1
|
Araszkiewicz AF, Jańczak K, Wójcik P, Białecki B, Kubiak S, Szczechowski M, Januszkiewicz-Lewandowska D. MTHFR Gene Polymorphisms: A Single Gene with Wide-Ranging Clinical Implications-A Review. Genes (Basel) 2025; 16:441. [PMID: 40282401 PMCID: PMC12027316 DOI: 10.3390/genes16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a process essential for the methylation of homocysteine to methionine. Polymorphisms in the MTHFR gene can reduce enzyme activity, disrupting the folate cycle and leading to hyperhomocysteinemia. The two most common polymorphisms associated with this gene are 667C>T (rs1801133) and 1298A>C (rs1801131). Background: This review provides a comprehensive summary of the current knowledge regarding MTHFR polymorphisms, with a particular focus on their potential impact on disease susceptibility. We hope this review will serve as a valuable resource for understanding the significance of MTHFR polymorphisms and their complex relationships with various diseases. Methods: For this review, we prioritized recent evidence, focusing on reviews and meta-analyses published between 2015 and 2025, sourced from PubMed and Google Scholar. Results: We explore the connection between these polymorphisms and a broad spectrum of medical conditions, including cardiovascular diseases and oxidative stress pathology; neurological and psychiatric disorders, such as Autism Spectrum Disorder, Alzheimer's disease, Schizophrenia, and Major Depressive Disorder; fertility, pregnancy, and neonatal complications, including recurrent pregnancy loss, pre-eclampsia, preterm birth, low birth weight, and neural tube defects; metabolic disorders, such as diabetes mellitus, inflammatory bowel disease, and non-alcoholic fatty liver disease; and oncological conditions, including breast, prostate, and ovarian cancers; as well as leukemia, and autoimmune diseases, particularly rheumatoid arthritis. Conclusions: While some diseases have a well-established association with MTHFR polymorphisms, others require further investigation. Our analysis highlights the crucial role of environmental factors, such as ethnic background and dietary folate intake, in influencing study outcomes.
Collapse
Affiliation(s)
- Antoni F. Araszkiewicz
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Krzysztof Jańczak
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Paweł Wójcik
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Bartłomiej Białecki
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Szymon Kubiak
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Michał Szczechowski
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Danuta Januszkiewicz-Lewandowska
- Clinic of Oncology, Hematology and Pediatric Transplantology, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland
| |
Collapse
|
2
|
Porfyris O, Detopoulou P, Adamantidi T, Tsoupras A, Papageorgiou D, Ioannidis A, Rojas Gil AP. Phytochemicals as Chemo-Preventive and Therapeutic Agents Against Bladder Cancer: A Comprehensive Review. Diseases 2025; 13:103. [PMID: 40277814 PMCID: PMC12026019 DOI: 10.3390/diseases13040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Bladder cancer has a high incidence worldwide and is characterized by a high recurrence rate, metastatic potential, and a significant socioeconomic burden. Conventional treatment modalities usually exhibit serious adverse complications, which also negatively affect patients' quality of life. In the context of exploring new treatment approaches with fewer side effects, the utilization of natural compounds as alternative and/or complementary therapeutic options seems appealing. In the present study, the potential use and effects of various bioactive phytochemicals, including curcumin, resveratrol, epigallocatechin, genistein, and several others, in bladder cancer treatment are thoroughly reviewed. A special focus is given to their potential to beneficially modulate important molecular signaling pathways and mechanisms affecting cell survival, proliferation, migration, and apoptosis, which play a crucial role in the pathogenesis of bladder cancer, such as the PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, Wnt/β-Catenin, Notch, Hedgehog, Hippo, JAK2/STAT3, and PAF/PAF-receptor pathways. Nevertheless, most studies have been conducted in cell cultures and animal models. Due to differences in genetics and metabolism, more clinical trials are needed to ensure the bio-efficacy of these phytochemicals in humans.
Collapse
Affiliation(s)
- Orestis Porfyris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Paraskevi Detopoulou
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece;
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Dimitris Papageorgiou
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese Panarcadian Hospital of Tripoli, Red Cross Terminal (Administrative Services) 2nd Floor, 22100 Tripoli, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| |
Collapse
|
3
|
McDonald JF. Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology. Mol Biol Evol 2025; 42:msae269. [PMID: 39761690 PMCID: PMC11725524 DOI: 10.1093/molbev/msae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits. Examples of this process are presented and combined with more recent findings demonstrating that stress-induced ncRNAs are transferable from somatic to germline cells leading to cross-generational inheritance of acquired adaptive traits. The fact that ncRNAs have been implicated in the transient adaptive response of various plants and animals to environmental stress is consistent with findings in cancer biology. Based on these collective observations, a general model as well as specific and testable hypotheses are proposed on how transient ncRNA-mediated adaptive responses may facilitate the transition to long-term biological adaptation in both cancer and evolution.
Collapse
Affiliation(s)
- John F McDonald
- Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Wells C, Pogribna M, Sharmah A, Paredes A, Word B, Patri AK, Lyn-Cook B, Hammons G. Exposure to a Titanium Dioxide Product Alters DNA Methylation in Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2037. [PMID: 39728572 DOI: 10.3390/nano14242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The safety of titanium dioxide (TiO2), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO2 has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO2 product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Gene promoter methylation was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNA methyltransferases, MBD2, and URHF1 was quantified by qRT-PCR. A decrease in global DNA methylation was observed in both cell lines. Across the cell lines, seven genes (BNIP3, DNAJC15, GADD45G, GDF15, INSIG1, SCARA3, and TP53) were identified in which promoters were methylated. Changes in promoter methylation were associated with gene expression. Results also revealed aberrant expression of regulatory genes, DNA methyltransferases, MBD2, and UHRF1. Findings from the study clearly demonstrate the impact of TiO2 exposure on DNA methylation in two cell types, supporting the potential involvement of this epigenetic mechanism in its biological responses. Hence, epigenetic studies are critical for complete assessment of potential risk from exposure.
