1
|
Hsu CYM, Uludağ H. Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J Drug Target 2012; 20:301-28. [PMID: 22303844 DOI: 10.3109/1061186x.2012.655247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The delivery of nucleic acid molecules into cells to alter physiological functions at the genetic level is a powerful approach to treat a wide range of inherited and acquired disorders. Biocompatible materials such as cationic polymers, lipids, and peptides are being explored as safer alternatives to viral gene carriers. However, the comparatively low efficiency of nonviral carriers currently hampers their translation into clinical settings. Controlling the size and stability of carrier/nucleic acid complexes is one of the primary hurdles as the physicochemical properties of the complexes can define the uptake pathways, which dictate intracellular routing, endosomal processing, and nucleocytoplasmic transport. In addition to nuclear import, subnuclear trafficking, posttranscriptional events, and immune responses can further limit transfection efficiency. Chemical moieties, reactive linkers or signal peptide have been conjugated to carriers to prevent aggregation, induce membrane destabilization and localize to subcellular compartments. Genetic elements can be inserted into the expression cassette to facilitate nuclear targeting, delimit expression to targeted tissue, and modulate transgene expression. The modular option afforded by both gene carriers and expression cassettes provides a two-tier multicomponent delivery system that can be optimized for targeted gene delivery in a variety of settings.
Collapse
Affiliation(s)
- Charlie Yu Ming Hsu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Cananda
| | | |
Collapse
|
2
|
Garcia-Blanco MA. Alternative splicing: therapeutic target and tool. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:47-64. [PMID: 17076264 DOI: 10.1007/978-3-540-34449-0_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alternative splicing swells the coding capacity of the human genome, expanding the pharmacoproteome, the proteome that provides targets for therapy. Splicing, both constitutive and regulated forms, can itself be targeted by conventional and molecular therapies. This review focuses on splicing as a therapeutic target with a particular emphasis on molecular approaches. The review looks at the use of antisense oligonucleotides, which can be employed to promote skipping of constitutive exons, inhibit inappropriately activated exons, or stimulate exons weakened by mutations. Additionally this manuscript evaluates methods that reprogram RNAs using reactions that recombine RNA molecules in trans. Preliminary, but exciting, results in these areas of investigation suggest that these methods could eventually lead to treatments in heretofore intractable ailments.
Collapse
Affiliation(s)
- Mariano A Garcia-Blanco
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
3
|
Silverman SK. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 2005; 33:6151-63. [PMID: 16286368 PMCID: PMC1283523 DOI: 10.1093/nar/gki930] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the last decade, many catalytically active DNA molecules (deoxyribozymes; DNA enzymes) have been identified by in vitro selection from random-sequence DNA pools. This article focuses on deoxyribozymes that cleave RNA substrates. The first DNA enzyme was reported in 1994 and cleaves an RNA linkage. Since that time, many other RNA-cleaving deoxyribozymes have been identified. Most but not all of these deoxyribozymes require a divalent metal ion cofactor such as Mg2+ to catalyze attack by a specific RNA 2′-hydroxyl group on the adjacent phosphodiester linkage, forming a 2′,3′-cyclic phosphate and a 5′-hydroxyl group. Several deoxyribozymes that cleave RNA have utility for in vitro RNA biochemistry. Some DNA enzymes have been applied in vivo to degrade mRNAs, and others have been engineered into sensors. The practical impact of RNA-cleaving deoxyribozymes should continue to increase as additional applications are developed.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Pergolizzi RG, Crystal RG. Genetic medicine at the RNA level: modifications of the genetic repertoire for therapeutic purposes by pre-mRNA trans-splicing. C R Biol 2004; 327:695-709. [PMID: 15506518 DOI: 10.1016/j.crvi.2004.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene therapy is conventionally carried out by transferring genetic material to the target cell where the exogenous gene is expressed using the endogenous transcription and translation machinery in parallel with the target cell genome. This review focuses on a new paradigm of gene therapy, the use of trans-splicing to modify the genetic repertoire at the pre-mRNA level to treat genetic and acquired disorders. Therapeutic trans-splicing can be used to alter coding domains, to create novel fusion proteins, to direct gene products to various cellular compartments, and to overcome some of the limitations to vector-derived gene transfer technology, including gene therapy with large genes or with genes coding for toxic proteins. To demonstrate the potential of therapeutic trans-splicing, eukaryotic cis-splicing and trans-splicing are reviewed, followed by a discussion of strategies of therapeutic pre-mRNA trans-splicing directed by exogenous gene transfer.
