1
|
Lim CKW, McCallister TX, Saporito-Magriña C, McPheron GD, Krishnan R, Zeballos C MA, Powell JE, Clark LV, Perez-Pinera P, Gaj T. CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes. Mol Ther 2022; 30:3619-3631. [PMID: 35965414 PMCID: PMC9734028 DOI: 10.1016/j.ymthe.2022.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
CRISPR technology has demonstrated broad utility for controlling target gene expression; however, there remains a need for strategies capable of modulating expression via the precise editing of non-coding regulatory elements. Here, we demonstrate that CRISPR base editors, a class of gene-modifying proteins capable of creating single-base substitutions in DNA, can be used to perturb gene expression via their targeted mutagenesis of cis-acting sequences. Using the promoter region of the human huntingtin (HTT) gene as an initial target, we show that editing of the binding site for the transcription factor NF-κB led to a marked reduction in HTT gene expression in base-edited cell populations. We found that these gene perturbations were persistent and specific, as a transcriptome-wide RNA analysis revealed minimal off-target effects resulting from the action of the base editor protein. We further demonstrate that this base-editing platform could influence gene expression in vivo as its delivery to a mouse model of Huntington's disease led to a potent decrease in HTT mRNA in striatal neurons. Finally, to illustrate the applicability of this concept, we target the amyloid precursor protein, showing that multiplex editing of its promoter region significantly perturbed its expression. These findings demonstrate the potential for base editors to regulate target gene expression.
Collapse
Affiliation(s)
- Colin K W Lim
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | | | - Garrett D McPheron
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Ramya Krishnan
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | - Jackson E Powell
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Lindsay V Clark
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA.
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide expansion in the HTT gene, which encodes for an abnormal polyglutamine tract in the huntingtin protein (HTT). This review examines the known mechanisms of HTT gene regulation. We discuss HTT expression patterns, features of the HTT promoter, regulatory regions of the HTT promoter with functional significance, and HTT regulators located outside of the proximal promoter region. The factors that influence HTT expression in the brain and the mechanisms of HTT transcriptional regulation are currently poorly understood, despite continuing research. Expanding knowledge of HTT regulation will inform future studies investigating HTT function. Improving understanding of HTT expression and control may also uncover novel therapeutic approaches for HD through the development of methods to modulate mHTT levels.
Collapse
Affiliation(s)
- Sarah B Thomson
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, and BC Children's Hospital, Vancouver, BC, Canada
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, and BC Children's Hospital, Vancouver, BC, Canada.,Department of Medicine, Centre for Brain Health, and Division of Neurology, University of British Columbia Hospital, Vancouver, BC, Canada
| |
Collapse
|
3
|
Neueder A, Bates GP. RNA Related Pathology in Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:85-101. [PMID: 29427099 DOI: 10.1007/978-3-319-71779-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter summarises research investigating the expression of huntingtin sense and anti-sense transcripts, the effect of the mutation on huntingtin processing as well as the more global effect of the mutation on the coding and non-coding transcriptomes. The huntingtin gene is ubiquitously expressed, although expression levels vary between tissues and cell types. A SNP that affects NF-ĸB binding in the huntingtin promoter modulates the expression level of huntingtin transcripts and is associated with the age of disease onset. Incomplete splicing between exon 1 and exon 2 has been shown to result in the expression of a small polyadenylated mRNA that encodes the highly pathogenic exon 1 huntingtin protein. This occurs in a CAG-repeat length dependent manner in all full-length mouse models of HD as well as HD patient post-mortem brains and fibroblasts. An antisense transcript to huntingtin is generated that contains a CUG repeat that is expanded in HD patients. In myotonic dystrophy, expanded CUG repeats form RNA foci in cell nuclei that bind specific proteins (e.g. MBL1). Short, pure CAG RNAs of approximately 21 nucleotides that have been processed by DICER can inhibit the translation of other CAG repeat containing mRNAs. The HD mutation affects the transcriptome at the level of mRNA expression, splicing and the expression of non-coding RNAs. Finally, expanded repetitive stretched of nucleotides can lead to RAN translation, in which the ribosome translates from the expanded repeat in all possible reading frames, producing proteins with various poly-amino acid tracts. The extent to which these events contribute to HD pathogenesis is largely unknown.