Collapse
Affiliation(s)
- Carlos Wells
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Arjun Sharmah
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Angel Paredes
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Anil K Patri
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
5
|
Wang L, Hu X, Tao C, Xiang J, Cui H. Identification of Antisense RNA NRAS-AS and Its Preliminary Exploration of the Anticancer Regulatory Mechanism. Genes (Basel) 2024; 15:1524. [PMID: 39766793 PMCID: PMC11675080 DOI: 10.3390/genes15121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE To explore the influence of NRAS-AS on the proliferation, apoptosis, cell cycle, migration, and invasion ability of HCC cells, as well as its underlying mechanisms. METHODS A double-stranded cDNA library for liver cancer cells was constructed, and identified NRAS-AS through High-throughput sequencing, bioinformatics, chain-specific fluorescent quantitative PCR, and RACE. NRAS-AS's effects on HepG2 and SMMC-7721 cells and gene expression were evaluated. Additionally, the study analyzed the influence of NRAS-AS overexpression on tumor formation in nude mice. Immunohistochemistry and Western blotting were used to detect NRAS protein levels in clinical samples. RT-qPCR examined NRAS-AS and NRAS gene expression in HCC and adjacent tissues. RESULTS NRAS-AS overexpression suppresses HCC cell proliferation and invasion, induces cell cycle alterations in HepG2 and SMMC-7721 cells, and enhances apoptosis. NRAS-AS interference promoted liver cancer invasion, inhibited apoptosis, and influences the cell cycle. Nude mice overexpressing NRAS-AS showed smaller tumors. NRAS-AS expression in liver cancer patients correlated with clinical factors. RT-qPCR revealed an inverse correlation between NRAS-AS and NRAS gene expression in liver cancer and adjacent tissues. IHC analysis revealed reduced NRAS protein expression in HepG2 and SMMC-7721 cells following NRAS-AS overexpression. The impact of AZA treatment on antisense NRAS-AS and sense NRAS gene expression in liver cancer cells was observed, and antisense. CONCLUSION Reduced NRAS-AS expression is frequently observed in HCC and is inversely related to NRAS gene expression, suggesting a role in HCC pathogenesis through NRAS regulation. Targeting antisense RNA NRAS-AS could hold promise as a therapeutic target and diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Liping Wang
- Department of Biobank, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China;
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
| | - Xuming Hu
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225001, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou 225001, China;
| | - Jacob Xiang
- Clinical Pharmacist, Foothills Medical Centre, 140329 St NW, Calgary, AB T2N 2T9, Canada;
| | - Hengmi Cui
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
6
|
Zhao Y, O'Keefe CM, Hu J, Allan CM, Cui W, Lei H, Chiu A, Hsieh K, Joyce SC, Herman JG, Pisanic TR, Wang TH. Multiplex digital profiling of DNA methylation heterogeneity for sensitive and cost-effective cancer detection in low-volume liquid biopsies. SCIENCE ADVANCES 2024; 10:eadp1704. [PMID: 39576863 PMCID: PMC11584010 DOI: 10.1126/sciadv.adp1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Molecular alterations in cancerous tissues exhibit intercellular genetic and epigenetic heterogeneity, complicating the performance of diagnostic assays, particularly for early cancer detection. Conventional liquid biopsy methods have limited sensitivity and/or ability to assess epigenetic heterogeneity of rare epiallelic variants cost-effectively. We report an approach, named REM-DREAMing (Ratiometric-Encoded Multiplex Discrimination of Rare EpiAlleles by Melt), which leverages a digital microfluidic platform that incorporates a ratiometric fluorescence multiplex detection scheme and precise digital high-resolution melt analysis to enable low-cost, parallelized analysis of heterogeneous methylation patterns on a molecule-by-molecule basis for the detection of cancer in liquid biopsies. We applied the platform to simultaneously assess intermolecular epigenetic heterogeneity in five methylation biomarkers for improved, blood-based screening for early-stage non-small cell lung cancer. In a cohort of 48 low-volume liquid biopsy specimens from patients with indeterminant pulmonary nodules, we show that assessment of intermolecular methylation density distributions can notably improve the performance of multigene methylation biomarker panels for the early detection of cancer.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christine M O'Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiumei Hu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Conor M Allan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Weiwen Cui
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hanran Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Allyson Chiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sonali C Joyce
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - James G Herman
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Thomas R Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Mahmoudi A, Jamialahmadi T, Kesharwani P, Sahebkar A. Bioinformatic analysis of the molecular targets of curcumin in colorectal cancer. Pathol Res Pract 2024; 262:155533. [PMID: 39173464 DOI: 10.1016/j.prp.2024.155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Colorectal cancer (CRC) is a major global health concern, with rising incidence and mortality rates. Conventional treatments often come with significant complications, prompting the exploration of natural compounds like curcumin as potential therapeutic agents. Using bioinformatic tools, this study investigated the role of curcumin in CRC treatment. Significant protein interactions between curcumin and target proteins were identified in the STITCH database. Differentially expressed genes (DEGs) associated with CRC were then analyzed from GEO databases. Comparing curcumin targets and CRC-related DEGs, nine significant common targets were identified: DNMT1, PCNA, CCND1, PLAU, MMP3, SOX9, FOXM1, CXCL2, and SERPINB5. Pathway enrichment analyses revealed that curcumin-targeted pathways were primarily related to p53, IL-17, NF-kappa B, TNF, and cell cycle signaling, all crucial in CRC development and progression. Further analyses using DAID and EnrichR algorithms showed that the curcumin targets exhibited greater specificity to bronchial epithelial cells and colorectal adenocarcinoma than other diseases. Analyses via the DSigDB database indicated that curcumin ranks highly among other drugs targeting the identified CRC-related genes. Docking studies revealed favorable binding interactions between curcumin and the key CRC-related proteins, suggesting potential molecular mechanisms by which curcumin may exert its effects. In summary, this study provides bioinformatic and docking evidence that curcumin may exert beneficial effects on CRC by modulating the expression or activity of multiple CRC-susceptibility genes involved in critical signaling pathways. These findings warrant further experimental validation and support the potential of curcumin as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Ye BJ, Li DF, Li XY, Hao JL, Liu DJ, Yu H, Zhang CD. Methylation synthetic lethality: Exploiting selective drug targets for cancer therapy. Cancer Lett 2024; 597:217010. [PMID: 38849016 DOI: 10.1016/j.canlet.2024.217010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
Collapse
Affiliation(s)
- Bing-Jie Ye
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Fei Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hang Yu
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
10
|
Wooller SK, Pearl LH, Pearl FMG. Identifying actionable synthetically lethal cancer gene pairs using mutual exclusivity. FEBS Lett 2024; 598:2028-2039. [PMID: 38977941 DOI: 10.1002/1873-3468.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
Mutually exclusive loss-of-function alterations in gene pairs are those that occur together less frequently than may be expected and may denote a synthetically lethal relationship (SSL) between the genes. SSLs can be exploited therapeutically to selectively kill cancer cells. Here, we analysed mutation, copy number variation, and methylation levels in samples from The Cancer Genome Atlas, using the hypergeometric and the Poisson binomial tests to identify mutually exclusive inactivated genes. We focused on gene pairs where one is an inactivated tumour suppressor and the other a gene whose protein product can be inhibited by known drugs. This provided an abundance of potential targeted therapeutics and repositioning opportunities for several cancers. These data are available on the MexDrugs website, https://bioinformaticslab.sussex.ac.uk/mexdrugs.
Collapse
Affiliation(s)
- Sarah K Wooller
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laurence H Pearl
- Genome Damage Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Frances M G Pearl
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
11
|
Hernández-Caballero ME, Sierra-Ramírez JA, De la Peña-Gutierrez M, Galindo-Ramirez F. Investigating the Role of Fat Mass and Obesity-Associated (FTO) Single Nucleotide Polymorphisms and Methylation in Breast Cancer. Cureus 2024; 16:e62851. [PMID: 39040764 PMCID: PMC11260689 DOI: 10.7759/cureus.62851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Background Fat mass and obesity-associated (FTO) protein is an mRNA demethylase enzyme essential for active genome regulation. The FTO gene codes for a protein that is part of the methylosome complex and has a regulatory role in cancer development. Some studies have shown a relationship between FTO and cancer, where single nucleotide polymorphisms (SNPs) may have some impact on cancer risk. The present study aimed to evaluate the risk of FTO polymorphisms rs9939609, rs1477196, and rs9930506; analyze the methylation status of FTO promoters among Mexican women with breast cancer (BC); and investigate by in silico analysis the methylation status in the region near these polymorphisms. Methods A total of 157 BC patients and 137 healthy controls were genotyped for rs9939609, rs1477196, and rs9930506 FTO polymorphisms by TaqMan SNP Genotyping Assays. Promoter methylation was analyzed by sodium bisulfite and methylation-specific polymerase chain reaction (MSP) for 78 tissue samples. An in silico analysis using The Cancer Genome Atlas Program (TCGA) database was employed to investigate the methylation state in promoter and near polymorphism locations and its relation to survival. Results The AG genotype of FTO rs9930506 was associated with BC protection (P= 0.0025; adjusted OR, 0.27; 95% CI: 0.10-0.70). rs9939609 and rs1477196, according to the results of the present study, had no relation to BC. Promoter methylation status assays by MSP revealed no changes in methylation in BC or healthy tissues. Trying to know more about the methylation in promoters and near polymorphisms' relation to survival, we performed an in silico analysis. Bioinformatics analysis showed a correlation between poor survival and methylation near polymorphisms but not with methylation in the promoter region. Conclusions The AG genotype rs9930506 has a protective function against BC. Whereas high methylation near polymorphisms was related to lower survival, the hypomethylated promoter region does not impact survival.
Collapse
Affiliation(s)
| | - Jose Alfredo Sierra-Ramírez
- Postgraduate Studies and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, MEX
| | | | | |
Collapse
|
12
|
Ma T, Zhang Q, Zhang S, Yue D, Wang F, Ren Y, Zhang H, Wang Y, Wu Y, Liu LE, Yu F. Research progress of human key DNA and RNA methylation-related enzymes assay. Talanta 2024; 273:125872. [PMID: 38471421 DOI: 10.1016/j.talanta.2024.125872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Gene methylation-related enzymes (GMREs) are disfunction and aberrantly expressed in a variety of cancers, such as lung, gastric, and pancreatic cancers and have important implications for human health. Therefore,it is critical for early diagnosis and therapy of tumor to develop strategies that allow rapid and sensitive quantitative and qualitative detection of GMREs. With the development of modern analytical techniques and the application of various biosensors, there are numerous methods have been developed for analysis of GMREs. Therefore, this paper provides a systematic review of the strategies for level and activity assay of various GMREs including methyltransferases and demethylase. The detection methods mainly involve immunohistochemistry, colorimetry, fluorescence, chemiluminescence, electrochemistry, etc. Then, this review also addresses the coordinated role of various detection probes, novel nanomaterials, and signal amplification methods. The aim is to highlight potential challenges in the present field, to expand the analytical application of GMREs detection strategies, and to meet the urgent need for future disease diagnosis and intervention.
