1
|
Wang Y, Yang JS, Zhao M, Chen JQ, Xie HX, Yu HY, Liu NH, Yi ZJ, Liang HL, Xing L, Jiang HL. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery. Adv Drug Deliv Rev 2024; 211:115355. [PMID: 38849004 DOI: 10.1016/j.addr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Song Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qi Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Xin Xie
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Na-Hui Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Juan Yi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Lin Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
2
|
Brown DM, Glass JI. Technology used to build and transfer mammalian chromosomes. Exp Cell Res 2020; 388:111851. [PMID: 31952951 DOI: 10.1016/j.yexcr.2020.111851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
Abstract
In the near twenty-year existence of the human and mammalian artificial chromosome field, the technologies for artificial chromosome construction and installation into desired cell types or organisms have evolved with the rest of modern molecular and synthetic biology. Medical, industrial, pharmaceutical, agricultural, and basic research scientists seek the as yet unrealized promise of human and mammalian artificial chromosomes. Existing technologies for both top-down and bottom-up approaches to construct these artificial chromosomes for use in higher eukaryotes are very different but aspire to achieve similar results. New capacity for production of chromosome sized synthetic DNA will likely shift the field towards more bottom-up approaches, but not completely. Similarly, new approaches to install human and mammalian artificial chromosomes in target cells will compete with the microcell mediated cell transfer methods that currently dominate the field.
Collapse
|
3
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
4
|
A Dual-Ligand Liposomal System Composed of a Cell-Penetrating Peptide and a Mitochondrial RNA Aptamer Synergistically Facilitates Cellular Uptake and Mitochondrial Targeting. J Pharm Sci 2016; 105:1705-1713. [PMID: 27056631 DOI: 10.1016/j.xphs.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 01/22/2023]
Abstract
It has been reported that the use of mitochondrial RNA aptamers including RNase P (RP) results in the selective mitochondrial delivery of endogenous and exogenous RNAs. The issue of whether these aptamers would be useful ligands for the mitochondrial targeting of a nanoparticle has not been demonstrated to date because nanocarriers modified with these RNA aptamers are insufficiently internalized by cells. We report here on the development of a dual-ligand liposomal system composed of octaarginine (R8), a device that enhances cellular uptake, and an RP aptamer for mitochondrial targeting to permit a nanocarrier to be efficiently delivered to mitochondria. Surprisingly, the cellular uptake of the R8-modified nanocarrier was facilitated by modification with an RP aptamer. The optimal composition of a nanocarrier needed for efficient cellular uptake and mitochondrial targeting was determined. In a confocal laser scanning microscopy analysis, the dual-ligand-modified nanocarrier was found to result in effective mitochondrial targeting through an ATP-dependent pathway and was much more effective than a single-ligand R8-modified nanocarrier. This is the first report of the regulation of intracellular trafficking by a mitochondrial RNA aptamer-modified nanocarrier system.
Collapse
|
5
|
Sato Y, Nakamura T, Yamada Y, Akita H, Harashima H. Multifunctional enveloped nanodevices (MENDs). ADVANCES IN GENETICS 2015; 88:139-204. [PMID: 25409606 DOI: 10.1016/b978-0-12-800148-6.00006-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is anticipated that nucleic acid medicines will be in widespread use in the future, since they have the potential to cure diseases based on molecular mechanisms at the level of gene expression. However, intelligent delivery systems are required to achieve nucleic acid therapy, since they can perform their function only when they reach the intracellular site of action. We have been developing a multifunctional envelope-type nanodevice abbreviated as MEND, which consists of functional nucleic acids as a core and lipid envelope, and can control not only biodistribution but also the intracellular trafficking of nucleic acids. In this chapter, we review the development and evolution of the MEND by providing several successful examples, including the R8-MEND, the KALA-MEND, the MITO-Porter, the YSK-MEND, and the PALM.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| |
Collapse
|
6
|
Abstract
The key impediment to the successful application of gene therapy in clinics is not the paucity of therapeutic genes. It is rather the lack of nontoxic and efficient strategies to transfer therapeutic genes into target cells. Over the past few decades, considerable progress has been made in gene transfer technologies, and thus far, three different delivery systems have been developed with merits and demerits characterizing each system. Viral and chemical methods of gene transfer utilize specialized carrier to overcome membrane barrier and facilitate gene transfer into cells. Physical methods, on the other hand, utilize various forms of mechanical forces to enforce gene entry into cells. Starting in 1980s, physical methods have been introduced as alternatives to viral and chemical methods to overcome various extra- and intracellular barriers that limit the amount of DNA reaching the intended cells. Accumulating evidence suggests that it is quite feasible to directly translocate genes into cytoplasm or even nuclei of target cells by means of mechanical force, bypassing endocytosis, a common pathway for viral and nonviral vectors. Indeed, several methods have been developed, and the majority of them share the same underlying mechanism of gene transfer, i.e., physically created transient pores in cell membrane through which genes get into cells. Here, we provide an overview of the current status and future research directions in the field of physical methods of gene transfer.
