1
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
2
|
Lekkas P, Kontonika M, Georgiou ES, La Rocca V, Mouchtouri ET, Mourouzis I, Pantos C, Kolettis TM. Endothelin receptors in the brain modulate autonomic responses and arrhythmogenesis during acute myocardial infarction in rats. Life Sci 2019; 239:117062. [PMID: 31734261 DOI: 10.1016/j.lfs.2019.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
AIMS Endothelin has been implicated in various processes in the brain, including the modulation of sympathetic responses. The present study examined the pathophysiologic role of brain endothelin-receptors in the setting of acute myocardial infarction, characterized by high incidence of ventricular tachyarrhythmias. MAIN METHODS We investigated the effects of intracerebroventricular administration of antagonists of endothelin-receptors ETA, ETB, or both, during a 24 h-observation period post-coronary ligation in (n = 70) rats. Continuous recording was performed via implanted telemetry transmitters, followed by arrhythmia-analysis and calculation of autonomic indices derived from heart rate variability. The regional myocardial electrophysiologic properties were assessed by monophasic action potentials and multi-electrode recordings. KEY FINDINGS Sympathetic-activity was decreased and vagal-activity was enhanced after intracerebroventricular ETA-receptor blockade, thus attenuating regional myocardial repolarization inhomogeneity. As a result, the incidence of ventricular tachyarrhythmias was markedly lower in this group. Such effects were also observed after intracerebroventricular blockade of ETB-, or both, ETA- and ETB-receptors, although to a lesser extent. SIGNIFICANCE ETA-receptors in the brain modulate sympathetic and vagal responses and alter arrhythmogenesis during evolving myocardial necrosis in rats. These findings provide insights into arrhythmogenic mechanisms during acute myocardial infarction and call for further investigation on the role of endothelin in the central autonomic network.
Collapse
Affiliation(s)
- Panagiotis Lekkas
- Cardiovascular Research Institute, Ioannina and Athens, Greece; Department of Physiology, Medical School, University of Ioannina, Greece
| | | | | | | | - Eleni-Taxiarchia Mouchtouri
- Cardiovascular Research Institute, Ioannina and Athens, Greece; Department of Cardiology, Medical School, University of Ioannina, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National & Kapodistrian University of Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National & Kapodistrian University of Athens, Greece
| | - Theofilos M Kolettis
- Cardiovascular Research Institute, Ioannina and Athens, Greece; Department of Cardiology, Medical School, University of Ioannina, Greece.
| |
Collapse
|
3
|
Becker BK, Speed JS, Powell M, Pollock DM. Activation of neuronal endothelin B receptors mediates pressor response through alpha-1 adrenergic receptors. Physiol Rep 2017; 5:5/4/e13077. [PMID: 28219980 PMCID: PMC5328762 DOI: 10.14814/phy2.13077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/20/2022] Open
Abstract
Abnormalities in activity of the endothelin (ET) system have been widely reported in a number of cardiovascular disease states such as hypertension and heart failure. Although the vascular responses to ET are well established, the interaction between ET and other important modulators of blood pressure, such as the sympathetic nervous system, are less understood. Previous reports implicate ET signaling through ET type B (ETB) receptors in increasing neuronal activity. Therefore, we hypothesized that activation of ETB receptors on sympathetic nerves would increase blood pressure through an adrenergic‐mediated mechanism. Thus, we used anesthetized ETB‐deficient rats, which only express functional ETB receptors on adrenergic neurons, and genetic controls, which express functional ETB receptors in vascular tissue and kidney epithelium. We determined the pressor response to the selective ETB receptor agonist sarafotoxin c (S6c). Separate groups of rats were treated with the α1‐adrenergic receptor antagonist prazosin or the β‐adrenergic receptor antagonist propranolol to elucidate the role of adrenergic signaling in mediating the blood pressure response. We observed a dose‐dependent pressor response to S6c in ETB‐deficient rats that was reversed by prazosin treatment and augmented by propranolol. In genetic control rats, the effects of S6c on sympathetic neurons were mostly masked by the direct activity of ETB receptor activation on the vasculature. Heart rate was mostly unaffected by S6c across all groups and treatments. These results suggest that ETB activation on sympathetic neurons causes an increase in blood pressure mediated through α1‐adrenergic receptor signaling.