Collapse
Affiliation(s)
- Tiantian Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qiongwen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Yue
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fanting Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yujie Ren
- School of Information Management, Zhengzhou University, Zhengzhou 450001, China
| | - Hengmiao Zhang
- School of Information Management, Zhengzhou University, Zhengzhou 450001, China
| | - Yinuo Wang
- Zhengzhou Foreign Language School, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Crosswhite P, Sun Z. TNFα Induces DNA and Histone Hypomethylation and Pulmonary Artery Smooth Muscle Cell Proliferation Partly via Excessive Superoxide Formation. Antioxidants (Basel) 2024; 13:677. [PMID: 38929115 PMCID: PMC11200563 DOI: 10.3390/antiox13060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Objective: The level of tumor necrosis factor-α (TNF-α) is upregulated during the development of pulmonary vascular remodeling and pulmonary hypertension. A hallmark of pulmonary arterial (PA) remodeling is the excessive proliferation of PA smooth muscle cells (PASMCs). The purpose of this study is to investigate whether TNF-α induces PASMC proliferation and explore the potential mechanisms. Methods: PASMCs were isolated from 8-week-old male Sprague-Dawley rats and treated with 0, 20, or 200 ng/mL TNF-α for 24 or 48 h. After treatment, cell number, superoxide production, histone acetylation, DNA methylation, and histone methylation were assessed. Results: TNF-α treatment increased NADPH oxidase activity, superoxide production, and cell numbers compared to untreated controls. TNF-α-induced PASMC proliferation was rescued by a superoxide dismutase mimetic tempol. TNF-α treatment did not affect histone acetylation at either dose but did significantly decrease DNA methylation. DNA methyltransferase 1 activity was unchanged by TNF-α treatment. Further investigation using QRT-RT-PCR revealed that GADD45-α, a potential mediator of DNA demethylation, was increased after TNF-α treatment. RNAi inhibition of GADD45-α alone increased DNA methylation. TNF-α impaired the epigenetic mechanism leading to DNA hypomethylation, which can be abolished by a superoxide scavenger tempol. TNF-α treatment also decreased H3-K4 methylation. TNF-α-induced PASMC proliferation may involve the H3-K4 demethylase enzyme, lysine-specific demethylase 1 (LSD1). Conclusions: TNF-α-induced PASMC proliferation may be partly associated with excessive superoxide formation and histone and DNA methylation.
Collapse
Affiliation(s)
- Patrick Crosswhite
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Human Physiology, Gonzaga University, Spokane, WA 99205, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| |
Collapse
|
14
|
Harachi M, Masui K, Shimizu E, Murakami K, Onizuka H, Muragaki Y, Kawamata T, Nakayama H, Miyata M, Komori T, Cavenee WK, Mischel PS, Kurata A, Shibata N. DNA hypomethylator phenotype reprograms glutamatergic network in receptor tyrosine kinase gene-mutated glioblastoma. Acta Neuropathol Commun 2024; 12:40. [PMID: 38481314 PMCID: PMC10935831 DOI: 10.1186/s40478-024-01750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.
Collapse
Affiliation(s)
- Mio Harachi
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan.
| | - Erika Shimizu
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Kumiko Murakami
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Hiromi Onizuka
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
- Center for Advanced Medical Engineering Research and Development, Kobe University, Kobe, Hyogo, 650-0047, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Hisako Nakayama
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Mariko Miyata
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Takashi Komori
- Department of Neuropathology, Tokyo Metropolitan Neurological Hospital, Musashinodai, Tokyo, 156-8506, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Atsushi Kurata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
15
|
Li S, Zeng L, Miao F, Li N, Liao W, Zhou X, Chen Y, Quan H, He Y, Zhang H, Li J, Yuan X. Knockdown of DNMT1 Induces SLCO3A1 to Promote Follicular Growth by Enhancing the Proliferation of Granulosa Cells in Mammals. Int J Mol Sci 2024; 25:2468. [PMID: 38473715 DOI: 10.3390/ijms25052468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
In female mammals, the proliferation and apoptosis of granulosa cells (GCs) have been shown to determine the fate of follicles. DNA methyltransferases (DNMTs) and SLCO3A1 have been reported to be involved in the survival of GCs and follicular growth. However, the molecular mechanisms enabling DNMTs to regulate the expression of SLCO3A1 to participate in follicular growth are unclear. In this study, we found that the knockdown of DNMT1 enhanced the mRNA and protein levels of SLCO3A1 by regulating the chromatin accessibility probably. Moreover, SLCO3A1 upregulated the mRNA and protein levels of MCL1, PCNA, and STAR to promote the proliferation of GCs and facilitated cell cycle progression by increasing the mRNA and protein levels of CCNE1, CDK2, and CCND1, but it decreased apoptosis by downregulating the mRNA and protein levels of CASP3 and CASP8. Moreover, SLCO3A1 promoted the growth of porcine follicles and development of mice follicles. In conclusion, the knockdown of DNMT1 upregulated the mRNA and protein levels of SLCO3A1, thereby promoting the proliferation of GCs to facilitate the growth and development of ovarian follicles, and these results provide new insights into investigations of female reproductive diseases.
Collapse
Affiliation(s)
- Shuo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liqing Zeng
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fen Miao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weili Liao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongcai Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongyan Quan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Lumpp T, Stößer S, Fischer F, Hartwig A, Köberle B. Role of Epigenetics for the Efficacy of Cisplatin. Int J Mol Sci 2024; 25:1130. [PMID: 38256203 PMCID: PMC10816946 DOI: 10.3390/ijms25021130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The clinical utility of the chemotherapeutic agent cisplatin is restricted by cancer drug resistance, which is either intrinsic to the tumor or acquired during therapy. Epigenetics is increasingly recognized as a factor contributing to cisplatin resistance and hence influences drug efficacy and clinical outcomes. In particular, epigenetics regulates gene expression without changing the DNA sequence. Common types of epigenetic modifications linked to chemoresistance are DNA methylation, histone modification, and non-coding RNAs. This review provides an overview of the current findings of various epigenetic modifications related to cisplatin efficacy in cell lines in vitro and in clinical tumor samples. Furthermore, it discusses whether epigenetic alterations might be used as predictors of the platinum agent response in order to prevent avoidable side effects in patients with resistant malignancies. In addition, epigenetic targeting therapies are described as a possible strategy to render cancer cells more susceptible to platinum drugs.
Collapse
Affiliation(s)
| | | | | | | | - Beate Köberle
- Department Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (T.L.); (S.S.); (F.F.); (A.H.)