Collapse
Affiliation(s)
- Andreas Neueder
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
4
|
Abstract
Of the neurodegenerative diseases presented in this book, Huntington's disease (HD) stands as the archetypal autosomal dominantly inherited neurodegenerative disorder. Its occurrence through generations of affected families was noted long before the basic genetic underpinnings of hereditary diseases was understood. The early classification of HD as a distinct hereditary neurodegenerative disorder allowed the study of this disease to lead the way in the development of our understanding of the mechanisms of human genetic disorders. Following its clinical and pathologic characterization, the causative genetic mutation in HD was subsequently identified as a trinucleotide (CAG) repeat expansion in the huntingtin (HTT) gene, and consequently, the HTT gene and huntingtin protein have been studied in great detail. Despite this concentrated effort, there is still much about the function of huntingtin that still remains unknown. Presented in this chapter is an overview of the current knowledge on the normal function of huntingtin and some of the potential neurobiologic mechanisms by which the mutant HTT gene may mediate neurodegeneration in HD.
Collapse
Affiliation(s)
- Rebecca A G De Souza
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Room 2020, Vancouver, BC, V5Z 4H4, Canada
| | | |
Collapse
|
5
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
6
|
Boy J, Schmidt T, Schumann U, Grasshoff U, Unser S, Holzmann C, Schmitt I, Karl T, Laccone F, Wolburg H, Ibrahim S, Riess O. A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats. Neurobiol Dis 2009; 37:284-93. [PMID: 19699305 DOI: 10.1016/j.nbd.2009.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/31/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is caused by the expansion of a polyglutamine repeat in the ataxin-3 protein. We generated a mouse model of SCA3 expressing ataxin-3 with 148 CAG repeats under the control of the huntingtin promoter, resulting in ubiquitous expression throughout the whole brain. The model resembles many features of the disease in humans, including a late onset of symptoms and CAG repeat instability in transmission to offspring. We observed a biphasic progression of the disease, with hyperactivity during the first months and decline of motor coordination after about 1 year of age; however, intranuclear aggregates were not visible at this age. Few and small intranuclear aggregates appeared first at the age of 18 months, further supporting the claim that neuronal dysfunction precedes the formation of intranuclear aggregates.
Collapse
Affiliation(s)
- Jana Boy
- Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Orso F, Jäger R, Calogero RA, Schorle H, Sismondi P, De Bortoli M, Taverna D. AP-2alpha regulates migration of GN-11 neurons via a specific genetic programme involving the Axl receptor tyrosine kinase. BMC Biol 2009; 7:25. [PMID: 19463168 PMCID: PMC2700071 DOI: 10.1186/1741-7007-7-25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 05/22/2009] [Indexed: 12/27/2022] Open
Abstract
Background Neuronal migration is a crucial process that allows neurons to reach their correct target location to allow the nervous system to function properly. AP-2α is a transcription factor essential for neural crest cell migration and its mutation results in apoptosis within this cell population, as demonstrated by genetic models. Results We down-modulated AP-2α expression in GN-11 neurons by RNA interference and observe reduced neuron migration following the activation of a specific genetic programme including the Adhesion Related Kinase (Axl) gene. We prove that Axl is able to coordinate migration per se and by ChIP and promoter analysis we observe that its transcription is directly driven by AP-2α via the binding to one or more functional AP-2α binding sites present in its regulatory region. Analysis of migration in AP-2α null mouse embryo fibroblasts also reveals an essential role for AP-2α in cell movement via the activation of a distinct genetic programme. Conclusion We show that AP-2α plays an essential role in cell movement via the activation of cell-specific genetic programmes. Moreover, we demonstrate that the AP-2α regulated gene Axl is an essential player in GN-11 neuron migration.
