1
|
Dekamin S, Ghasemi M, Dehpour AR, Ghazi-Khansari M, Shafaroodi H. Protective Effects of Glatiramer Acetate Against Paclitaxel-Induced Peripheral Neuropathy in Rats: A Role for Inflammatory Cytokines and Oxidative Stress. Neurochem Res 2024; 49:1049-1060. [PMID: 38252396 DOI: 10.1007/s11064-023-04088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge for cancer patients who undergo chemotherapy with paclitaxel. Therefore, finding effective therapies for CIPN is crucial. Glatiramer acetate is used to treat multiple sclerosis that exerts neuroprotective properties in various studies. We hypothesized that glatiramer acetate could also improve the paclitaxel-induced peripheral neuropathy. We used a rat model of paclitaxel (2 mg/kg/every other day for 7 doses)-induced peripheral neuropathy. Rats were treated with either different doses of glatiramer acetate (1, 2, 4 mg/kg/day) or its vehicle for 14 days in separate groups. The mechanical and thermal sensitivity of the rats by using the Von Frey test and the Hot Plate test, respectively, were assessed during the study. The levels of oxidative stress (malondialdehyde and superoxide dismutase), inflammatory markers (TNF-α, IL-10, NF-kB), and nerve damage (H&E and S100B staining) in the sciatic nerves of the rats were also measured at the end of study. Glatiramer acetate (2 and 4 mg/kg) exerted beneficial effects on thermal and mechanical allodynia tests. It also modulated the inflammatory response by reducing TNF-α and NF-κB levels, enhancing IL-10 production, and improving the oxidative stress status by lowering malondialdehyde and increasing superoxide dismutase activity in the sciatic nerve of the rats. Furthermore, glatiramer acetate enhanced nerve conduction velocity in all treatment groups. Histological analysis revealed that glatiramer acetate (2 and 4 mg/kg) prevented paclitaxel-induced damage to the nerve structure. These results suggest that glatiramer acetate can alleviate the peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Sajad Dekamin
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, 01803, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway. Biochem Biophys Res Commun 2014; 457:101-5. [PMID: 25529444 DOI: 10.1016/j.bbrc.2014.12.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/20/2022]
Abstract
Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.
Collapse
|
3
|
Conner J. Glatiramer acetate and therapeutic peptide vaccines for multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2054-989x-1-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Toker A, Slaney CY, Bäckström BT, Harper JL. Glatiramer Acetate Treatment Directly Targets CD11b+
Ly6G−
Monocytes and Enhances the Suppression of Autoreactive T cells in Experimental Autoimmune Encephalomyelitis. Scand J Immunol 2011; 74:235-243. [DOI: 10.1111/j.1365-3083.2011.02575.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Overlapping and distinct mechanisms of action of multiple sclerosis therapies. Clin Neurol Neurosurg 2010; 112:583-91. [DOI: 10.1016/j.clineuro.2010.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 11/18/2022]
|
6
|
Glatiramer acetate positively influences spinal motoneuron survival and synaptic plasticity after ventral root avulsion. Neurosci Lett 2009; 451:34-9. [DOI: 10.1016/j.neulet.2008.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/27/2008] [Accepted: 12/10/2008] [Indexed: 01/12/2023]
|
7
|
Kumar D, Hosse J, von Toerne C, Noessner E, Nelson PJ. JNK MAPK Pathway Regulates Constitutive Transcription of CCL5 by Human NK Cells through SP1. THE JOURNAL OF IMMUNOLOGY 2009; 182:1011-20. [DOI: 10.4049/jimmunol.182.2.1011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Gorantla S, Liu J, Wang T, Holguin A, Sneller HM, Dou H, Kipnis J, Poluektova L, Gendelman HE. Modulation of innate immunity by copolymer-1 leads to neuroprotection in murine HIV-1 encephalitis. Glia 2008; 56:223-32. [PMID: 18046731 DOI: 10.1002/glia.20607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Virus-infected and immune-competent mononuclear phagocytes (MP; perivascular macrophages and microglia) drive the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1) infection. Modulation of the MP phenotype from neurodestructive to neuroprotective underlies adjunctive therapeutic strategies for human disease. We reasoned that, as Copolymer-1 (Cop-1) can induce neuroprotective activities in a number of neuroinflammatory and neurodegenerative disorders, it could directly modulate HIV-1-infected MP neurotoxic activities. We now demonstrate that, in laboratory assays, Cop-1-stimulated virus-infected human monocyte-derived macrophages (MDM) protect against neuronal injury. Severe combined immune-deficient (SCID) mice were stereotactically injected with HIV-1-infected human MDM, into the basal ganglia, to induce HIV-1 encephalitis (HIVE). Cop-1 was administered subcutaneously for 7 days. In HIVE mice, Cop-1 treatment led to anti-inflammatory and neuroprotective responses. Reduced micro- and astrogliosis, and conserved NeuN/MAP-2 levels were observed in virus-affected brain regions in Cop-1-treated mice. These were linked to interleukin-10 and brain-derived neurotrophic factor expression and downregulation of inducible nitric oxide synthase. The data, taken together, demonstrate that Cop-1 can modulate innate immunity and, as such, improve disease outcomes in an animal model of HIVE.