| |
Collapse
|
17
|
Ravichandran SN, Kumar MM, Das A, Banerjee A, Veronica S, Sun-Zhang A, Zhang H, Anbalagan M, Sun XF, Pathak S. An Updated Review on Molecular Biomarkers in Diagnosis and Therapy of Colorectal Cancer. Curr Cancer Drug Targets 2024; 24:595-611. [PMID: 38031267 DOI: 10.2174/0115680096270555231113074003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Colorectal cancer is one of the most common cancer types worldwide. Since colorectal cancer takes time to develop, its incidence and mortality can be treated effectively if it is detected in its early stages. As a result, non-invasive or invasive biomarkers play an essential role in the early diagnosis of colorectal cancer. Many experimental studies have been carried out to assess genetic, epigenetic, or protein markers in feces, serum, and tissue. It may be possible to find biomarkers that will help with the diagnosis of colorectal cancer by identifying the genes, RNAs, and/or proteins indicative of cancer growth. Recent advancements in the molecular subtypes of colorectal cancer, DNA methylation, microRNAs, long noncoding RNAs, exosomes, and their involvement in colorectal cancer have led to the discovery of novel biomarkers. In small-scale investigations, most biomarkers appear promising. However, large-scale clinical trials are required to validate their effectiveness before routine clinical implementation. Hence, this review focuses on small-scale investigations and results of big data analysis that may provide an overview of the biomarkers for the diagnosis, therapy, and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Shruthi Nagainallur Ravichandran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Makalakshmi Murali Kumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Suhanya Veronica
- Department of Medical Microbiology and NanoBiomedical Engineering, Medical University of Białystok, ul. Świerkowa, s20 B15-328, Białystok, Poland
| | - Alexander Sun-Zhang
- Department of Oncology- Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Muralidharan Anbalagan
- School of Medicine, Tulane University School of Medicine, Tulane University, 1430 Tulane Ave, New Orleans, LA70112, United States
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| |
Collapse
|
18
|
Mishra G, Srivastava K, Rais J, Dixit M, Kumari Singh V, Chandra Mishra L. CRISPR-Cas9: A Potent Gene-editing Tool for the Treatment of Cancer. Curr Mol Med 2024; 24:191-204. [PMID: 36788695 DOI: 10.2174/1566524023666230213094308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 02/16/2023]
Abstract
The prokaryotic adaptive immune system has clustered regularly interspaced short palindromic repeat. CRISPR-associated protein (CRISPR-Cas) genome editing systems have been harnessed. A robust programmed technique for efficient and accurate genome editing and gene targeting has been developed. Engineered cell therapy, in vivo gene therapy, animal modeling, and cancer diagnosis and treatment are all possible applications of this ground-breaking approach. Multiple genetic and epigenetic changes in cancer cells induce malignant cell growth and provide chemoresistance. The capacity to repair or ablate such mutations has enormous potential in the fight against cancer. The CRISPR-Cas9 genome editing method has recently become popular in cancer treatment research due to its excellent efficiency and accuracy. The preceding study has shown therapeutic potential in expanding our anticancer treatments by using CRISPR-Cas9 to directly target cancer cell genomic DNA in cellular and animal cancer models. In addition, CRISPR-Cas9 can combat oncogenic infections and test anticancer medicines. It may design immune cells and oncolytic viruses for cancer immunotherapeutic applications. In this review, these preclinical CRISPRCas9- based cancer therapeutic techniques are summarised, along with the hurdles and advancements in converting therapeutic CRISPR-Cas9 into clinical use. It will increase their applicability in cancer research.
Collapse
Affiliation(s)
- Gauri Mishra
- Department of Zoology, Swami Shraddhanand College, University of Delhi-110036, Delhi, India
- Division Radiopharmaceuticals and Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Road, Delhi-110054, India
| | - Kamakshi Srivastava
- Department of Zoology, Swami Shraddhanand College, University of Delhi-110036, Delhi, India
| | - Juhi Rais
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | - Manish Dixit
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | - Vandana Kumari Singh
- Department of Zoology, Hansraj College, University of Delhi- 110007, Dehli, India
| | | |
Collapse
|
19
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
20
|
Singh SP, Tewari M, Singh AK, Mishra RR, Shukla HS. Epigenetic Silencing of p16INK4a gene in Sporadic Breast Cancer. Indian J Surg Oncol 2023; 14:822-828. [PMID: 38187858 PMCID: PMC10766924 DOI: 10.1007/s13193-023-01780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/06/2023] [Indexed: 01/09/2024] Open
Abstract
Epigenetic alterations of tumor suppressor genes (TSG) involved in the onset and progression of Breast Cancer (BC) may serve as biomarkers for early detection and prediction of disease prognosis. We have herein tried to determine the methylation status of TSG, p16INK4a, in our 50 BC patients and their association with clinicopathological parameters. The methylation status of the p16INK4a gene in fresh tissue samples from 50 patients with BC was assessed by methylation-specific polymerase chain reaction (MS-PCR). The mean age of BC patients was 49.30 ± 9.75 years. Of 50 BC samples tested, 21 (42%) had methylated p16INK4a gene. p16INK4a gene hypermethylation was significantly associated with age ≤ 50 years, premenopausal status and advanced BC stage. Multivariate analysis revealed a strong association between advanced BC stage (Stage III and Stage IV) and p16INK4a hypermethylation (P = 0.008, RR = 5.996, 95% CI = 1.581-22.739). p16INK4a methylation was significantly associated with Triple Negative BC (TNBC) (P = 0.045, OR = 4.181, 95% CI = 1.030-16.981). These findings indicate that p16INK4a hypermethylation frequently occurs in BC. Hypermethylation of p16INK4a in young, premenopausal, TNBC and with advance stage in BC patients suggests its association with aggressive BC.
Collapse
Affiliation(s)
- Satya P. Singh
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Mallika Tewari
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Alok K. Singh
- Department of Geriatric Medicine, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Raghvendra R. Mishra
- Medical Lab Technology, DDU Kaushal Kendra, Banaras Hindu University, Varanasi, India
| | - Hari S. Shukla
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| |
Collapse
|
21
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
22
|
Su J, Song S, Dou Y, Jia X, Song S, Ding X. Methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) for ultrasensitive DNA methylation analysis. Biosens Bioelectron 2023; 238:115587. [PMID: 37586263 DOI: 10.1016/j.bios.2023.115587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Methylation of the promoter region of cancer related genes plays a crucial role in the occurrence and development of cancer, and the degree of methylation has great potential for the early cancer diagnosis. At present, the technology used to quantify DNA methylation is mainly based on the DNA sequencing which are time-consuming and high-cost in the relating application. We have developed an ultrasensitive method of methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) to detect and quantify the level of DNA methylation. We could detect as little as 2 pg of methylated DNA in the 100000-fold excess of unmethylated genes, and discriminate prostate cancer from benign prostatic hyperplasia (BPH) and control with serum samples. We also demonstrate the reversibility of DNA methylation modification by treatment with demethylation drugs. With 16-channel electrochemical work station, our research reveals a simple and inexpensive method to quantify the methylation level of specially appointed genes, and have the potential to be applied in the clinical research.
Collapse
Affiliation(s)
- Jing Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shasha Song
- Pathology Department, Yantai Fushan People's Hospital, Yantai, China
| | - Yanzhi Dou
- Shanghai Institute of Microsystem and Information Technology, Chinse Academy of Sciences, Shanghai 200050, China
| | - Xiaolong Jia
- Department of Urology, The First Affiliated Hospital of Ningbo University, Liuting Street, Ningbo 315010, China
| | - Shiping Song
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Kaur D, Lee SM, Goldberg D, Spix NJ, Hinoue T, Li HT, Dwaraka VB, Smith R, Shen H, Liang G, Renke N, Laird PW, Zhou W. Comprehensive Evaluation of The Infinium Human MethylationEPIC v2 BeadChip. EPIGENETICS COMMUNICATIONS 2023; 3:6. [PMID: 38455390 PMCID: PMC10919401 DOI: 10.1186/s43682-023-00021-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/18/2023] [Indexed: 03/09/2024]
Abstract
Infinium Methylation BeadChips are widely used to profile DNA cytosine modifications in large cohort studies for reasons of cost-effectiveness, accurate quantification, and user-friendly data analysis in characterizing these canonical epigenetic marks. In this work, we conducted a comprehensive evaluation of the updated Infinium MethylationEPIC v2 BeadChip (EPICv2). Our evaluation revealed that EPICv2 offers significant improvements over its predecessors, including expanded enhancer coverage, applicability to diverse ancestry groups, support for low-input DNA down to one nanogram, coverage of existing epigenetic clocks, cell type deconvolution panels, and human trait associations, while maintaining accuracy and reproducibility. Using EPICv2, we were able to identify epigenome and sequence signatures in cell line models of DNMT and SETD2 loss and/or hypomorphism. Furthermore, we provided probe-wise evaluation and annotation to facilitate the use of new features on this array for studying the interplay between somatic mutations and epigenetic landscape in cancer genomics. In conclusion, EPICv2 provides researchers with a valuable tool for studying epigenetic modifications and their role in development and disease.