Collapse
|
7
|
Battigelli A, Russier J, Venturelli E, Fabbro C, Petronilli V, Bernardi P, Da Ros T, Prato M, Bianco A. Peptide-based carbon nanotubes for mitochondrial targeting. NANOSCALE 2013; 5:9110-9117. [PMID: 23903095 DOI: 10.1039/c3nr02694a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present study, we report the design and synthesis of peptide-based-multi-walled carbon nanotubes (MWCNTs) to target mitochondria. Targeting these intracellular organelles might open the way to develop alternative systems to address diseases related to genetic mutations in mitochondrial (mt)-DNA, by delivering therapeutic oligonucleotides. The first step towards mitochondrial delivery of this type of nucleic acid was to target MWCNTs to mitochondria by covalent functionalization with a well-known endogenous mitochondrial targeting sequence (MTS). The subcellular localization of the conjugates, which were fluorescently labeled, in murine RAW 264.7 macrophages and human HeLa cells was then studied using different microscopy techniques, such as wide-field epifluorescence microscopy, confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). The localization of the MTS-MWCNT conjugates into mitochondria was further confirmed by analyzing the isolated organelles using TEM.
Collapse
Affiliation(s)
- Alessia Battigelli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, Trieste, 34127, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Malhi SS, Murthy RSR. Delivery to mitochondria: a narrower approach for broader therapeutics. Expert Opin Drug Deliv 2012; 9:909-35. [DOI: 10.1517/17425247.2012.694864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Yamada Y, Harashima H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 2011; 33:1589-95. [PMID: 22105068 DOI: 10.1016/j.biomaterials.2011.10.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 10/29/2011] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction has been implicated in a variety of human diseases. It is now well accepted that mutations and defects in the mitochondrial genome form the basis of these diseases. Therefore, mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve such a strategy, it will be necessary to deliver therapeutic agents into mitochondria in living cells. We report here on an approach to accomplish this via the use of a Dual Function (DF)-MITO-Porter, aimed at the mitochondrial genome, so-called mitochondrial DNA (mtDNA). The DF-MITO-Porter, a nano carrier for mitochondrial delivery, has the ability to penetrate the endosomal and mitochondrial membranes via step-wise membrane fusion. We first constructed a DF-MITO-Porter encapsulating DNase I protein as a bioactive cargo. It was expected that mtDNA would be digested, when the DNase I was delivered to the mitochondria. We observed the intracellular trafficking of the carriers, and then measured mitochondrial activity and mtDNA-levels after the delivery of DNase I by the DF-MITO-Porter. The findings confirm that the DF-MITO-Porter effectively delivered the DNase I into the mitochondria, and provides a demonstration of its potential use in therapies that are selective for the mitochondrial genome.
Collapse
Affiliation(s)
- Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | | |
Collapse
|
10
|
Jinturkar KA, Rathi MN, Misra A. Gene Delivery Using Physical Methods. CHALLENGES IN DELIVERY OF THERAPEUTIC GENOMICS AND PROTEOMICS 2011:83-126. [DOI: 10.1016/b978-0-12-384964-9.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Yasuzaki Y, Yamada Y, Harashima H. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes. Biochem Biophys Res Commun 2010; 397:181-6. [DOI: 10.1016/j.bbrc.2010.05.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/12/2010] [Indexed: 12/12/2022]
|
12
|
Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2010. [DOI: 10.1080/17453690610046512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Yamada Y, Harashima H. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 2008; 60:1439-62. [PMID: 18655816 DOI: 10.1016/j.addr.2008.04.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 04/21/2008] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction has been implicated in a variety of human disorders--the so-called mitochondrial diseases. Therefore, the organelle is a promising therapeutic drug target. In this review, we describe the key role of mitochondria in living cells, a number of mitochondrial drug delivery systems and mitochondria-targeted therapeutic strategies. In particular, we discuss mitochondrial delivery of macromolecules, such as proteins and nucleic acids. The discussion of protein delivery is limited primarily to the mitochondrial import machinery. In the section on mitochondrial gene delivery and therapy, we discuss mitochondrial diseases caused by mutations in mitochondrial DNA, several gene delivery strategies and approaches to mitochondrial gene therapy. This review also summarizes our current efforts regarding liposome-based delivery system including use of a multifunctional envelope-type nano-device (MEND) and mitochondrial liposome-based delivery as anti-cancer therapies. Furthermore, we introduce the novel MITO-Porter--a liposome-based mitochondrial delivery system that functions using a membrane-fusion mechanism.