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Glatiramer acetate (GA; Copaxone, also known as Copolymer 1 or Cop-1), a copolymer of amino acids, is very effective in the suppression of experimental autoimmune encephalitis (EAE), the animal model for multiple sclerosis (MS), in various species including primates. The immunological cross-reaction between the myelin basic protein and GA serves as the basis for the suppressive activity of GA in EAE, by the induction of antigen-specific suppressor cells. The mode of action of GA is by initial strong promiscuous binding to major histocompatibility complex class II molecules and competition with MBP and other myelin proteins for such binding and presentation to T cells. Suppressor T cells induced by GA are of the Th2 type, migrate to the brain and lead to in situ bystander suppression. Clinical trials with GA, both phase II and phase III, were performed in relapsing-remitting MS (RRMS) patients, and demonstrated efficacy in reducing the relapse rate, decreasing MRI-assessed disease activity and burden and slowing progression of disability. GA is generally well tolerated and is not associated with influenza-like symptoms and formation of neutralizing antibodies seen with beta-interferons. It exerts its suppressive effect primarily by immunomodulation, and has recently shown ameliorating effect in a few additional autoimmune disorders as well as in graft rejection. At present GA is considered a valuable first-line treatment option for patients with RRMS.
Collapse
Affiliation(s)
- Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
10
|
Kayhan B, Aharoni R, Arnon R. Glatiramer acetate (Copaxone) regulates nitric oxide and related cytokine secretion in experimental autoimmune encephalomyelitis. Immunol Lett 2003; 88:185-92. [PMID: 12941477 DOI: 10.1016/s0165-2478(03)00085-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is an important mediator involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). We examined the effect of glatiramer acetate (GA), an agent with suppressing effect on EAE and of therapeutic value for the treatment of MS, on the secretion of NO, as well as of the NO regulating cytokines. We observed that induction of EAE leads to 4-fold elevation in NO secretion and that treatment of the EAE mice by GA indeed leads to a significant reduction in the NO secretion by the splenocytes in response to the encephalitogen. A parallel decrease was observed in the secretion of the NO inducing cytokine IL-1beta. On the other hand, the secretion level of NO modulating cytokines IL-10 and IL-13 was significantly augmented. The correlation between these findings and the therapeutic effect of GA is discussed.
Collapse
Affiliation(s)
- Basak Kayhan
- Department of Immunology, The Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | |
Collapse
|
11
|
Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4483-8. [PMID: 12707324 DOI: 10.4049/jimmunol.170.9.4483] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glatiramer acetate (GA; copolymer-1, Copaxone) suppresses the induction of experimental autoimmune encephalomyelitis and reduces the relapse frequency in relapsing-remitting multiple sclerosis. Although it has become clear that GA induces protective degenerate Th2/IL-10 responses, its precise mode of action remains elusive. Because the cytokine profile of Th cells is often regulated by dendritic cells (DC), we studied the modulatory effects of GA on the T cell regulatory function of human DC. This study shows the novel selective inhibitory effect of GA on the production of DC-derived inflammatory mediators without affecting DC maturation or DC immunostimulatory potential. DC exposed to GA have an impaired capacity to secrete the major Th1 polarizing factor IL-12p70 in response to LPS and CD40 ligand triggering. DC exposed to GA induce effector IL-4-secreting Th2 cells and enhanced levels of the anti-inflammatory cytokine IL-10. The anti-inflammatory effect of GA is mediated via DC as GA does not affect the polarization patterns of naive Th cells activated in an APC-free system. Together, these results reveal that APC are essential for the GA-mediated shift in the Th cell profiles and indicate that DC are a prime target for the immunomodulatory effects of GA.