Collapse
Affiliation(s)
- Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- These authors contribute equally
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- These authors contribute equally
| | - David Goldberg
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Nathan J Spix
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Toshinori Hinoue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | - Ryan Smith
- TruDiagnostic Inc, Lexington, KY 40503, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nicole Renke
- Illumina, Inc., Product Management Department, San Diego, CA 92122, USA
| | - Peter W Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Khizar H, Hu Y, Wu Y, Yang J. The role and implication of autophagy in cholangiocarcinoma. Cell Death Discov 2023; 9:332. [PMID: 37666811 PMCID: PMC10477247 DOI: 10.1038/s41420-023-01631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the biliary epithelial cells. It is characterized by a difficult diagnosis and limited treatment options. Autophagy is a cellular survival mechanism that maintains nutrient and energy homeostasis and eliminates intracellular pathogens. It is involved in various physiological and pathological processes, including the development of cancer. However, the role, mechanism, and potential therapeutic targets of autophagy in CCA have not been thoroughly studied. In this review, we introduce the classification, characteristics, process, and related regulatory genes of autophagy. We summarize the regulation of autophagy on the progression of CCA and collect the latest research progress on some autophagy modulators with clinical potential in CCA. In conclusion, combining autophagy modulators with immunotherapy, chemotherapy, and targeted therapy has great potential in the treatment of CCA. This combination may be a potential therapeutic target for CCA in the future.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Oncology, The Fourth Affiliated Hospital, International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanhua Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Diseases, 310006, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Zhai F, Wang J, Luo X, Ye M, Jin X. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol 2023; 149:10593-10608. [PMID: 37296317 DOI: 10.1007/s00432-023-04934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nucleolus is considered the center of metabolic control and an important organelle for the biogenesis of ribosomal RNA (rRNA). Nucleolar and coiled-body phosphoprotein 1(NOLC1), which was originally identified as a nuclear localization signal-binding protein is a nucleolar protein responsible for nucleolus construction and rRNA synthesis, as well as chaperone shuttling between the nucleolus and cytoplasm. NOLC1 plays an important role in a variety of cellular life activities, including ribosome biosynthesis, DNA replication, transcription regulation, RNA processing, cell cycle regulation, apoptosis, and cell regeneration. PURPOSE In this review, we introduce the structure and function of NOLC1. Then we elaborate its upstream post-translational modification and downstream regulation. Meanwhile, we describe its role in cancer development and viral infection which provide a direction for future clinical applications. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION NOLC1 plays an important role in the progression of multiple cancers and viral infection. In-depth study of NOLC1 provides a new perspective for accurate diagnosis of patients and selection of therapeutic targets.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
26
|
Oláh E. Learning from cancer to address COVID-19. Biol Futur 2023:10.1007/s42977-023-00156-5. [PMID: 37410273 DOI: 10.1007/s42977-023-00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/24/2023] [Indexed: 07/07/2023]
Abstract
Patients with cancer have been disproportionately affected by the novel coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Knowledge collected during the last three decades of cancer research has helped the medical research community worldwide to respond to many of the challenges raised by COVID-19, during the pandemic. The review, briefly summarizes the underlying biology and risk factors of COVID-19 and cancer, and aims to present recent evidence on cellular and molecular relationship between the two diseases, with a focus on those that are related to the hallmarks of cancer and uncovered in the first less than three years of the pandemic (2020-2022). This may not only help answer the question "Why cancer patients are considered to be at a particularly high risk of developing severe COVID-19 illness?", but also helped treatments of patients during the COVID-19 pandemic. The last session highlights the pioneering mRNA studies and the breakthrough discovery on nucleoside-modifications of mRNA by Katalin Karikó, which led to the innovation and development of the mRNA-based SARSCoV-2 vaccines saving lives of millions and also opened the door for a new era of vaccines and a new class of therapeutics.
Collapse
Affiliation(s)
- Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Ráth György u. 7-9, Budapest, 1122, Hungary.
| |
Collapse
|
27
|
Kong JG, Mei Z, Zhang Y, Xu LZ, Zhang J, Wang Y. CDYL knockdown reduces glioma development through an antitumor immune response in the tumor microenvironment. Cancer Lett 2023:216265. [PMID: 37302564 DOI: 10.1016/j.canlet.2023.216265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Gliomas are highly prevalent and aggressive brain tumors. Growing evidence shows that epigenetic changes are closely related to cancer development. Here we report the roles of Chromodomain Y-like (CDYL), an important epigenetic transcriptional corepressor in the central nervous system in glioma progression. We found that CDYL was highly expressed in glioma tissues and cell lines. CDYL knockdown decreased cell mobility in vitro and significantly reduced tumor burden in the xenograft mouse in vivo. RNA sequencing analysis revealed the upregulation of immune pathways after CDYL knockdown, as well as chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 12. The immunohistochemistry staining and macrophage polarization assays showed increased infiltration of M1-like tumor-associated macrophages/microglia (TAMs) while decreased infiltration of M2-like TAMs after CDYL knockdown in vivo and in vitro. Following the in situ TAMs depletion or CCL2 antibody neutralization, the tumor-suppressive role of CDYL knockdown was abolished. Collectively, our results show that CDYL knockdown suppresses glioma progression, which is associated with CCL2-recruited monocytes/macrophages and the polarization of M1-like TAMs in the tumor microenvironment, indicating CDYL as a promising target for glioma treatment.
Collapse
Affiliation(s)
- Jin-Ge Kong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Zhu Mei
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Lu-Zheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100083, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100083, China.
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
28
|
Sapozhnikov DM, Szyf M. Increasing Specificity of Targeted DNA Methylation Editing by Non-Enzymatic CRISPR/dCas9-Based Steric Hindrance. Biomedicines 2023; 11:biomedicines11051238. [PMID: 37238909 DOI: 10.3390/biomedicines11051238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
As advances in genome engineering inch the technology towards wider clinical use-slowed by technical and ethical hurdles-a newer offshoot, termed "epigenome engineering", offers the ability to correct disease-causing changes in the DNA without changing its sequence and, thus, without some of the unfavorable correlates of doing so. In this review, we note some of the shortcomings of epigenetic editing technology-specifically the risks involved in the introduction of epigenetic enzymes-and highlight an alternative epigenetic editing strategy using physical occlusion to modify epigenetic marks at target sites without a requirement for any epigenetic enzyme. This may prove to be a safer alternative for more specific epigenetic editing.
Collapse
Affiliation(s)
- Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
29
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
30
|
Jasmine F, Aschebrook-Kilfoy B, Rahman MM, Zaagman G, Grogan RH, Kamal M, Ahsan H, Kibriya MG. Association of DNA Promoter Methylation and BRAF Mutation in Thyroid Cancer. Curr Oncol 2023; 30:2978-2996. [PMID: 36975440 PMCID: PMC10047424 DOI: 10.3390/curroncol30030227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The BRAF V600E mutation and DNA promoter methylation play important roles in the pathogenesis of thyroid cancer (TC). However, the association of these genetic and epigenetic alterations is not clear. In this study, using paired tumor and surrounding normal tissue from the same patients, on a genome-wide scale we tried to identify (a) any association between BRAF mutation and DNA promoter methylation, and (b) if the molecular findings may provide a basis for therapeutic intervention. We included 40 patients with TC (female = 28, male = 12) without distant metastasis. BRAF mutation was present in 18 cases. We identified groups of differentially methylated loci (DML) that are found in (a) both BRAF mutant and wild type, (b) only in BRAF mutant tumors, and (c) only in BRAF wild type. BRAF mutation-specific promoter loci were more frequently hypomethylated, whereas BRAF wild-type-specific loci were more frequently hypermethylated. Common DML were enriched in cancer-related pathways, including the mismatch repair pathway and Wnt-signaling pathway. Wild-type-specific DML were enriched in RAS signaling. Methylation status of checkpoint signaling genes, as well as the T-cell inflamed genes, indicated an opportunity for the potential use of PDL1 inhibitors in BRAF mutant TC. Our study shows an association between BRAF mutation and methylation in TC that may have biological significance.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Mohammad M. Rahman
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Garrett Zaagman
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Raymon H. Grogan
- Department of Surgery, Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - Mohammed Kamal
- Department of Pathology, The Laboratory, Dhaka 1205, Bangladesh
| | - Habibul Ahsan
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Zhu S, Xu H, Chen R, Shen Q, Yang D, Peng H, Tong J, Fu Q. DNA methylation and miR-92a-3p-mediated repression of HIP1R promotes pancreatic cancer progression by activating the PI3K/AKT pathway. J Cell Mol Med 2023; 27:788-802. [PMID: 36811277 PMCID: PMC10002968 DOI: 10.1111/jcmm.17612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/27/2022] [Accepted: 10/15/2022] [Indexed: 02/24/2023] Open
Abstract
Pancreatic cancer (PAAD) is a highly malignant tumour characterized of high mortality and poor prognosis. Huntingtin-interacting protein 1-related (HIP1R) has been recognized as a tumour suppressor in gastric cancer, while its biological function in PAAD remains to be elucidated. In this study, we reported the downregulation of HIP1R in PAAD tissues and cell lines, and the overexpression of HIP1R suppressed the proliferation, migration and invasion of PAAD cells, while silencing HIP1R showed the opposite effects. DNA methylation analysis revealed that the promoter region of HIP1R was heavily methylated in PAAD cell lines when compared to the normal pancreatic duct epithelial cells. A DNA methylation inhibitor 5-AZA increased the expression of HIP1R in PAAD cells. 5-AZA treatment also inhibited the proliferation, migration and invasion, and induced apoptosis in PAAD cell lines, which could be attenuated by HIP1R silencing. We further demonstrated that HIP1R was negatively regulated by miR-92a-3p, which modulates the malignant phenotype of PAAD cells in vitro and the tumorigenesis in vivo. The miR-92a-3p/HIP1R axis could regulate PI3K/AKT pathway in PAAD cells. Taken together, our data suggest that targeting DNA methylation and miR-92a-3p-mediated repression of HIP1R could serve as novel therapeutic strategies for PAAD treatment.