Collapse
Affiliation(s)
- Bryan K Becker
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mackenzie Powell
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Bhalla S, Andurkar SV, Gulati A. Neurobiology of opioid withdrawal: Role of the endothelin system. Life Sci 2016; 159:34-42. [DOI: 10.1016/j.lfs.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 02/04/2023]
|
5
|
Ikemura S, Yamamoto T, Motomura G, Yamaguchi R, Zhao G, Iwasaki K, Iwamoto Y. Preventive effects of the anti-vasospasm agent via the regulation of the Rho-kinase pathway on the development of steroid-induced osteonecrosis in rabbits. Bone 2013; 53:329-35. [PMID: 23313282 DOI: 10.1016/j.bone.2012.12.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/25/2012] [Accepted: 12/28/2012] [Indexed: 12/21/2022]
Abstract
A number of studies have suggested that ischemia is the principal pathomechanism of osteonecrosis, however, the detailed mechanism responsible for ischemia remains unclear. We examined the effects of fasudil, an anti-vasospasm agent, on the development of steroid-induced osteonecrosis in rabbits. One group of rabbits received 15mg/kg of fasudil intravenously, which were then injected once intramuscularly with 20mg/kg of methylprednisolone (n=33), and one received methylprednisolone alone as a control (n=28). Eight rabbits from each group were sacrificed 24h after methylprednisolone injection to analyze them by the expression of endothelinA-receptor and eNOS. Two weeks after the steroid injection, the femora and humeri were examined histopathologically for the incidence of osteonecrosis. In addition, plasma from each of four osteonecrosis-positive or -negative rabbits was used for the proteomic analysis in the fasudil group. The incidence of osteonecrosis was significantly lower in the fasudil group (32%) than that in the control group (75%) (P<0.01). Immunohistochemically, endothelinA-receptor expressions levels were decreased in the smooth muscle of the bone marrow in the fasudil group in comparison to that in the control group. The eNOS expressions levels in both serum and bone marrow in the MF group were significantly higher than those in the M group (P<0.05). Based on the proteomic analysis, several proteins related to vasospasm, such as fibrinogen, thrombin, and apolipoprotein E, were identified in rabbits with osteonecrosis soon after steroid administration. This study indicates that vasospasm is one of the important factors involved in the pathogenesis of steroid-induced osteonecrosis and that the anti-vasospasm agents seem to decrease the incidence of steroid-induced osteonecrosis.
Collapse
Affiliation(s)
- Satoshi Ikemura
- Investigation performed in the Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Xie C, Wang DH. Ablation of transient receptor potential vanilloid 1 abolishes endothelin-induced increases in afferent renal nerve activity: mechanisms and functional significance. Hypertension 2009; 54:1298-305. [PMID: 19858408 DOI: 10.1161/hypertensionaha.109.132167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin 1 (ET-1) and its receptors, ETA and ETB, play important roles in regulating renal function and blood pressure, and these components are expressed in sensory nerves. Activation of transient receptor potential vanilloid (TRPV) 1 channels expressed in sensory nerves innervating the renal pelvis enhances afferent renal nerve activity (ARNA), diuresis, and natriuresis. We tested the hypothesis that ET-1 increases ARNA via activation of ETB, whereas ETA counterbalances ETB in wild-type (WT) but not TRPV1-null mutant mice. ET-1 alone or with BQ123, an ETA antagonist, perfused into the left renal pelvis increased ipsilateral ARNA in WT but not in TRPV1-null mutant mice, and ARNA increases were greater in the latter. [Ala1, 3,11,15]-endothelin 1, an ETB agonist, increased ARNA that was greater than that induced by ET-1 in WT mice only. [Ala1, 3,11,15]-endothelin 1-induced increases in ARNA were abolished by chelerythrine, a protein kinase C inhibitor, but not by H89, a protein kinase A inhibitor. Chelerythrine, H89, and BQ788, an ETB antagonist, did not affect ARNA triggered by capsaicin in WT mice. Substance P release from the renal pelvis was increased by [Ala1, 3,11,15]-endothelin 1 in WT mice only, and the increase was abolished by chelerythrine but not by H89. Chelerythrine, H89, and BQ788 did not affect capsaicin-induced substance P release. Our data show that ET1 increases ARNA via activation of ETB, whereas ETA counterbalances ETB in WT but not in TRPV1-null mutant mice, suggesting that TRPV1 mediates ETB-dependent increases in ARNA, diuresis, and natriuresis possibly via the protein kinase C pathway.