Collapse
Affiliation(s)
- Pedro L Vieira
- Department of Cell Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
López-Franco O, Suzuki Y, Sanjuán G, Blanco J, Hernández-Vargas P, Yo Y, Kopp J, Egido J, Gómez-Guerrero C. Nuclear factor-kappa B inhibitors as potential novel anti-inflammatory agents for the treatment of immune glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1497-505. [PMID: 12368222 PMCID: PMC1867308 DOI: 10.1016/s0002-9440(10)64425-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nuclear factor (NF)-kappa B regulates several genes implicated in the inflammatory response and represents an interesting therapeutic target. We examined the effects of gliotoxin (a fungal metabolite) and parthenolide (a plant extract), which possess anti-inflammatory activities in vitro, on the progression of experimental glomerulonephritis. In the anti-Thy 1.1 rat model, gliotoxin (75 micro g/rat/day, 10 days, n = 18 rats) markedly reduced proteinuria, glomerular lesions, and monocyte infiltration. In anti-mesangial cell nephritis in mice, parthenolide (70 micro g/mouse/day, 7 days, n = 17 mice) significantly decreased proteinuria, hematuria, and glomerular proliferation. NF-kappa B activity, localized in glomerular and tubular cells, was attenuated by either gliotoxin or parthenolide, in association with diminished renal expression of monocyte chemoattractant protein-1 and inducible nitric oxide synthase. In cultured mesangial cells and monocytes, gliotoxin and parthenolide inhibited NF-kappa B activation and expression of inflammatory genes induced by lipopolysaccharide and cytokines, by blocking the phosphorylation/degradation of the I kappa B(alpha) subunit. In summary, gliotoxin and parthenolide prevent proteinuria and renal lesions by inhibiting NF-kappa B activation and expression of regulated genes. This may represent a novel approach for the treatment of immune and inflammatory renal diseases.
Collapse
Affiliation(s)
- Oscar López-Franco
- Renal and Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kataoka Y, Murley JS, Khodarev NN, Weichselbaum RR, Grdina DJ. Activation of the nuclear transcription factor kappaB (NFkappaB) and differential gene expression in U87 glioma cells after exposure to the cytoprotector amifostine. Int J Radiat Oncol Biol Phys 2002; 53:180-9. [PMID: 12007958 DOI: 10.1016/s0360-3016(01)02820-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Amifostine has been approved as a therapy to decrease the incidence of moderate-to-severe xerostomia in patients undergoing postoperative radiation treatment for head-and-neck cancer. As a reducing agent capable of participating in intracellular reductive/oxidative processes, it has the potential to affect redox-sensitive transcription factors and gene expression. Amifostine's active free thiol WR-1065 was investigated to determine its effect on nuclear transcription factor kappaB (NFkappaB) activation and subsequent gene expression in U87 glioma cells. METHODS AND MATERIALS The human glioma cell line U87 was grown to confluency and then exposed to WR-1065 at a concentration of 40 microM for times ranging from 30 min to 24 h. Changes in cell cycle were monitored by flow cytometry. The effect of WR-1065 on NFkappaB activation was determined by a gel shift assay. Changes in gene expression as a function of time of exposure to WR-1065 were determined by Northern blot and the Atlas Human cDNA Expression Array (Clontech, Palo Alto, CA). Changes in gene expression using the Atlas Array were verified by reverse transcriptase-polymerase chain reaction (RT-PCR) with gene-specific primers. RESULTS Exposure of U87 cells to 40 microM WR-1065 resulted in a marked activation of NFkappaB between 30 min and 1 h after treatment. Expression of MnSOD, an NFkappaB-responsive gene, was enhanced by over 2-fold after 16 h of treatment and remained elevated at 24 h. During this period of time, no changes in cell cycle distribution were observed. To assess changes in the expression levels of NFkappaB-responsive genes as a function of WR-1065 exposure, cDNA arrays containing 49 genes identified as having DNA-binding motifs for NFkappaB were used. Only five genes were found to be significantly affected at 1, 4, and/or 16 h of treatment. GST-3 and c-myc were repressed up to 2- and 4-fold, respectively. The expression levels of IL-2Ra, RANTES, and c-myb, in contrast, were enhanced up to 14-, 3-, and 2-fold, respectively. The remaining genes having NFkappaB-responsive elements in their promoter regions were either not expressed (20 genes) or were not affected (24 genes) by exposure to WR-1065. CONCLUSIONS The redox-sensitive transcription factor NFkappaB can be activated in U87 glioma cells by the active thiol form of the cytoprotector amifostine. Activation of NFkappaB by the antioxidant WR-1065 is accompanied by a reduced expression of the oncogene c-myc and an enhanced expression of the antioxidant gene MnSOD, a gene whose expression in tumor cells is relatively low, but when overexpressed has been correlated with a suppression of the malignant phenotype. Activation of NFkappaB by WR-1065, however, results in selective rather than global changes in the expression of genes containing NFkappaB-responsive elements.
Collapse
Affiliation(s)
- Yasushi Kataoka
- Department of Radiation and Cellular Oncology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|