Collapse
Affiliation(s)
- Sixian Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huiting Xu
- Department of Abdominal Oncology, Hubei Cancer HospitalWuhanChina
| | - Runzhi Chen
- Department of Abdominal Oncology, Hubei Cancer HospitalWuhanChina
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dongmei Yang
- Department of Abdominal Oncology, Hubei Cancer HospitalWuhanChina
| | - Hui Peng
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jin Tong
- Department of PICC, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
32
|
Jansson-Fritzberg LI, Sousa CI, Smallegan MJ, Song JJ, Gooding AR, Kasinath V, Rinn JL, Cech TR. DNMT1 inhibition by pUG-fold quadruplex RNA. RNA (NEW YORK, N.Y.) 2023; 29:346-360. [PMID: 36574982 PMCID: PMC9945446 DOI: 10.1261/rna.079479.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.
Collapse
Affiliation(s)
- Linnea I Jansson-Fritzberg
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Camila I Sousa
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Jessica J Song
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Anne R Gooding
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
33
|
Terletsky A, Akhmerova LG. Malignant human thyroid neoplasms associated with blood parasitic (haemosporidian) infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-mht-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Investigation of archival cytological material obtained by cytologists during fine-needle aspiration biopsy in follicular, papillary, and medullary human thyroid cancers revealed haemosporidian (blood parasitic) infection. Haemosporidian infection was detected as exo- and intraerythrocytic stages of development in thyrocytes schizogony. The exoerythrocytic stage of development is represented as microschizonts in a thyroid needle biopsy specimen. Probably, blood parasitic infection is the common etiology for these pathologies. All biopsy material in medical laboratories was stained with RomanowskyGiemsa stain. To clarify the localization of nuclei (DNA) of thyrocytes and nuclei (DNA) of haemosporidian infection in cytological material following investigation of the entire set of smears, a selective series of original archival smears was stained (restained) with a Feulgen/Schiff reagent. Staining of smears with RomanowskyGiemsa stain is an adsorption method that enables re-use of the same smears for staining with a Feulgen/Schiff reagent where the fuchsin dye, after DNA hydrolysis by hydrochloric acid, is incorporated into DNA and stains it in redviolet (crimsonlilac) color. An intentionally unstained protoplasm of blood parasitic infection was present as a light band around erythrocyte nuclei. In follicular thyroid cancer, Feulgen staining of thyrocytes revealed nuclear DNA and parasitic DNA (haemosporidium nuclei) as point inclusions and rings and diffusely distributed in the thyrocyte cytoplasm. The thyrocyte cytoplasm and nuclei were vacuolated, with thyrocyte nuclei being deformed, flattened, and displaced to the cell periphery. The erythrocytes, which were initially stained with eosin (orange color), contained haemosporidian nuclei (DNA). In some cases, endoglobular inclusions in thyrocytes and erythrocytes were of the same size. In papillary thyroid cancer, we were able to localize the nuclear DNA of thyrocytes and the parasitic DNA as point inclusions and diffusely distributed in the thyrocyte cytoplasm. Two or more polymorphic nuclei may eccentrically occur in the hyperplastic cytoplasm. Haemosporidian microschizonts occurred circumnuclearly in thyrocytes and as an exoerythrocytic stage in the blood. The erythrocyte cytoplasm contained redviolet polymorphic haemosporidian nuclei (DNA). In medullary thyroid cancer, the hyperplastic cytoplasm of thyrocytes contained eccentrically located nuclei (DNA) of thyrocytes and small haemosporidian nuclei (DNA), which may occupy the whole thyrocyte. There were thyrocytes with vacuolated cytoplasm and pronounced nuclear polymorphism. The size of hyperplastic nuclei was several times larger than that of normal thyrocyte nuclei. The color of stained cytoplasmic and nuclear vacuoles of thyrocytes was less redviolet compared with that of surrounding tissues, which probably indicates the presence of parasitic DNA in them. The haemosporidian nuclear material in erythrocytes is represented by polymorphic nuclei, which may indicate the simultaneous presence of different pathogen species and/or generations in the blood. Intracellular parasitism of haemosporidian infection in thyrocytes (schizogony) associated with three thyroid cancers leads to pronounced cytoplasmic hyperplasia, cytoplasmic vacuolization, and nuclear vacuolization of the thyrocyte, followed by impaired secretory function. Multinucleated thyrocytes with incomplete cytokinesis appear. The absence of lytic death of the affected thyrocytes indicates that the contagium is able to control apoptosis and influence physiological functions of the cell. There is deformation of the nuclei, which leads to a decrease in their size, their flattening and displacement to the cell periphery, with high risk of DNA mutations and deletions in affected cells, reaching a neoplastic level.
Collapse
|
34
|
Sun H, Zhou S, Liu Y, Lu P, Qi N, Wang G, Yang M, Huo D, Hou C. A fluorescent biosensor based on exponential amplification reaction-initiated CRISPR/Cas12a (EIC) strategy for ultrasensitive DNA methyltransferase detection. Anal Chim Acta 2023; 1239:340732. [PMID: 36628729 DOI: 10.1016/j.aca.2022.340732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
DNA methyltransferase (DNA MTase) catalyzes the process of DNA methylation, and the aberrant DNA MTase activity is closely associated with cancer incidence and progression. Inspired by the exponential amplification reaction (EXPAR) characteristics, we developed an EXPAR-initiated CRISPR/Cas12a (EIC) strategy for sensitively detecting DNA MTase activity. A hairpin probe (HP) was designed with a palindromic sequence in the stem as substrate and NH2-modified 3' end to prevent nonspecific amplification. HP could be methylated by DNA adenine methyltransferase (Dam MTase) and then digested by DpnI to generate an oligonucleotide that can serve as an EXPAR primer. With the assistance of Nt.BstNBI nicking enzyme and Vent(exo-) polymerase, this primer bound to template and induced EXPAR. Interestingly, the product of Cycle 1 in EXPAR can function as primer to initiate Cycle 2. Both EXPAR products can further activate the collateral cleavage of CRISPR/Cas12a-crRNA, resulting in the fragmentation of fluorescence reporters and fluorescence recovery. Due to the highly efficient amplification (about 5 times signal-to-noise of SDA) and the robust trans-cleavage of CRISPR/Cas12a, the EIC system owned an extreme limit of detection (LOD) of 2 × 10-4 U/mL and a broad detection range from 2 × 10-4 to 10 U/mL for Dam MTase. In addition, this method has succeeded in inhibitor screening and evaluation, showing magnificent promise in drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
35
|
Ko B, Hanna M, Yu M, Grady WM. Epigenetic Alterations in Colorectal Cancer. EPIGENETICS AND HUMAN HEALTH 2023:331-361. [DOI: 10.1007/978-3-031-42365-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Kärcher J, Schulze B, Dörr A, Tierling S, Walter J. Transfer of blocker-based qPCR reactions for DNA methylation analysis into a microfluidic LoC system using thermal modeling. BIOMICROFLUIDICS 2022; 16:064102. [PMID: 36506005 PMCID: PMC9729016 DOI: 10.1063/5.0108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Changes in the DNA methylation landscape are associated with many diseases like cancer. Therefore, DNA methylation analysis is of great interest for molecular diagnostics and can be applied, e.g., for minimally invasive diagnostics in liquid biopsy samples like blood plasma. Sensitive detection of local de novo methylation, which occurs in various cancer types, can be achieved with quantitative HeavyMethyl-PCR using oligonucleotides that block the amplification of unmethylated DNA. A transfer of these quantitative PCRs (qPCRs) into point-of-care (PoC) devices like microfluidic Lab-on-Chip (LoC) cartridges can be challenging as LoC systems show significantly different thermal properties than qPCR cyclers. We demonstrate how an adequate thermal model of the specific LoC system can help us to identify a suitable thermal profile, even for complex HeavyMethyl qPCRs, with reduced experimental effort. Using a simulation-based approach, we demonstrate a proof-of-principle for the successful LoC transfer of colorectal SEPT9/ACTB-qPCR from Epi Procolon® colorectal carcinoma test, by avoidance of oligonucleotide interactions.