Collapse
Affiliation(s)
- Chaoqin Xie
- Department of Medicine, Michigan State University, B338 Clinical Center, East Lansing, MI 48823, USA
| | | |
Collapse
|
7
|
Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects? J Cell Commun Signal 2009; 4:51-62. [PMID: 19847673 PMCID: PMC2821480 DOI: 10.1007/s12079-009-0073-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022] Open
Abstract
Endothelin-1 (ET-1) is an endothelium-derived peptide that also possesses potent mitogenic activity. There is also a suggestion the ET-1 is a neuropeptide, based mainly on its histological identification in both the central and peripheral nervous system in a number of species, including man. A neuropeptide role for ET-1 is supported by studies showing a variety of effects caused following its administration into different regions of the brain and by application to peripheral nerves. In addition there are studies proposing that ET-1 is implicated in a number of neural circuits where its transmitter affects range from a role in pain and temperature control to its action on the hypothalamo-neurosecretory system. While the effect of ET-1 on nerve tissue is beyond doubt, its action on nerve blood flow is often ignored. Here, we review data generated in a number of species and using a variety of experimental models. Studies range from those showing the distribution of ET-1 and its receptors in nerve tissue to those describing numerous neurally-mediated effects of ET-1.
Collapse
|
8
|
Morgazo C, Perfume G, Legaz G, di Nunzio A, Hope SI, Bianciotti LG, Vatta MS. Involvement of nitric oxide pathways in short term modulation of tyrosine hydroxylase activity by endothelins 1 and 3 in the rat anterior hypothalamus. Biochem Biophys Res Commun 2006; 334:796-802. [PMID: 16023617 DOI: 10.1016/j.bbrc.2005.06.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/28/2005] [Indexed: 11/24/2022]
Abstract
The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.
Collapse
Affiliation(s)
- Carolina Morgazo
- Cátedra de Fisiología e Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
9
|
Bhalla S, Matwyshyn G, Gulati A. Central endothelin-B receptor stimulation does not affect morphine analgesia in rats. Pharmacology 2004; 72:20-5. [PMID: 15292651 DOI: 10.1159/000078628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 01/21/2004] [Indexed: 11/19/2022]
Abstract
Several neurotransmitter mechanisms have been proposed to play a role in the actions of morphine. We reported that centrally administered endothelin A (ETA) receptor antagonists potentiate morphine analgesia in rats. It has also been reported that ETB agonist, IRL1620, has antinociceptive action mediated through opiate receptors in the periphery. The present study was conducted to determine if central ETB receptors are involved in analgesic actions of morphine. The effect of intracerebroventricular (i.c.v.) administration of ETB receptor agonist, IRL1620, on morphine-induced analgesia and hyperthermia was determined in the rat. Morphine (4 mg/kg, s.c.) produced a significant increase (84%) in tail-flick latency compared to the control group and the analgesic response lasted for 4 h. IRL1620 (30 microg, i.c.v.) did not produce any increase (16%) in tail-flick latency over the 5-hour observation period in vehicle-treated rats. Pretreatment with IRL1620 (3, 10, and 30 microg, i.c.v.) did not have any significant effect on the intensity and duration of morphine (4 mg/kg, s.c.)-induced analgesia. Morphine (4 mg/kg, s.c.) administration produced an increase in body temperature compared to the control group. In vehicle-pretreated rats, IRL1620 (30 microg, i.c.v.) did not produce any change in body temperature. The morphine-induced hyperthermic effect was not altered in IRL1620-pretreated rats. These studies demonstrate that IRL1620, a specific ETB receptor agonist, did not affect the morphine-induced analgesic and hyperthermic effect in rats. It can be concluded that central ETB receptors are not involved in modulation of pharmacological actions of morphine.
