1
|
Sobol M, Yildirim S, Philimonenko VV, Marášek P, Castaño E, Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 2014; 4:478-86. [PMID: 24513678 PMCID: PMC3925692 DOI: 10.4161/nucl.27154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis.
Collapse
Affiliation(s)
- Margarita Sobol
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Sukriye Yildirim
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Vlada V Philimonenko
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Pavel Marášek
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Enrique Castaño
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic; Biochemistry and Molecular Plant Biology Department; CICY; Mérida, México
| | - Pavel Hozák
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| |
Collapse
|
2
|
Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J, Lemak A, Bultsma Y, Houliston S, Schwarzer D, Divecha N, Arrowsmith CH, Fischle W. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 2014; 54:905-919. [PMID: 24813945 DOI: 10.1016/j.molcel.2014.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stefan Winter
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Alexander Lemak
- Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Yvette Bultsma
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Nullin Divecha
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
3
|
Yao H, Wang G, Guo L, Wang X. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. THE PLANT CELL 2013; 25:5030-42. [PMID: 24368785 PMCID: PMC3904003 DOI: 10.1105/tpc.113.120162] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.
Collapse
Affiliation(s)
- Hongyan Yao
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Geliang Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Liang Guo
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Address correspondence to
| |
Collapse
|
4
|
Viiri K, Maki M, Lohi O. Phosphoinositides as Regulators of Protein-Chromatin Interactions. Sci Signal 2012; 5:pe19. [DOI: 10.1126/scisignal.2002917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Gaveglio VL, Pasquaré SJ, Giusto NM. Metabolic pathways for the degradation of phosphatidic acid in isolated nuclei from cerebellar cells. Arch Biochem Biophys 2011; 507:271-80. [PMID: 21216221 DOI: 10.1016/j.abb.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/29/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022]
Abstract
The aim of the present research was to analyse the pathways for phosphatidic acid metabolism in purified nuclei from cerebellar cells. Lipid phosphate phosphatase and diacylglyceride lipase activities were detected in nuclei from cerebellar cells. It was observed that DAGL activity makes up 50% of LPP activity and that PtdOH can also be metabolised to lysophosphatidic acid. With a nuclear protein content of approximately 40 μg, the production of diacylglycerol and monoacylglycerol was linear for 30 min and 5 min, respectively, whereas it increased with PtdOH concentrations of up to 250 μM. LysoPtdOH, sphingosine 1-phosphate and ceramide 1-phosphate, which are alternative substrates for LPP, significantly reduced DAG production from PA. DAG and MAG production increased in the presence of Triton X-100 (1 mM) whereas no modifications were observed in the presence of ionic detergent sodium deoxycholate. Ca²+ and Mg²+ stimulated MAG production without affecting DAG formation whereas fluoride and vanadate inhibited the generation of both products. Specific PtdOH-phospholipase A1 and PtdOH-phospholipase A2 were also detected in nuclei. Our findings constitute the first reported evidence of active PtdOH metabolism involving LPP, DAGL and PtdOH-selective PLA activities in purified nuclei prepared from cerebellar cells.
Collapse
Affiliation(s)
- Virginia L Gaveglio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C.C. 857, B8000FWB Bahía Blanca, Argentina
| | | | | |
Collapse
|
6
|
Intranuclear sphingomyelin is associated with transcriptionally active chromatin and plays a role in nuclear integrity. Biol Cell 2010; 102:361-75. [PMID: 20095965 DOI: 10.1042/bc20090139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Sphingomyelin is one of the major phospholipids in the cell nucleus. However, its intranuclear distribution with regard to different functional nuclear domains as well as its possible involvement in the nuclear functional architecture remains to be elucidated. RESULTS We carried out an ultrastructural cytochemical study of the intranuclear distribution of SM (sphingomyelin) using an in situ binding assay of neutral SMase (sphingomyelinase) conjugated to colloidal gold particles. The enzymatic labelling was carried out on ultrathin sections of different mammalian cells prepared by means of various fixation and resin-embedding protocols. Transmission electron microscopic analysis revealed preferential localization of SM within the PR (perichromatin region), a functionally important nucleoplasmic domain containing sites of pre-mRNA synthesis and processing. In the nucleolus, SM is mostly associated with the dense fibrillar component containing transcriptionally active ribosomal genes. Microinjection of enzymatically active SMase into living cells resulted in a rapid degradation of intranuclear structure. CONCLUSIONS Our observations, supported by biochemical data, provide evidence for the involvement of SM in important nuclear functions. They bring additional information pointing out the PR as an essential functional nuclear domain. Furthermore, they suggest a role for SM in the internal nuclear architecture.