Collapse
Affiliation(s)
- Robert G Pergolizzi
- Department of Genetic Medicine, Weill Medical College of Cornell University, 515 East 71st Street, S-1000 New York, NY 10021, USA
| | | |
Collapse
|
5
|
Lundblad EW, Haugen P, Johansen SD. Trans-splicing of a mutated glycosylasparaginase mRNA sequence by a group I ribozyme deficient in hydrolysis. ACTA ACUST UNITED AC 2004; 271:4932-8. [PMID: 15606781 DOI: 10.1111/j.1432-1033.2004.04462.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RNA reprogramming represents a new concept in correcting genetic defects at the RNA level. However, for the technique to be useful for therapy, the level of reprogramming must be appropriate. To improve the efficiency of group I ribozyme-mediated RNA reprogramming, when using the Tetrahymena ribozyme, regions complementary to the target RNA have previously been extended in length and accessible sites in the target RNAs have been identified. As an alternative to the Tetrahymena model ribozyme, the DiGIR2 group I ribozyme, derived from a mobile group I intron in rDNA of the myxomycete Didymium iridis, represents a new and attractive tool in RNA reprogramming. We reported recently that the deletion of a structural element within the P9 domain of DiGIR2 turns off hydrolysis at the 3' splice site (side reaction) without affecting self-splicing [Haugen, P., Andreassen, M., Birgisdottir, A.B. & Johansen, S.D. (2004) Eur. J. Biochem. 271, 1015-1024]. Here we analyze the potential of the modified ribozyme, deficient in hydrolysis at the 3' splice site, for application in group I ribozyme-mediated trans-splicing of RNA. The improved ribozyme catalyses both cis-splicing and trans-splicing in vitro of a human glycosylasparaginase mRNA sequence with the same efficiency as the original DiGIR2 ribozyme, but without detectable levels of the unwanted hydrolysis.
Collapse
Affiliation(s)
- Eirik W Lundblad
- Department of Molecular Biotechnology, RNA Research group, Institute of Medical Biology, University of Tromsø, Norway
| | | | | |
Collapse
|
6
|
Pergolizzi RG, Ropper AE, Dragos R, Reid AC, Nakayama K, Tan Y, Ehteshami JR, Coleman SH, Silver RB, Hackett NR, Menez A, Crystal RG. In vivo trans-splicing of 5' and 3' segments of pre-mRNA directed by corresponding DNA sequences delivered by gene transfer. Mol Ther 2004; 8:999-1008. [PMID: 14664803 DOI: 10.1016/j.ymthe.2003.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We have developed a new paradigm of in vivo gene transfer termed "segmental trans-splicing" (STS), in which individual "donor" and "acceptor" DNA sequences, delivered in vitro or in vivo, generate pre-mRNAs with 5' and 3' splice signals, respectively, and complementary hybridization domains through which the two pre-mRNAs interact, facilitating trans-splicing of the two mRNA fragments. To demonstrate STS, we used alpha-cobratoxin, a neurotoxin that binds irreversibly to postsynaptic nicotinic acetylcholine receptors. Cells or animals receiving both donor and acceptor plasmids, but neither plasmid alone, yielded RT-PCR products with the correct sequence of mature alpha-cobratoxin mRNA, suggesting that trans-splicing had occurred. Mice receiving intravenous administration of > or = 7.5 microg donor + acceptor plasmids, but not either plasmid alone, died within 6 h. These data demonstrate that segmental trans-splicing occurs in vivo. This approach should permit the intracellular assembly of molecules hitherto too large to be accommodated within current gene transfer vectors.