Collapse
Affiliation(s)
- Shaifali Bhalla
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 60612, USA
| | | | | |
Collapse
|
10
|
Puppala BL, Matwyshyn G, Bhalla S, Gulati A. Evidence that morphine tolerance may be regulated by endothelin in the neonatal rat. Neonatology 2004; 86:138-44. [PMID: 15218283 DOI: 10.1159/000079272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 04/20/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Opioids are widely used in the neonatal intensive care units for analgesia and sedation. Management of tolerance and withdrawal symptoms in neonates remains a major challenge. OBJECTIVES The present study investigates the involvement of a central endothelin (ET) mechanism in the development of tolerance to morphine in neonatal rats. METHODS Pregnant female rats were rendered tolerant to morphine and rat pups were delivered at term by cesarean section. The affinity (Kd) and density (Bmax) of ET receptors was determined by [125I]ET-1 binding in the brains of neonatal rats. Changes in G-protein stimulation were determined in placebo and morphine-tolerant neonatal rats by [35S]-guanosine-5'-o-(3-thio)triphosphate ([35S]GTPgammaS)-binding assay. RESULTS Morphine tolerance did not affect the characteristics (affinity and density) of the ET receptors in the neonatal rat brains. Morphine as well as ET-1 produced significantly lower (p < 0.05) maximal stimulation of [35S]GTPgammaS binding in morphine-tolerant neonatal rats compared to the placebo group. The ETA receptor antagonist, BMS182874, produced significantly higher stimulation of G proteins in the morphine-tolerant compared to the placebo group. The ETB receptor agonist, IRL1620, produced a similar effect in both placebo and morphine-tolerant rats. CONCLUSIONS This is the first report indicating the involvement of the G-protein-coupled ETA receptor in neonatal morphine tolerance.
Collapse
Affiliation(s)
- Bhagya L Puppala
- Department of Pediatrics and Neonatology, Advocate Lutheran General Children's Hospital, Park Ridge, IL, USA
| | | | | | | |
Collapse
|
11
|
Rai A, Bhalla S, Gulati A. Endothelin ETA receptor antagonist did not affect development of tolerance to glyceryl trinitrate in rat. J Pharm Pharmacol 2004; 56:271-5. [PMID: 15005887 DOI: 10.1211/0022357023088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Glyceryl trinitrate (GTN), extensively used for the treatment of cardiovascular disorders, is associated with rapid development of tolerance. The exact mechanism responsible for tolerance development to GTN is still not known. Recently, it has been demonstrated that GTN tolerance is associated with increased expression of endothelin (ET). This study was carried out to determine the effect of ET(A) receptor antagonist, BMS182874, on the development of tolerance to GTN in urethane-anaesthetized rats. Diastolic blood pressure (DBP), systolic blood pressure (SBP) and heart rate (HR) were continuously recorded in vehicle- and BMS182874 (3 mg kg(-1), i.v.)-treated rats. GTN was infused at the rate of 10 microg min(-1), intravenously for 4 h. Tolerance to GTN was determined using challenge doses of GTN (10, 30 and 90 microg, i.v.). GTN produced a fall in DBP, SBP and an increase in HR. In vehicle-treated rats, the fall in SBP before induction of GTN tolerance was 28 +/- 2, 43 +/- 4 and 52 +/- 4 mmHg with 10, 30 and 90 microg GTN, respectively. However, following GTN infusion (10 microg min(-1), i.v. for 4 h) a rapid development of tolerance was observed and the fall in SBP was 1 +/- 1, 9 +/- 4 and 15 +/- 4 mmHg with 10, 30 and 90 microg GTN, respectively. Similarly, in BMS182874-treated rats the fall in SBP in non-tolerant rats was 28 +/- 4, 42 +/- 4 and 48 +/- 5 mmHg with 10, 30 and 90 microg GTN, respectively. In BMS182874-treated rats following GTN infusion (10 microg min(-1), i.v. for 4 h) a rapid development of tolerance was observed and the fall in SBP was 4 +/- 3, 10 +/- 2 and 13 +/- 4 mmHg with 10, 30 and 90 microg GTN, respectively. The decrease in DBP and SBP in vehicle- and BMS182874-treated GTN-tolerant rats was statistically similar. These results suggest that ET(A) receptor antagonist BMS182874 did not affect development of tolerance to GTN in rats.