Collapse
|
7
|
|
8
|
Smoum R, Srebnik M. Boronated saccharides: potential applications. CONTEMPORARY ASPECTS OF BORON: CHEMISTRY AND BIOLOGICAL APPLICATIONS 2005. [DOI: 10.1016/s0169-3158(06)80008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L. Retinoic acid-mediated phospholipase A2 signaling in the nucleus. ACTA ACUST UNITED AC 2004; 45:179-95. [PMID: 15210303 DOI: 10.1016/j.brainresrev.2004.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Retinoic acid modulates a wide variety of biological processes including proliferation, differentiation, and apoptosis. It interacts with specific receptors in the nucleus, the retinoic acid receptors (RARs). The molecular mechanism by which retinoic acid mediates cellular differentiation and growth suppression in neural cells remains unknown. However, retinoic acid-induced release of arachidonic acid and its metabolites may play an important role in cell proliferation, differentiation, and apoptosis. In brain tissue, arachidonic acid is mainly released by the action of phospholipase A2 (PLA2) and phospholipase C (PLC)/diacylglycerol lipase pathways. We have used the model of differentiation in LA-N-1 cells induced by retinoic acid. The treatment of LA-N-1 cells with retinoic acid produces an increase in phospholipase A2 activity in the nuclear fraction. The pan retinoic acid receptor antagonist, BMS493, can prevent this increase in phospholipase A2 activity. This suggests that retinoic acid-induced stimulation of phospholipase A2 activity is a retinoic acid receptor-mediated process. LA-N-1 cell nuclei also have phospholipase C and phospholipase D (PLD) activities that are stimulated by retinoic acid. Selective phospholipase C and phospholipase D inhibitors block the stimulation of phospholipase C and phospholipase D activities. Thus, both direct and indirect mechanisms of arachidonic acid release exist in LA-N-1 cell nuclei. Arachidonic acid and its metabolites markedly affect the neurite outgrowth and neurotransmitter release in cells of neuronal and glial origin. We propose that retinoic acid receptors coupled with phospholipases A2, C and D in the nuclear membrane play an important role in the redistribution of arachidonic acid in neuronal and non-nuclear neuronal membranes during differentiation and growth suppression. Abnormal retinoid metabolism may be involved in the downstream transcriptional regulation of phospholipase A2-mediated signal transduction in schizophrenia and Alzheimer disease (AD). The development of new retinoid analogs with diminished toxicity that can cross the blood-brain barrier without harm and can normalize phospholipase A2-mediated signaling will be important in developing pharmacological interventions for these neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
10
|
Delton-Vandenbroucke I, Lemaire P, Lagarde M, Laugier C. Hydrolysis of nuclear phospholipids in relation with proliferative state in uterine stromal cells. Biochimie 2004; 86:269-74. [PMID: 15194229 DOI: 10.1016/j.biochi.2004.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 04/01/2004] [Indexed: 01/12/2023]
Abstract
The current study examined the metabolism of phospholipid (PL) in the whole cell homogenate and in the nuclear fraction in proliferative and non-proliferative uterine stromal cells (U(III) cells). Growth arrested cells were obtained either from contact-inhibited confluent cells or from proliferative cells treated with aristolochic acid (AR) for 2 days. Fatty acid composition and fatty acid amount of both total and nuclear PL were not significantly different between proliferative, confluent and AR-treated cells. In contrast, marked differences were observed in the incorporation of [(3)H]AA, with greater incorporation in proliferative cells than in confluent or AR-treated cells, particularly in nuclear PL. Considering endogenous level of arachidonic acid (AA) in total and nuclear PL, we found that AA turnover in nuclear PL was especially high compared to that in total PL and that this difference was accentuated in proliferative cells compared to non-proliferative cells. Interestingly, [(3)H]AA incorporation and AA turnover in proliferative, confluent and AR-treated cells vary accordingly to the expression, activity and/or content of pancreatic phospholipase A(2) (PLA(2)-I) in the nuclear compartment of these cells that we reported in previous studies. The changes in metabolism of nuclear PL during cell proliferation are consistent with an enhanced PL hydrolysis that could involve PLA(2)-I.