Collapse
Affiliation(s)
- Janik Kärcher
- Robert Bosch GmbH, Corporate Research, Robert Bosch Campus 1, 71272 Renninge, Germany
| | - Britta Schulze
- Robert Bosch GmbH, Corporate Research, Robert Bosch Campus 1, 71272 Renninge, Germany
| | - Aaron Dörr
- Robert Bosch GmbH, Corporate Research, Robert Bosch Campus 1, 71272 Renninge, Germany
| | - Sascha Tierling
- University of Saarland, Institute for Genetics and Epigenetics, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Jörn Walter
- University of Saarland, Institute for Genetics and Epigenetics, Campus Saarbrücken, 66123 Saarbrücken, Germany
| |
Collapse
|
37
|
Gu S, Jiang M, Zhang B. Microcystin-LR in Primary Liver Cancers: An Overview. Toxins (Basel) 2022; 14:toxins14100715. [PMID: 36287983 PMCID: PMC9611980 DOI: 10.3390/toxins14100715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
The cyanobacterial blooms produced by eutrophic water bodies have become a serious environmental issue around the world. After cellular lysing or algaecide treatment, microcystins (MCs), which are regarded as the most frequently encountered cyanobacterial toxins in fresh water, are released into water. Among all the variants of MCs, MC-LR has been widely studied due to its severe hepatotoxicity. Since 1992, various studies have identified the important roles of MC-LR in the origin and progression of primary liver cancers (PLCs), although few reviews have focused on it. Therefore, this review aims to summarize the major achievements and shortcomings observed in the past few years. Based on the available literature, the mechanisms of how MC-LR induces or promotes PLCs are elucidated in this review. This review aims to enhance our understanding of the role that MC-LR plays in PLCs and provides a rational approach for future applications.
Collapse
Affiliation(s)
- Shen Gu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Correspondence: ; Tel.: +86-0571-56007664
| | - Mingxuemei Jiang
- Institute of Scientific and Technical Information of Zhejiang Province, Hangzhou 310001, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
38
|
Muylaert C, Van Hemelrijck LA, Maes A, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. Aberrant DNA methylation in multiple myeloma: A major obstacle or an opportunity? Front Oncol 2022; 12:979569. [PMID: 36059621 PMCID: PMC9434119 DOI: 10.3389/fonc.2022.979569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called ‘epimutations’ have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.
Collapse
|
39
|
ACBD3 Bioinformatic Analysis and Protein Expression in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23168881. [PMID: 36012147 PMCID: PMC9408326 DOI: 10.3390/ijms23168881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3′s role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.
Collapse
|
40
|
Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022; 156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
41
|
Xing M, Yang Y, Huang J, Fang Y, Jin Y, Li L, Chen X, Zhu X, Ma C. TFPI inhibits breast cancer progression by suppressing ERK/p38 MAPK signaling pathway. Genes Genomics 2022; 44:801-812. [PMID: 35567715 DOI: 10.1007/s13258-022-01258-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor-1 (TFPI) is a serine protease inhibitor, which is responsible for inactivating TF-induced coagulation. Recently, increasing studies revealed that TFPI was lowly expressed in tumor cells and exhibited the antitumor activity. OBJECTIVE The aim of this study was to explore the role and underlying molecular mechanisms of TFPI in breast cancer. METHODS The expression and prognostic value of TFPI were analyzed using UALCAN and Kaplan-Meier plotter website. The expression level of TFPI in breast cancer tissues and cells was examined by immunohistochemistry (IHC) and western blot analysis, respectively. Cellular proliferation was evaluated by CCK-8 and colony formation assays. Cell migration and invasion were determined by transwell assay. The methylation level of TFPI promoter was determined by methylation-specific PCR. RESULTS TFPI expression was significantly lower in breast cancer tissues and cells compared to normal breast tissues and normal breast cells. Patients with low TFPI levels showed worse overall survival (OS). Furthermore, overexpression of TFPI significantly inhibited the proliferation, migration and invasion of breast cancer cells. Conversely, knockdown of TFPI promoted the proliferation, migration and invasion of breast cancer cells. Mechanistically, TFPI inhibited the ERK/p38 MAPK signaling pathway in breast cancer. Moreover, DNA hypermethylation of TFPI promoter was responsible for the downregulation of TFPI in breast cancer cells. CONCLUSION TFPI inhibited breast cancer cell proliferation, migration and invasion through inhibition of the ERK/p38 MAPK signaling pathway, suggesting that TFPI may serve as a novel prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Mengying Xing
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ying Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaxue Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yaqun Fang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yucui Jin
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lingyun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiang Chen
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, People's Republic of China
| | - Xiaoxia Zhu
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, People's Republic of China.
| | - Changyan Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Jha S, Kant S. Folate supplementation as a strategy to reduce Neural Tube Defects. INDIAN JOURNAL OF COMMUNITY HEALTH 2022. [DOI: 10.47203/ijch.2022.v34i02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Folic acid is a vitamin known to prevent neural tube defects, megaloblastic anaemia, cardiovascular morbidity and mortality, etc. The main natural sources of folate are plant and vegetables e.g. green leafy vegetables, broccoli, asparagus, citrus fruits (orange, strawberry), beans, nuts, cauliflowers, beets, corn etc. and meat products like liver. The primary function of folate is its contribution in the synthesis and repair of the DNA. The bioavailability of food folate is approximately 50%. The bioavailability of folic acid taken with meal compared to with water on empty stomach is 85% and 100% respectively.(1) Hence, it is easier to achieve the recommended daily allowances with fortified food as compared to natural food due to higher stability and bioavailability of synthetic folate when compared to natural food.(2)
Collapse
|
43
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
44
|
Relationship between Prognosis, Immune Infiltration Level, and Differential Expression of PARVG Gene in Uterine Corpus Endometrial Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7376588. [PMID: 35655721 PMCID: PMC9135557 DOI: 10.1155/2022/7376588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Endometrial cancer (UCEC) is very common in gynecological diseases and ranks second in the death cause of gynecological cancer in developed countries. The connection between the overall survival of UCEC patients and immune invasion of the tumor microenvironment is positive. The PARVG gene has not been given notice in cancer, and its mechanism is unknown. The research utilized TCGA data to test the function of PARVG in UCEC. The manifestation of PARVG in UCEC was studied by GEPIA. By assessing the survival module, the authors learned the impact of PARVG on the survival of people with UCEC and then obtained UCEC information from TCGA. This study uses logistic regression to prove the possible relationship between PARVG expression and clinical information. From the research of Cox regression, clinicopathological characteristics of people with TCGA were connected with overall survival. Furthermore, the “correlation” module of GEPIA and CIBERSORT was used to study the association between cancer immune invasion and PARVG. Using univariate logistic regression analysis with PARVG expression as a categorical variable (median expression value of 2.5), the result suggested that raised PARVG expression was considerably connected with tumor status, pathological stage, and lymph nodes. Multiple factor studies have shown that upregulation of PARVG, distant metastasis, and negative pathological stage are absolute elements of excellent prognosis. In addition, CIBERSORT analysis was utilized to determine that raised PARVG expression has a positive connection with immune infiltration by T cells, mast cells, neutrophils, and B cells. This is recognized in GEPIA's “correlation” module. The above outcomes show us that the raised expression of PARVG is associated with a good prognosis and it raises the proportion of immune cells (such as T cells, mast cells, neutrophils, and B cells) in UCEC. These outcomes tell us that PARVG can be utilized as a possible biomarker to evaluate UCEC's immune infiltration levels and prognosis.