Collapse
Affiliation(s)
- Robert G Pergolizzi
- Belfer Gene Therapy Core Facility, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Alternative splicing is the major source of proteome diversity in humans and thus is highly relevant to disease and therapy. For example, recent work suggests that the long-sought-after target of the analgesic acetaminophen is a neural-specific, alternatively spliced isoform of cyclooxygenase 1 (COX-1). Several important diseases, such as cystic fibrosis, have been linked with mutations or variations in either cis-acting elements or trans-acting factors that lead to aberrant splicing and abnormal protein production. Correction of erroneous splicing is thus an important goal of molecular therapies. Recent experiments have used modified oligonucleotides to inhibit cryptic exons or to activate exons weakened by mutations, suggesting that these reagents could eventually lead to effective therapies.
Collapse
Affiliation(s)
- Mariano A Garcia-Blanco
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Box 3053, Research Drive, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
8
|
Shaw BR, Dobrikov M, Wang X, Wan J, He K, Lin JL, Li P, Rait V, Sergueeva ZA, Sergueev D. Reading, writing, and modulating genetic information with boranophosphate mimics of nucleotides, DNA, and RNA. Ann N Y Acad Sci 2004; 1002:12-29. [PMID: 14751819 DOI: 10.1196/annals.1281.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The P-boranophosphates are efficient and near perfect mimics of natural nucleic acids in permitting reading and writing of genetic information with high yield and accuracy. Substitution of a borane (-BH3) group for oxygen in the phosphate ester bond creates an isoelectronic and isosteric mimic of natural nucleotide phosphate esters found in mononucleotides, i.e., AMP and ATP, and in RNA and DNA polynucleotides. Compared to natural nucleic acids, the boranophosphate RNA and DNA analogs demonstrate increased lipophilicity and resistance to endo- and exonucleases, yet they retain negative charge and similar spatial geometry. Borane groups can readily be introduced into the NTP and dNTP nucleic acid monomer precursors to produce alpha-P-borano nucleoside triphosphate analogs (e.g., NTPalphaB and dNTPalphaB). The NTPalphaB and dNTPalphaB are, in fact, good to excellent substrates for RNA and DNA polymerases, respectively, and allow ready enzymatic synthesis of RNA and DNA with P-boranophosphate linkages. Further, boranophosphate polymer products are good templates for replication, transcription, and gene expression; boronated RNA products are also suitable for reverse transcription to cDNA. Fully substituted boranophosphate DNA can activate the RNase H cleavage of RNA in RNA:DNA hybrids. Moreover, certain dideoxy-NTPalphaB analogs appear to be better substrates for viral reverse transcriptases than the regular ddNTPs, and may offer promising prodrug alternatives in antiviral therapy. These properties make boranophosphates promising candidates for diagnostics; aptamer selection; gene therapy; and antiviral, antisense, and RNAi therapeutics. The boranophosphates constitute a versatile family of phosphate mimics for processing genetic information and modulating gene function.