Collapse
Affiliation(s)
- Francesca Orso
- Molecular Biotechnology Center, University of Torino, via Nizza, 52, 10126, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Morgan XC, Ni S, Miranker DP, Iyer VR. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining. BMC Bioinformatics 2007; 8:445. [PMID: 18005433 PMCID: PMC2211755 DOI: 10.1186/1471-2105-8-445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 11/15/2007] [Indexed: 12/20/2022] Open
Abstract
Background Cis-acting transcriptional regulatory elements in mammalian genomes typically contain specific combinations of binding sites for various transcription factors. Although some cis-regulatory elements have been well studied, the combinations of transcription factors that regulate normal expression levels for the vast majority of the 20,000 genes in the human genome are unknown. We hypothesized that it should be possible to discover transcription factor combinations that regulate gene expression in concert by identifying over-represented combinations of sequence motifs that occur together in the genome. In order to detect combinations of transcription factor binding motifs, we developed a data mining approach based on the use of association rules, which are typically used in market basket analysis. We scored each segment of the genome for the presence or absence of each of 83 transcription factor binding motifs, then used association rule mining algorithms to mine this dataset, thus identifying frequently occurring pairs of distinct motifs within a segment. Results Support for most pairs of transcription factor binding motifs was highly correlated across different chromosomes although pair significance varied. Known true positive motif pairs showed higher association rule support, confidence, and significance than background. Our subsets of high-confidence, high-significance mined pairs of transcription factors showed enrichment for co-citation in PubMed abstracts relative to all pairs, and the predicted associations were often readily verifiable in the literature. Conclusion Functional elements in the genome where transcription factors bind to regulate expression in a combinatorial manner are more likely to be predicted by identifying statistically and biologically significant combinations of transcription factor binding motifs than by simply scanning the genome for the occurrence of binding sites for a single transcription factor.
Collapse
Affiliation(s)
- Xochitl C Morgan
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712-0159, USA.
| | | | | | | |
Collapse
|
9
|
Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, Minna JD, Corey DR. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol 2006; 13:787-92. [PMID: 16936728 DOI: 10.1038/nsmb1140] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/03/2006] [Indexed: 12/21/2022]
Abstract
Duplex RNAs complementary to messenger RNA inhibit translation in mammalian cells by RNA interference (RNAi). Studies have reported that RNAs complementary to promoter DNA also inhibit gene expression. Here we show that the human homologs of Argonaute-1 (AGO1) and Argonaute-2 (AGO2) link the silencing pathways that target mRNA with pathways mediating recognition of DNA. We find that synthetic antigene RNAs (agRNAs) complementary to transcription start sites or more upstream regions of gene promoters inhibit gene transcription. This silencing occurs in the nucleus, requires high promoter activity and does not necessarily require histone modification. AGO1 and AGO2 associate with promoter DNA in cells treated with agRNAs, and inhibiting expression of AGO1 or AGO2 reverses transcriptional and post-transcriptional silencing. Our data indicate key linkages and important mechanistic distinctions between transcriptional and post-transcriptional silencing pathways in mammalian cells.
Collapse
Affiliation(s)
- Bethany A Janowski
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Qiu Z, Norflus F, Singh B, Swindell MK, Buzescu R, Bejarano M, Chopra R, Zucker B, Benn CL, DiRocco DP, Cha JHJ, Ferrante RJ, Hersch SM. Sp1 Is Up-regulated in Cellular and Transgenic Models of Huntington Disease, and Its Reduction Is Neuroprotective. J Biol Chem 2006; 281:16672-80. [PMID: 16595660 DOI: 10.1074/jbc.m511648200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions between mutant huntingtin (Htt) and a variety of transcription factors including specificity proteins (Sp) have been suggested as a central mechanism in Huntington disease (HD). However, the transcriptional activity induced by Htt in neurons that triggers neuronal death has yet to be fully elucidated. In the current study, we characterized the relationship of Sp1 to Htt protein aggregation and neuronal cell death. We found increased levels of Sp1 in neuronal-like PC12 cells expressing mutant Htt, primary striatal neurons, and brain tissue of HD transgenic mice. Sp1 levels were also elevated when 3-nitropropionate (3-NP) was used to induce cell death in PC12 cells. To assess the effects of knocking down Sp1 in HD pathology, we used Sp1 siRNA, a heterozygous Sp1 knock-out mouse, and mithramycin A, a DNA-intercalating agent that inhibits Sp1 function. The three approaches consistently yielded reduced levels of Sp1 which ameliorated toxicity caused by either mutant Htt or 3-NP. In addition, when HD mice were crossed with Sp1 heterozygous knock-out mice, the resulting offspring did not experience the loss of dopamine D2 receptor mRNA characteristic of HD mice, and survived longer than their HD counterparts. Our data suggest that enhancement of transcription factor Sp1 contributes to the pathology of HD and demonstrates that its suppression is beneficial.