Collapse
Affiliation(s)
- Aarati Rai
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
12
|
Abstract
Several neurotransmitter mechanisms have been proposed to play a role in the actions of morphine. The present study is the first to provide evidence that central endothelin (ET) mechanisms are involved in the modulation of pharmacological actions of morphine. The effect of intracerebroventricular (i.c.v.) administration of endothelin-A (ET(A)) antagonist, BQ123, on morphine-induced analgesia, hyperthermia, and catalepsy was determined in the rat. Morphine produced a significant increase in tail-flick latency as compared to control group. Pretreatment with BQ123 significantly potentiated the effect and duration of morphine (2 and 8 mg/kg, s.c.)-induced analgesia as compared to vehicle-pretreated control rats. The hyperthermic effect of morphine was not only significantly greater in BQ123-pretreated rats but also lasted for more than 6 h. ET antagonist, BQ123, did not affect the pharmacological effect of morphine on cataleptic behavior. These studies demonstrate that BQ123, a specific ET(A) receptor antagonist, significantly potentiated morphine-induced analgesia and hyperthermia in rats without affecting morphine-induced cataleptic behavior. [(3)H]-Naloxone binding was carried out to determine the possibility of BQ123 acting on opiate receptors. It was found that morphine could displace [(3)H]-naloxone but BQ123 did not affect [(3)H]-naloxone binding even at 1,000 nM concentration. Therefore, it can be concluded that BQ123 does not act on opioid receptors. This is the first report suggesting that an ET(A) antagonist, BQ123, significantly potentiates the analgesic effect of morphine, possibly through a nonopioid mechanism.
Collapse
Affiliation(s)
- Shaifali Bhalla
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612-7231, USA
| | | | | |
Collapse
|
13
|
Yip AWC, Krukoff TL. Endothelin-A receptors and NO mediate decrease in arterial pressure during recovery from restraint. Am J Physiol Regul Integr Comp Physiol 2002; 282:R881-9. [PMID: 11832411 DOI: 10.1152/ajpregu.00308.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We investigated the role of central endothelin-A (ET(A)) receptors and nitric oxide (NO) in regulating arterial pressure during restraint stress and recovery from stress. Rats received intracerebroventricular (icv) injections of the ET(A) receptor antagonist BQ123 (24 microg/kg) and were then subjected to two restraint-rest cycles (1 h of restraint and 1 h of rest/cycle). Although mean arterial pressure (MAP) values in BQ123-treated and control rats increased at the onset of restraint and remained elevated during restraint, MAP values in BQ123-treated rats were consistently greater than in control rats. During rest periods, MAP values in control rats decreased to below baseline levels, whereas those in BQ123-treated rats remained significantly higher. NO content was decreased in the brain stems of BQ123-treated compared with control rats after the 4-h protocol. Injections (icv) of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NNA) eliminated the decreases in MAP values during rest periods in both BQ123-treated and control rats. Inhibition of neuronal NOS with icv injection of 7-nitroindazole sodium salt resulted in MAP values intermediate between control rats and rats receiving L-NNA. These results support the hypothesis that endothelin acts through ET(A) receptors in the brain, possibly via release of NO, to decrease arterial pressure during restraint and recovery from restraint.