Collapse
Affiliation(s)
- Barbara Ramsay Shaw
- Paul M. Gross Chemical Laboratory, Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Steele D, Kertsburg A, Soukup GA. Engineered catalytic RNA and DNA : new biochemical tools for drug discovery and design. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:131-44. [PMID: 12749730 DOI: 10.2165/00129785-200303020-00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the fundamental discovery that RNA catalyzes critical biological reactions, the conceptual and practical utility of nucleic acid catalysts as molecular therapeutic and diagnostic agents continually develops. RNA and DNA catalysts are particularly attractive tools for drug discovery and design due to their relative ease of synthesis and tractable rational design features. Such catalysts can intervene in cellular or viral gene expression by effectively destroying virtually any target RNA, repairing messenger RNAs derived from mutant genes, or directly disrupting target genes. Consequently, catalytic nucleic acids are apt tools for dissecting gene function and for effecting gene pharmacogenomic strategies. It is in this capacity that RNA and DNA catalysts have been most widely utilized to affect gene expression of medically relevant targets associated with various disease states, where a number of such catalysts are presently being evaluated in clinical trials. Additionally, biotechnological prospects for catalytic nucleic acids are seemingly unlimited. Controllable nucleic acid catalysts, termed allosteric ribozymes or deoxyribozymes, form the basis of effector or ligand-dependent molecular switches and sensors. Allosteric nucleic acid catalysts promise to be useful tools for detecting and scrutinizing the function of specified components of the metabolome, proteome, transcriptome, and genome. The remarkable versatility of nucleic acid catalysis is thus the fountainhead for wide-ranging applications of ribozymes and deoxyribozymes in biomedical and biotechnological research.
Collapse
Affiliation(s)
- David Steele
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | |
Collapse
|
10
|
Chao H, Mansfield SG, Bartel RC, Hiriyanna S, Mitchell LG, Garcia-Blanco MA, Walsh CE. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat Med 2003; 9:1015-9. [PMID: 12847523 DOI: 10.1038/nm900] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 06/16/2003] [Indexed: 11/10/2022]
Abstract
Conventional gene therapy of hemophilia A relies on the transfer of factor VIII (FVIII; encoded by the F8 gene) cDNA. We carried out spliceosome-mediated RNA trans-splicing (SMaRT) to repair mutant FVIII mRNA. A pre-trans-splicing molecule (PTM) corrected endogenous FVIII mRNA in F8 knockout mice with the hemophilia A phenotype, producing sufficient functional FVIII to correct the hemophilia A phenotype. This is the first description of phenotypic correction of a genetic defect by RNA repair in a knockout animal model. Our results indicate the feasibility of using SMaRT to repair RNA for the treatment of genetic diseases.
Collapse
Affiliation(s)
- Hengjun Chao
- Department of Medicine, Mt. Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:810-814. [DOI: 10.11569/wcjd.v11.i6.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Rogers CS, Vanoye CG, Sullenger BA, George AL. Functional repair of a mutant chloride channel using a trans-splicing ribozyme. J Clin Invest 2003. [PMID: 12488428 DOI: 10.1172/jci200216481] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA repair has been proposed as a novel gene-based therapeutic strategy. Modified Tetrahymena group I intron ribozymes have been used to mediate trans-splicing of therapeutically relevant RNA transcripts, but the efficiency of the ribozyme-mediated RNA repair process has not been determined precisely and subsequent restoration of protein function has been demonstrated only by indirect means. We engineered a ribozyme that targets the mRNA of a mutant canine skeletal muscle chloride channel (cClC-1) (mutation T268M in ClC-1 causing myotonia congenita) and replaces the mutant-containing 3' portion by trans-splicing the corresponding 4-kb wild-type sequence. Repair efficiency assessed by quantitative RT-PCR was 1.2% +/- 0.1% in a population of treated cells. However, when chloride channel function was examined in single cells, a wide range of electrophysiological activity was observed, with 18% of cells exhibiting significant functional restoration and some cells exhibiting complete rescue of the biophysical phenotype. These results indicate that RNA repair can restore wild-type protein activity and reveal considerable cell-to-cell variability in ribozyme-mediated trans-splicing reaction efficiency.