Collapse
Affiliation(s)
- Zhihua Qiu
- Massachusetts General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tanaka K, Shouguchi-Miyata J, Miyamoto N, Ikeda JE. Novel Nuclear Shuttle Proteins, HDBP1 and HDBP2, Bind to Neuronal Cell-specific cis-Regulatory Element in the Promoter for the Human Huntington's Disease Gene. J Biol Chem 2004; 279:7275-86. [PMID: 14625278 DOI: 10.1074/jbc.m310726200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in exon 1 of the HD gene, and the expression level of either normal or mutant huntingtin is implicated in the pathogenesis of HD. However, a molecular base of the HD gene transcription has not been elucidated as yet. In this study, we identified two proteins, HDBP1 and HDBP2, which bind to the promoter region for the HD gene using a yeast one-hybrid system. Amino acid sequence analysis of the proteins deduced the presence of nuclear localization signal, nuclear export signal, zinc finger, serine/proline-rich region, and highly conserved C-terminal region. In vitro DNA binding assay indicated that the C-terminal conserved regions of the proteins were responsible for binding to the unique promoter DNA sequences of the HD gene. The DNA sequence protected from DNase I digestion was a 7-bp consensus sequence (GCCGGCG), which resides in triplicate at intervals of 13 bp within and proximal to the 20-bp direct repeat sequences of the HD promoter region. The mutation of 7-bp consensus sequence abolishes the HD promoter function in a neuronal cell line (IMR32). In human cultured cells, ectopically expressed green fluorescent protein-fused HDBP1 and HDBP2 localized in the cytoplasm, but both proteins totally shift from cytoplasm to nucleus by the treatment with an inhibitor of the nuclear export, leptomycin B, and mutagenesis of the putative nuclear export signals. Taken together, HDBP1 and HDBP2 are novel transcription factors shuttling between nucleus and cytoplasm and bind to the specific GCCGGCG, which is an essential cis-element for HD gene expression in neuronal cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Cell Line
- Conserved Sequence
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Deoxyribonuclease I/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Library
- Genes, Reporter
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- Huntingtin Protein
- Luciferases/metabolism
- Luminescent Proteins/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Neurons/metabolism
- Nuclear Localization Signals
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Plasmids/metabolism
- Proline/chemistry
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Serine/chemistry
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Two-Hybrid System Techniques
- Zinc Fingers
Collapse
Affiliation(s)
- Kazunori Tanaka
- Department of Molecular Neuroscience, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | | | | | | |
Collapse
|
12
|
Lee J, Park EH, Couture G, Harvey I, Garneau P, Pelletier J. An upstream open reading frame impedes translation of the huntingtin gene. Nucleic Acids Res 2002; 30:5110-9. [PMID: 12466534 PMCID: PMC137975 DOI: 10.1093/nar/gkf664] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expansion of a CAG tract within the huntingtin gene, leading to the production of a protein with an expanded polyglutamine tract, is responsible for Huntington's disease. We show here that the 5' untranslated region (UTR) of the huntingtin gene plays an important role in controlling the synthesis of huntingtin. In particular, the 5' UTR contains an upstream open reading frame (uORF) encoding a 21 amino acid peptide. We demonstrate that the presence of this uORF negatively influences expression from the huntingtin mRNA. Our results suggest a role for the uORF in limiting ribosomal access to downstream initiation sites. Mechanisms involving the post-transcriptional regulation of huntingtin are not well understood, and this may be an important way of regulating huntingtin protein levels.
Collapse
Affiliation(s)
- Joseph Lee
- Department of Biochemistry and McGill Cancer Center, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
In bacteria, coordinate expression of genes involved in lactose metabolism is regulated by the lac repressor and its DNA binding sequence, the lac operator. The lac operator-repressor complex can also be used to regulate gene expression in the laboratory mouse. In this review, I discuss the current state of murine trans-operons, and suggest ways this lac-based system might be used to build more advanced models of human diseases in the mouse.
Collapse
Affiliation(s)
- Heidi Scrable
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|