutant resulted in cells resembling their scar(-) parents with no obvious changes, confirming that PIR121 mainly acts through SCAR in vivo. Surprisingly given their hyperactive phenotype, we find that pirA(-) mutants contain very little intact SCAR protein despite normal levels of mRNA, suggesting a posttranscriptional downregulation of activated SCAR. CONCLUSIONS Our results demonstrate a genetic connection between the pirA and scar genes. PIR121 appears to inhibit the activity of SCAR in the absence of activating signals. The location of the newly formed protrusions indicates that unregulated SCAR is acting at the edges of existing pseudopods, not elsewhere in the cell. We suggest that active SCAR protein released from the inhibitory complex is rapidly removed and that this is an important and novel mechanism for controlling actin dynamics.
Collapse
Affiliation(s)
- Simone L Blagg
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Abstract
Cells migrating directionally toward a chemoattractant source display a highly polarized cytoskeletal organization, with F-actin localized predominantly at the anterior and myosin II at the lateral and posterior regions. Dictyostelium discoideum has proven a useful system for elucidating signaling pathways that regulate this chemotactic response. During development, extracellular adenosine 3', 5' monophosphate (cAMP) functions as a primary signal to activate cell surface cAMP receptors (cARs). These receptors transduce different signals depending on whether or not they are coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins) (see the STKE Connections Maps). Multiple G protein-stimulated pathways interact to establish polarity in chemotaxing D. discoideum cells by localizing F-actin at their leading edge and by regulating the phosphorylation state and assembly of myosin II. Many of the molecular interactions described are fundamental to the regulation of chemotaxis in other eukaryotic cells.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Abstract
Endocytosis in protozoa is often regarded as largely different from the pathways operating in mammalian cells. Experiments in the amoeba Dictyostelium, one of the genetically tractable single-celled organisms, have allowed us to manipulate the flow through endocytic compartments and to study the dynamic distribution of molecules by means of green fluorescent protein fusions. This review attempts to compile the molecular data available from Dictyostelium and assign them to specific steps of internalization by phagocytosis or macropinocytosis and to subsequent stages of the endocytic pathway. Parallels to phagocytes of the mammalian immune system are emphasized. The major distinctive feature between mammalian phagocytes and free-living cells is the need for osmoregulation. Therefore Dictyostelium cells possess a contractile vacuole that has occasionally obscured analysis of endocytosis but is now found to be entirely separate from endocytic organelles. In conclusion, the potential of Dictyostelium amoebas to provide a model system of mammalian phagocytes is ever increasing.
Collapse
Affiliation(s)
- Markus Maniak
- Department of Cell Biology, Universitaet Kassel, 34109 Kassel, Germany
| |
Collapse
|
34
|
Qualmann B, Mellor H. Regulation of endocytic traffic by Rho GTPases. Biochem J 2003; 371:233-41. [PMID: 12564953 PMCID: PMC1223314 DOI: 10.1042/bj20030139] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 02/04/2003] [Indexed: 11/17/2022]
Abstract
The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39008, Magdeburg, Germany
| | | |
Collapse
|
35
|
Abstract
Dictyostelium genome sequencing predicts an unexpectedly large number of genes. Many are absent from yeast but present in animals and presumably support cellular abilities not found in yeast. Prominent amongst these abilities is chemotaxis, where great strides are being made in understanding how cells orient in a gradient and mobilise their cytoskeleton for movement. In multicellular development, a regulatory scheme for proportioning prespore and prestalk-O cells has emerged.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK.
| |
Collapse
|
36
|
Chubb JR, Wilkins A, Wessels DJ, Soll DR, Insall RH. Pseudopodium dynamics and rapid cell movement in Dictyostelium Ras pathway mutants. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:150-62. [PMID: 12211111 DOI: 10.1002/cm.10064] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Loss of either of the Ras pathway members RasS or GefB causes growing Dictyostelium cells to move aberrantly rapidly. In this study, we describe the changes in motility that underlie these phenotypes using computer-assisted 3D dynamic image analysis. Unexpectedly, the two mutants use different mechanisms to achieve rapid migration. The rasS(-) cells' motility is characterised by highly dynamic cell morphology, with rapidly extending and retracting pseudopodia. The gefB(-) cells do not have an unusually dynamic morphology, and achieve their efficient translocation by the continual remodelling of an existing dominant anterior pseudopodium. In spite of these dramatic changes in pseudopodium behaviour, the underlying motility cycle of both mutants remains normal. The levels of F-actin in both mutant cell lines are significantly elevated with respect to the wild-type parental cells, suggesting a possible biochemical basis for these emphatic phenotypes.