Collapse
Affiliation(s)
- Christopher S Rogers
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
13
|
Atsumi S, Ikawa Y, Shiraishi H, Inoue T. Selections for constituting new RNA-protein interactions in catalytic RNP. Nucleic Acids Res 2003; 31:661-9. [PMID: 12527775 PMCID: PMC140506 DOI: 10.1093/nar/gkg140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro and in vivo selection techniques are developed to constitute new RNA-peptide interactions. The selection strategy is designed by employing a catalytic RNP consisting of a derivative of the Tetrahymena ribozyme and an artificial RNA-binding protein. An arginine-rich RNA-binding motif and its target RNA motif in the RNP are substituted with randomized sequences and used for the selection experiments. Previously unknown binding motifs are obtained and the newly established interactions have been indispensable for assembling a catalytically active RNP. The method employed in this study is useful for making customized self-splicing intron RNAs whose activity is regulated by protein cofactors.
Collapse
Affiliation(s)
- Shota Atsumi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
14
|
Bell MA, Johnson AK, Testa SM. Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry 2002; 41:15327-33. [PMID: 12484771 DOI: 10.1021/bi0267386] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate that a group I intron-derived ribozyme from the opportunistic pathogen Pneumocystis carinii can bind an RNA in trans and excise from within it an internal segment, resulting in the splicing of the remaining ends of the RNA back together (the trans excision-splicing reaction). The reaction is intramolecular with regard to substrate. The ribozyme targets its substrate by base pairing with two or three noncontiguous regions on the substrate, and the reaction occurs through a nucleotide cofactor independent mechanism. The excised segment can be as long as 28 nucleotides, or more, and as little as one nucleotide. The potential usefulness of this reaction is demonstrated by engineering a ribozyme that excises the triplet-repeat expansion region from a truncated myotonic dystrophy protein kinase transcript mimic in vitro.
Collapse
Affiliation(s)
- Michael A Bell
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | |
Collapse
|
15
|
Rogers CS, Vanoye CG, Sullenger BA, George AL. Functional repair of a mutant chloride channel using a trans-splicing ribozyme. J Clin Invest 2002; 110:1783-9. [PMID: 12488428 PMCID: PMC151654 DOI: 10.1172/jci16481] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA repair has been proposed as a novel gene-based therapeutic strategy. Modified Tetrahymena group I intron ribozymes have been used to mediate trans-splicing of therapeutically relevant RNA transcripts, but the efficiency of the ribozyme-mediated RNA repair process has not been determined precisely and subsequent restoration of protein function has been demonstrated only by indirect means. We engineered a ribozyme that targets the mRNA of a mutant canine skeletal muscle chloride channel (cClC-1) (mutation T268M in ClC-1 causing myotonia congenita) and replaces the mutant-containing 3' portion by trans-splicing the corresponding 4-kb wild-type sequence. Repair efficiency assessed by quantitative RT-PCR was 1.2% +/- 0.1% in a population of treated cells. However, when chloride channel function was examined in single cells, a wide range of electrophysiological activity was observed, with 18% of cells exhibiting significant functional restoration and some cells exhibiting complete rescue of the biophysical phenotype. These results indicate that RNA repair can restore wild-type protein activity and reveal considerable cell-to-cell variability in ribozyme-mediated trans-splicing reaction efficiency.
Collapse
Affiliation(s)
- Christopher S Rogers
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
16
|
Thompson KM, Syrett HA, Knudsen SM, Ellington AD. Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2002; 2:21. [PMID: 12466025 PMCID: PMC139998 DOI: 10.1186/1472-6750-2-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 12/04/2002] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Allosteric ribozymes (aptazymes) that have extraordinary activation parameters have been generated in vitro by design and selection. For example, hammerhead and ligase ribozymes that are activated by small organic effectors and protein effectors have been selected from random sequence pools appended to extant ribozymes. Many ribozymes, especially self-splicing introns, are known control gene regulation or viral replication in vivo. We attempted to generate Group I self-splicing introns that were activated by a small organic effector, theophylline, and to show that such Group I aptazymes could mediate theophylline-dependent splicing in vivo. RESULTS By appending aptamers to the Group I self-splicing intron, we have generated a Group I aptazyme whose in vivo splicing is controlled by exogenously added small molecules. Substantial differences in gene regulation could be observed with compounds that differed by as little as a single methyl group. The effector-specificity of the Group I aptazyme could be rationally engineered for new effector molecules. CONCLUSION Group I aptazymes may find applications as genetic regulatory switches for generating conditional knockouts at the level of mRNA or for developing economically viable gene therapies.