Collapse
Affiliation(s)
- Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | |
Collapse
|
14
|
Breunig M, Bauer S, Goepferich A. Polymers and nanoparticles: Intelligent tools for intracellular targeting? Eur J Pharm Biopharm 2008; 68:112-28. [PMID: 17804211 DOI: 10.1016/j.ejpb.2007.06.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 05/31/2007] [Accepted: 06/06/2007] [Indexed: 01/17/2023]
Abstract
In recent years, a new generation of drugs has entered the pharmaceutical market. Some are more potent, but some are also more toxic and thus, therapeutical efficacy may be hindered, and severe side effects may be observed, unless they are delivered to their assigned place of effect. Those targets are not only certain cell types, moreover, in cancer therapy for example, some drugs even have to be targeted to a specific cell organelle. Those targets in eukaryotic cells include among others endo- and lysosomes, mitochondria, the so-called power plants of the cells, and the biggest compartment with almost all the genetic information, the nucleus. In this review, we describe how the drugs can be directed to specific subcellular organelles and focus especially on synthetic polymers and nanoparticles as their carriers. Furthermore, we portray the progress that has been accomplished in recent years in the field of designing the carriers for efficient delivery into these target structures. Yet, we do not fail to mention the obstacles that still exist and are preventing polymeric and nanoparticular drug carrier systems from their broad application in humans.
Collapse
Affiliation(s)
- M Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetstrasse 31, Regensburg, Germany
| | | | | |
Collapse
|
15
|
D'Souza GGM, Boddapati SV, Weissig V. Gene therapy of the other genome: the challenges of treating mitochondrial DNA defects. Pharm Res 2006; 24:228-38. [PMID: 17180727 DOI: 10.1007/s11095-006-9150-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/17/2006] [Indexed: 01/08/2023]
Abstract
Human mitochondrial DNA is a 16.5 kb circular DNA molecule located inside the mitochondrial matrix. Although accounting for only about 1% of total cellular DNA, defects in mitochondrial DNA have been found to have major effects on human health. A single mtDNA mutation may cause a bewildering variety of clinical symptoms mainly involving the neuromuscular system at any age of onset. Despite significant advances in the understanding of mitochondrial DNA defects at a molecular level, the clinical diagnosis of mtDNA diseases remains a significant challenge and effective therapies for such diseases are as yet unavailable. In contrast to gene therapy for chromosomal DNA defects, mitochondrial gene therapy is a field that is still in its infancy and attempts towards gene therapy of the mitochondrial genome are rare. In this review we outline what we believe are the unique challenges associated with the correction of mtDNA mutations and summarize current approaches to gene therapy for the "other genome".
Collapse
Affiliation(s)
- Gerard G M D'Souza
- Bouvé College of Health Sciences, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 211 Mugar Building, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
16
|
Yamada Y, Akita H, Kogure K, Kamiya H, Harashima H. Mitochondrial drug delivery and mitochondrial disease therapy--an approach to liposome-based delivery targeted to mitochondria. Mitochondrion 2006; 7:63-71. [PMID: 17296332 DOI: 10.1016/j.mito.2006.12.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 10/06/2006] [Indexed: 01/09/2023]
Abstract
Recent progress in genetics and molecular biology has provided useful information regarding the molecular mechanisms associated with the mitochondrial diseases. Genetic approaches were initiated in the late 1980s to clarify the gene responsible for various mitochondrial diseases, and information concerning genetic mutations is currently used in the diagnosis of mitochondrial diseases. Moreover, it was also revealed that mitochondria play a central role in apoptosis, or programmed cell death, which is closely related to the loss of physiological functions of tissues. Therefore, drug therapies targeted to the mitochondria would be highly desirable. In spite of the huge amount of mechanism-based studies of mitochondrial diseases, effective therapies have not yet been established mainly because of the lack of an adequate delivery system. To date, numerous investigators have attempted to establish a mitochondrial drug delivery system. However, many problems remain to be overcome before a clinical application can be achieved. To fulfill a drug delivery targeted to mitochondria, we first need to establish a method to encapsulate various drugs, proteins, peptides, and genes into a drug carrier depending on their physical characteristics. Second, we need to target it to a specific cell. Finally, multi-processes of intracellular trafficking should be sophisticatedly regulated so as to release a drug carrier from the endosome to the cytosol, and thereafter to deliver to the mitochondria. In this review, we describe the current state of the development of mitochondrial drug delivery systems, and discuss the advantage and disadvantage of each system. Our current efforts to develop an efficient method for the packaging of macromolecules and regulating intracellular trafficking are also summarized. Furthermore, novel concept of "Regulation of intramitochondrial trafficking" is proposed herein as a future challenge to the development of a mitochondrial drug delivery system.