Collapse
|
11
|
Abstract
The introduction of a synthetic material into the body always affects different body systems, including the defense system. Synthetic polymers are usually thymus-independent antigens with only a limited ability to elicit antibody formation or to induce a cellular immune response against them. However, there are many other ways that they influence or can be used to influence the immune system of the host. Low-immunogenic water-soluble synthetic polymers sometimes exhibit significant immunomodulating activity, mainly concerning the activation/suppression of NK cells, LAK cells and macrophages. Some of them, such as poly(ethylene glycol) and poly[N-(2-hydroxypropyl)methacrylamide], can be used as effective protein carriers, as they are able to reduce the immunogenicity of conjugated proteins and/or to reduce non-specific uptake of liposome/nanoparticle-entrapped drugs and other therapeutic agents. Recently, the development of vaccine delivery systems prepared from biodegradable and biocompatible water-soluble synthetic polymers, microspheres, liposomes and/or nanoparticles has received considerable attention, as they can be tailored to meet the specific physical, chemical, and immunogenic requirements of a particular antigen and some of them can also act as adjuvants.
Collapse
Affiliation(s)
- Blanka Ríhová
- Institute of Microbiology, ASCR, Vídenská 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
12
|
Hunt AN, Clark GT, Attard GS, Postle AD. Highly saturated endonuclear phosphatidylcholine is synthesized in situ and colocated with CDP-choline pathway enzymes. J Biol Chem 2001; 276:8492-9. [PMID: 11121419 DOI: 10.1074/jbc.m009878200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin-associated phospholipids are well recognized. A report that catalytically active endonuclear CTP:choline-phosphate cytidylyltransferase alpha is necessary for cell survival questions whether endonuclear, CDP-choline pathway phosphatidylcholine synthesis may occur in situ. We report that chromatin from human IMR-32 neuroblastoma cells possesses such a biosynthetic pathway. First, membrane-free nuclei retain all three CDP-choline pathway enzymes in proportions comparable with the content of chromatin-associated phosphatidylcholine. Second, following supplementation of cells with deuterated choline and using electrospray ionization mass spectrometry, both the time course and molecular species labeling pattern of newly synthesized endonuclear and whole cell phosphatidylcholine revealed the operation of spatially separate, compositionally distinct biosynthetic routes. Specifically, endogenous and newly synthesized endonuclear phosphatidylcholine species are both characterized by a high degree of diacyl/alkylacyl chain saturation. This unusual species content and synthetic pattern (evident within 10 min of supplementation) are maintained through cell growth arrest by serum depletion and when proliferation is restored, suggesting that endonuclear disaturated phosphatidylcholine enrichment is essential and closely regulated. We propose that endonuclear phosphatidylcholine synthesis may regulate periodic nuclear accumulations of phosphatidylcholine-derived lipid second messengers. Furthermore, our estimates of saturated phosphatidylcholine nuclear volume occupancy of around 10% may imply a significant additional role in regulating chromatin structure.
Collapse
Affiliation(s)
- A N Hunt
- Department of Child Health, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom.
| | | | | | | |
Collapse
|
13
|
Totally synthetic polymer with lectin-like function: Induction of killer cells by the copolymer of 3-acrylamidophenylboronic acid withN,N-dimethylacrylamide. Biotechnol Bioeng 2000. [DOI: 10.1002/1097-0290(20010205)72:3<307::aid-bit7>3.0.co;2-e] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|