Collapse
Affiliation(s)
- Avery W C Yip
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
14
|
Chapter IV Brain endothelin and natriuretic peptide receptors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Sam F, Colucci WS. Role of endothelin-1 in myocardial failure. PROCEEDINGS OF THE ASSOCIATION OF AMERICAN PHYSICIANS 1999; 111:417-22. [PMID: 10519162 DOI: 10.1111/paa.1999.111.5.417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET-1) is a potent molecule produced throughout the cardiovascular system; it can exert important effects on both the structure and function of vascular smooth muscle cells and cardiac myocytes. ET-1 appears to play a central role in the physiological regulation of cardiovascular function, particularly in the vasculature. The known actions of ET-1 and the demonstration that plasma ET-1 is elevated in patients with heart failure has raised the possibility that this molecule could play a role in the pathophysiology of heart failure. This thesis has been supported and furthered by studies in animal models of heart failure that demonstrate the salutary, short-term effects of ET-1 receptor antagonists on hemodynamic function, as well as improved ventricular remodeling and survival with long-term administration. Early clinical trials with these ET receptor blockers have demonstrated systemic vasodilation. Long-term trials to determine the effects of ET-1 blockade on symptoms and survival are under way.
Collapse
Affiliation(s)
- F Sam
- Boston Medical Center, MA 02118, USA
| | | |
Collapse
|
16
|
Nagasaka J, Tsuji M, Takeda H, Matsumiya T. Role of endothelin receptor subtypes in the behavioral effects of the intracerebroventricular administration of endothelin-1 in conscious rats. Pharmacol Biochem Behav 1999; 64:171-6. [PMID: 10495013 DOI: 10.1016/s0091-3057(99)00123-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of endothelin receptor subtypes, i.e., ET(A) and ET(B) receptors, in the behavioral effects of the intracerebroventricular (ICV) administration of endothelin-1 were examined in conscious rats. ICV administration of endothelin-1 (1-9 pmol/rat) dose dependently produced barrel rolling and other convulsive behaviors including bodily twitching, rigidity, back crawling, fore/hindlimb dystonia, fore/hindlimb clonus, tail extension, and facial clonus. Moreover, a marked increase in spontaneous locomotor activity was observed in animals that were treated with a low dose of endothelin-1 (1 pmol/rat, ICV). Endothelin-1 (9 pmol/rat, ICV)-induced barrel rolling and other convulsive behaviors were completely suppressed by the coadministration of BQ-123 (15 nmol, ICV), a specific endothelin ET(A) receptor antagonist, but not of BQ-788 (15 nmol/rat, ICV), a specific endothelin ET(B) receptor antagonist. In contrast, increased locomotor activity produced by treatment with a low dose of endothelin-1 (1 pmol/rat, ICV) was antagonized by coadministration of BQ-788, but not of BQ123. These results indicate that endothelin-1, which has affinity for both endothelin ET(A) and ET(B) receptors, most likely acts on central ET(A) receptors to evoke barrel rolling and other convulsive behaviors. In addition, activation of central ET(B) receptors may be involved in the increase in spontaneous locomotor activity. These results suggest that brain endothelin receptor subtypes may be involved in the regulation of various physiological functions.
Collapse
Affiliation(s)
- J Nagasaka
- Department of Pharmacology, Tokyo Medical University, Japan
| | | | | | | |
Collapse
|