Collapse
Affiliation(s)
- Kristin M Thompson
- Present address: Archemix Corp., 1 Hampshire St., Cambridge, MA 02139, USA
| | - Heather A Syrett
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Scott M Knudsen
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Lozier JN, Dutra A, Pak E, Zhou N, Zheng Z, Nichols TC, Bellinger DA, Read M, Morgan RA. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc Natl Acad Sci U S A 2002; 99:12991-6. [PMID: 12242334 PMCID: PMC130574 DOI: 10.1073/pnas.192219599] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Indexed: 11/18/2022] Open
Abstract
In the Chapel Hill colony of factor VIII-deficient dogs, abnormal sequence (ch8, for canine hemophilia 8, GenBank no. ) follows exons 1-22 in the factor VIII transcript in place of exons 23-26. The canine hemophilia 8 locus (ch8) sequence was found in a 140-kb normal dog genomic DNA bacterial artificial chromosome (BAC) clone that was completely outside the factor VIII gene, but not in BAC clones containing the factor VIII gene. The BAC clone that contained ch8 also contained a homologue of F8A (factor 8 associated) sequence, which participates in a common inversion that causes severe hemophilia A in humans. Fluorescence in situ hybridization analysis indicated that exons 1-26 normally proceed sequentially from telomere to centromere at Xq28, and ch8 is telomeric to the factor VIII gene. The appearance of an "upstream" genomic sequence element (ch8) at the end of the aberrant factor VIII transcript suggested that an inversion of genomic DNA replaced factor VIII exons 22-26 with ch8. The F8A sequence appeared also in overlapping normal BAC clones containing factor VIII sequence. We hypothesized that homologous recombination between copies of canine F8A inside and outside the factor VIII gene had occurred, as in human hemophilia A. High-resolution fluorescent in situ hybridization on hemophilia A dog DNA revealed a pattern consistent with this inversion mechanism. We also identified a HindIII restriction fragment length polymorphism of F8A fragments that distinguished hemophilia A, carrier, and normal dogs' DNA. The Chapel Hill hemophilia A dog colony therefore replicates the factor VIII gene inversion commonly seen in humans with severe hemophilia A.
Collapse
Affiliation(s)
- Jay N Lozier
- Food and Drug Administration, Center for Biologics Evaluation and Research, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yadava RS, Choi AJ, Lebruska LL, Fedor MJ. Hairpin ribozymes with four-way helical junctions mediate intracellular RNA ligation. J Mol Biol 2001; 309:893-902. [PMID: 11399066 DOI: 10.1006/jmbi.2001.4713] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virtually all RNA-mediated reactions require transitions among alternative RNA conformations. The complexity of biological reactions can obscure specific conformational changes in vivo and important features of the intracellular environment are difficult to reproduce in vitro. However, simple RNA self-cleavage and ligation reactions offer a unique opportunity to measure the kinetics and equilibria of specific RNA conformational transitions directly in living cells. Hairpin ribozymes that incorporate the natural four-way helical junction self-cleave rapidly in vivo, but only when cleavage products dissociate rapidly. Cleavage rates fall when cleavage products remain bound in stable base-paired helices, providing evidence that bound products undergo re-ligation. These results provide the first detailed kinetic description of an intracellular ribozyme reaction that includes cleavage, ligation and product dissociation rates. Kinetic and equilibrium parameters measured in vivo correspond well, but not perfectly, with values measured for the same reactions in vitro under conditions that approximate an intracellular ionic environment.
Collapse
Affiliation(s)
- R S Yadava
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute MB35, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|