Collapse
Affiliation(s)
- Jonathan R Chubb
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Goldberg JM, Bosgraaf L, Van Haastert PJM, Smith JL. Identification of four candidate cGMP targets in Dictyostelium. Proc Natl Acad Sci U S A 2002; 99:6749-54. [PMID: 12011437 PMCID: PMC124474 DOI: 10.1073/pnas.102167299] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2001] [Accepted: 03/22/2002] [Indexed: 11/18/2022] Open
Abstract
In Dictyostelium, a transient increase in intracellular cGMP is important for cytoskeletal rearrangements during chemotaxis. There must be cGMP-binding proteins in Dictyostelium that regulate key cytoskeletal components after treatment with chemoattractants, but to date, no such proteins have been identified. Using a bioinformatics approach, we have found four candidate cGMP-binding proteins (GbpA-D). GbpA and -B have two tandem cGMP-binding sites downstream of a metallo beta-lactamase domain, a superfamily that includes cAMP phosphodiesterases. GbpC contains the following nine domains (in order): leucine-rich repeats, Ras, MEK kinase, Ras guanine nucleotide exchange factor N-terminal (RasGEF-N), DEP, RasGEF, cGMP-binding, GRAM, and a second cGMP-binding domain. GbpD is related to GbpC, but is much shorter; it begins with the RasGEF-N domain, and lacks the DEP domain. Disruption of the gbpC gene results in loss of all high-affinity cGMP-binding activity present in the soluble cellular fraction. GbpC mRNA levels increase dramatically 8 h after starvation is initiated. GbpA, -B, and -D mRNA levels show less dramatic changes, with gbpA mRNA levels highest 4 h into starvation, gbpB mRNA levels highest in vegetative cells, and gbpD levels highest at 8 h. The identification of these genes is the first step in a molecular approach to studying downstream effects of cGMP signaling in Dictyostelium.
Collapse
Affiliation(s)
- Jonathan M Goldberg
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472-2829, USA
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Matthew Wherlock
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
39
|
Roelofs J, Loovers HM, Van Haastert PJ. GTPgammaS regulation of a 12-transmembrane guanylyl cyclase is retained after mutation to an adenylyl cyclase. J Biol Chem 2001; 276:40740-5. [PMID: 11522784 DOI: 10.1074/jbc.m105154200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domain. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5'-3-O-(thio) triphosphate (GTPgammaS), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCA(kqd) in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTPgammaS stimulated the adenylyl cyclase activity of DdGCA(kqd) with properties similar to those of the wild-type enzyme (decrease of K(m) and increase of V(max)), demonstrating that GTPgammaS stimulation is independent of substrate specificity. Furthermore, GTPgammaS activation of DdGCA(kqd) is retained in several null mutants of Galpha and Gbeta proteins, indicating that GTPgammaS activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.
Collapse
Affiliation(s)
- J Roelofs
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | | |
Collapse
|
40
|
Friedl P, Borgmann S, Bröcker E. Amoeboid leukocyte crawling through extracellular matrix: lessons from the
Dictyostelium
paradigm of cell movement. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.4.491] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Peter Friedl
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Stefan Borgmann
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Eva‐B. Bröcker
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Lim CJ, Spiegelman GB, Weeks G. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation. EMBO J 2001; 20:4490-9. [PMID: 11500376 PMCID: PMC125575 DOI: 10.1093/emboj/20.16.4490] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2001] [Revised: 06/29/2001] [Accepted: 06/29/2001] [Indexed: 12/31/2022] Open
Abstract
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.
Collapse
Affiliation(s)
- Chinten James Lim
- Department of Microbiology and Immunology and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada Corresponding author e-mail:
| | - George B. Spiegelman
- Department of Microbiology and Immunology and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada Corresponding author e-mail:
| | - Gerald Weeks
- Department of Microbiology and Immunology and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada Corresponding author e-mail:
| |
Collapse
|
42
|
|