Collapse
|
45
|
High-throughput sample processing for methylation analysis in an automated, enclosed environment. SLAS Technol 2022; 27:172-179. [DOI: 10.1016/j.slast.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Yang P, Qiao Y, Meng M, Zhou Q. Cancer/Testis Antigens as Biomarker and Target for the Diagnosis, Prognosis, and Therapy of Lung Cancer. Front Oncol 2022; 12:864159. [PMID: 35574342 PMCID: PMC9092596 DOI: 10.3389/fonc.2022.864159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is the leading type of malignant tumour among cancer-caused death worldwide, and the 5-year survival rate of lung cancer patients is only 18%. Various oncogenes are abnormally overexpressed in lung cancer, including cancer/testis antigens (CTAs), which are restrictively expressed in the male testis but are hardly expressed in other normal tissues, if at all. CTAs are aberrantly overexpressed in various types of cancer, with more than 60 CTAs abnormally overexpressed in lung cancer. Overexpression of oncogenic CTAs drives the initiation, metastasis and progression of lung cancer, and is closely associated with poor prognosis in cancer patients. Several CTAs, such as XAGE, SPAG9 and AKAP4, have been considered as biomarkers for the diagnosis and prognostic prediction of lung cancer. More interestingly, due to the high immunogenicity and specificity of CTAs in cancer, several CTAs, including CT45, BCAP31 and ACTL8, have been targeted for developing novel therapeutics against cancer. CTA-based vaccines, chimeric antigen receptor-modified T cells (CAR-T) and small molecules have been used in lung cancer treatment in pre-clinical and early clinical trials, with encouraging results being obtained. However, there are still many hurdles to be overcome before these therapeutics can be routinely used in clinical lung cancer therapy. This review summarises the recent rapid progress in oncogenic CTAs, focusing on CTAs as biomarkers for lung cancer diagnosis and prognostic prediction, and as targets for novel anti-cancer drug discovery and lung cancer therapy. We also identify challenges and opportunities in CTA-based cancer diagnosis and treatment. Finally, we provide perspectives on the mechanisms of oncogenic CTAs in lung cancer development, and we also suggest CTAs as a new platform for lung cancer diagnosis, prognostic prediction, and novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Senger G, Santaguida S, Schaefer MH. Regulation of protein complex partners as a compensatory mechanism in aneuploid tumors. eLife 2022; 11:e75526. [PMID: 35575458 PMCID: PMC9135399 DOI: 10.7554/elife.75526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Aneuploidy, a state of chromosome imbalance, is a hallmark of human tumors, but its role in cancer still remains to be fully elucidated. To understand the consequences of whole-chromosome-level aneuploidies on the proteome, we integrated aneuploidy, transcriptomic, and proteomic data from hundreds of The Cancer Genome Atlas/Clinical Proteomic Tumor Analysis Consortium tumor samples. We found a surprisingly large number of expression changes happened on other, non-aneuploid chromosomes. Moreover, we identified an association between those changes and co-complex members of proteins from aneuploid chromosomes. This co-abundance association is tightly regulated for aggregation-prone aneuploid proteins and those involved in a smaller number of complexes. On the other hand, we observed that complexes of the cellular core machinery are under functional selection to maintain their stoichiometric balance in aneuploid tumors. Ultimately, we provide evidence that those compensatory and functional maintenance mechanisms are established through post-translational control, and that the degree of success of a tumor to deal with aneuploidy-induced stoichiometric imbalance impacts the activation of cellular protein degradation programs and patient survival.
Collapse
Affiliation(s)
- Gökçe Senger
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
| | - Stefano Santaguida
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato-Oncology, University of MilanMilanItaly
| | - Martin H Schaefer
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
48
|
Giesche J, Mellert K, Geißler S, Arndt S, Seeling C, von Baer A, Schultheiss M, Marienfeld R, Möller P, Barth TF. Epigenetic lockdown of CDKN1A (p21) and CDKN2A (p16) characterises the neoplastic spindle cell component of giant cell tumours of bone. J Pathol 2022; 257:687-696. [PMID: 35522566 DOI: 10.1002/path.5925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
Giant cell tumour of bone (GCTB) comprises the eponymous osteoclastic multinucleated giant cells eliciting bone lysis, a H3F3A-mutated neoplastic mononucleated fibroblast-like cell population and H3F3A-wild type mononucleated stromal cells. In this study, we characterised four new cell lines from GCTB. Furthermore, we compared the genome-wide DNA methylation profile of 13 such tumours and three further cell lines with giant cell rich lesions comprising three H3F3B-mutated chondroblastomas, three USP6-rearranged aneurysmal bone cysts, three non-ossifying fibromas, two hyperparathyroidism-associated brown tumours as well as mesenchymal stem cells, osteoblasts, and osteoclasts. In an unsupervised analysis, we delineated GCTB and chondroblastomas from the other analysed tumour entities. Using comparative methylation analysis, we demonstrated that the methylation pattern of the cell lines approximately equals that of H3F3A-mutated stromal cells in tissue. These patterns more resemble that of osteoblasts than that of mesenchymal stem cells, which argues for the osteoblast as the cell of origin of giant cell tumours of bone. Using enrichment analysis, we detected distinct hypermethylated clusters containing histone and collagen genes as well as target genes of the tumour suppressor p53. We found that the promotor regions of CDKN1A, CDKN2A and IGFBP3 are methylated more strongly in GCTB than in the other giant cell containing lesions, mesenchymal stem cells, osteoblasts, and osteoclasts (p<0.001). This hypermethylation correlates with the lower gene expression at the mRNA level for these three genes in the cell lines, the lack of p16 and p21 in these cell lines and the lower expression of p16 and p21 in GCTB. Overall, our analysis reveals characteristic DNA methylation patterns of giant cell tumours of bone and chondroblastomas and shows that cell lines of giant cell tumours of bone are a valid model for further analysis of H3F3A-mutated tumour cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julian Giesche
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Sven Geißler
- Centre for Regenerative Therapies, Berlin Institute of Health, Charité University Hospital Berlin, Berlin, Germany
| | - Sophia Arndt
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Carolin Seeling
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | | | | | - Ralf Marienfeld
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Thomas Fe Barth
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
49
|
Mendonca A, Sánchez O, Zhao H, Lin L, Min A, Yuan C. Development and application of novel BiFC probes for cell sorting based on epigenetic modification. Cytometry A 2022; 101:339-350. [PMID: 35001539 PMCID: PMC11998899 DOI: 10.1002/cyto.a.24530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
The epigenetic signature of cancer cells varies with disease progression and drug treatment, necessitating the study of these modifications with single cell resolution over time. The rapid detection and sorting of cells based on their underlying epigenetic modifications by flow cytometry can enable single cell measurement and tracking to understand tumor heterogeneity and progression warranting the development of a live-cell compatible epigenome probes. In this work, we developed epigenetic probes based on bimolecular fluorescence complementation (BiFC) and demonstrated their capabilities in quantifying and sorting cells based on their epigenetic modification contents. The sorted cells are viable and exhibit distinctive responses to chemo-therapy drugs. Notably, subpopulations of MCF7 cells with higher H3K9me3 levels are more likely to develop resistance to Doxorubicin. Subpopulations with higher 5mC levels, on the other hand, tend to be more responsive. Overall, we report for the first time, the application of novel split probes in flow cytometry application and elucidated the potential role of 5mC and H3K9me3 in determining drug responses.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Oscar Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
50
|
Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers (Basel) 2022; 14:cancers14071610. [PMID: 35406382 PMCID: PMC8996999 DOI: 10.3390/cancers14071610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
There is evidence that posttranslational modifications, including phosphorylation, acetylation, methylation, ubiquitination, sumoylation, glycosylation, and succinylation, may be involved in thyroid cancer. We review recent reports supporting a role of posttranslational modifications in the tumorigenesis of thyroid cancer, sensitivity to radioiodine and other types of treatment, the identification of molecular treatment targets, and the development of molecular markers that may become useful as diagnostic tools. An increased understanding of posttranslational modifications may be an important supplement to the determination of alterations in gene expression that has gained increasing prominence in recent years.
Collapse
|