Collapse
Affiliation(s)
- Yuma Yamada
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Intracellular delivery of various drugs, including DNA, and drug carriers can sharply increase the efficiency of various treatment protocols. However, the receptor-mediated endocytosis of drugs, drug carriers, and DNA results in their lysosomal delivery and significant degradation. The problem can be solved and therapy efficacy still further increased if the approaches for direct intracytoplasmic delivery that bypass the endocytic pathway are developed. This is especially important for many anticancer drugs (proapoptotic drugs whose primary action site is the mitochondrial membrane) and gene therapy (nuclear or mitochondrial genomes should be targeted). This review considers several current approaches for intracellular drug delivery: the use of pH-sensitive liposomes, the use of cell-penetrating proteins and peptides, and the use of immunoliposomes targeting intracellular antigens. Among intracellular targets, nuclei (gene therapy), mitochondria (proapoptotic cancer therapy and targeting of the mitochondrial genome), and lysosomes (lysosomal targeting of enzymes for the therapy of the lysosomal storage diseases) are considered. Examples of successful intracellular and organelle-specific delivery of biologically active molecules, including DNA, are presented; unanswered questions, challenges, and future trends are also discussed.
Collapse
Affiliation(s)
- Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, USA.
| |
Collapse
|
18
|
Liolitsa D, Hanna MG. Models of mitochondrial disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:429-66. [PMID: 12512349 DOI: 10.1016/s0074-7742(02)53016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Danae Liolitsa
- Centre for Neuromuscular Disease, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | | |
Collapse
|
19
|
Kagawa Y, Yanagisawa Y, Hasegawa K, Suzuki H, Yasuda K, Kudo H, Abe M, Matsuda S, Ishikawa Y, Tsuchiya N, Sato A, Umetsu K, Kagawa Y. Single nucleotide polymorphisms of thrifty genes for energy metabolism: evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem Biophys Res Commun 2002; 295:207-22. [PMID: 12150934 DOI: 10.1016/s0006-291x(02)00680-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The "thrifty" genotype and phenotype that save energy are detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms (SNPs), some of which promote the development of obesity/type 2 diabetes mellitus. In this review, four major questions are addressed: (1) Why did regional differences in energy metabolism develop during evolution? (2) How do genes respond to starvation and affluence? (3) Which SNPs correspond to the hypothetical "thrifty genes"? (4) How can we cope with disease susceptibility caused by the "thrifty" SNPs? We examined mtDNA and genes for energy metabolism in people who live in several parts of Asia and the Pacific islands. We included 14 genes, and the SNP frequencies of PPAR gamma 2, LEPR, and UCP3-p and some other genes differ significantly between Mongoloids and Caucasoids. These differences in SNPs may have been caused by natural selection depending on the types of agriculture practiced in different regions. Interventions to counteract the adverse effects of "thrifty" SNPs have been partially effective.
Collapse
Affiliation(s)
- Yasuo Kagawa
- Department of Medical Chemistry, Kagawa Nutrition University, 3-9-21 Chiyoda Sakado, Saitama 350-0288, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Weissig V, Torchilin VP. Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 2001; 49:127-49. [PMID: 11377808 DOI: 10.1016/s0169-409x(01)00131-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since their first discovery during the end of the 1980s, the number of diseases found to be associated with a defect in the mitochondrial genome has grown significantly. However, despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast majority of patients. This is largely due to the fact that most of these patients have respiratory chain defects, i.e. defects that involve the final common pathway of oxidative metabolism, making it impossible to bypass the defect by giving alternative metabolic carriers of energy. These objective limitations of conventional biochemical treatment for patients with defects of mtDNA warrant the exploration of gene therapy approaches. However, mitochondrial gene therapy currently appears to be only theoretical and speculative. Any possibility for gene replacement is dependent on the use of a yet unavailable mitochondrial transfection vector. In this review we describe the current state of the development of mitochondrial DNA delivery systems. We also summarize our own efforts in exploring the properties of dequalinium, a cationic bolaamphiphile with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells.
Collapse
Affiliation(s)
- V Weissig
- Northeastern University, Bouve College of Health Sciences, Department of Pharmaceutical Sciences, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|