1
|
Sun Y, Xu C, Jiang Z, Jiang X. DEF6(differentially exprehomolog) exacerbates pathological cardiac hypertrophy via RAC1. Cell Death Dis 2023; 14:483. [PMID: 37524688 PMCID: PMC10390462 DOI: 10.1038/s41419-023-05948-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Pathological cardiac hypertrophy involves multiple regulators and several signal transduction pathways. Currently, the mechanisms of it are not well understood. Differentially expressed in FDCP 6 homolog (DEF6) was reported to participate in immunity, bone remodeling, and cancers. The effects of DEF6 on pathological cardiac hypertrophy, however, have not yet been fully characterized. We initially determined the expression profile of DEF6 and found that DEF6 was upregulated in hypertrophic hearts and cardiomyocytes. Our in vivo results revealed that DEF6 deficiency in mice alleviated transverse aortic constriction (TAC)-induced cardiac hypertrophy, fibrosis, dilation and dysfunction of left ventricle. Conversely, cardiomyocyte-specific DEF6-overexpression aggravated the hypertrophic phenotype in mice under chronic pressure overload. Similar to the animal experiments, the in vitro data showed that adenovirus-mediated knockdown of DEF6 remarkably inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas DEF6 overexpression exerted the opposite effects. Mechanistically, exploration of the signal pathways showed that the mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) cascade might be involved in the prohypertrophic effect of DEF6. Coimmunoprecipitation and GST (glutathione S-transferase) pulldown analyses demonstrated that DEF6 can directly interact with small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), and the Rac1 activity assay revealed that the activity of Rac1 is altered with DEF6 expression in TAC-cardiac hypertrophy and PE-triggered cardiomyocyte hypertrophy. In the end, western blot and rescue experiments using Rac1 inhibitor NSC23766 and the constitutively active mutant Rac1(G12V) verified the requirement of Rac1 and MEK1/2-ERK1/2 activation for DEF6-mediated pathological cardiac hypertrophy. Our study substantiates that DEF6 acts as a deleterious regulator of cardiac hypertrophy by activating the Rac1 and MEK1/2-ERK1/2 signaling pathways, and suggests that DEF6 may be a potential treatment target for heart failure.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Dohnke S, Moehser S, Surnov A, Kurth T, Jessberger R, Kretschmer K, Garbe AI. Role of Dynamic Actin Cytoskeleton Remodeling in Foxp3+ Regulatory T Cell Development and Function: Implications for Osteoclastogenesis. Front Immunol 2022; 13:836646. [PMID: 35359955 PMCID: PMC8963504 DOI: 10.3389/fimmu.2022.836646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 01/20/2023] Open
Abstract
In T cells, processes such as migration and immunological synapse formation are accompanied by the dynamic reorganization of the actin cytoskeleton, which has been suggested to be mediated by regulators of RhoGTPases and by F-actin bundlers. SWAP-70 controls F-actin dynamics in various immune cells, but its role in T cell development and function has remained incompletely understood. CD4+ regulatory T (Treg) cells expressing the transcription factor Foxp3 employ diverse mechanisms to suppress innate and adaptive immunity, which is critical for maintaining immune homeostasis and self-tolerance. Here, we propose Swap-70 as a novel member of the Foxp3-dependent canonical Treg cell signature. We show that Swap-70-/- mice have increased numbers of Foxp3+ Treg cells with an effector/memory-like phenotype that exhibit impaired suppressor function in vitro, but maintain overall immune homeostasis in vivo. Upon formation of an immunological synapse with antigen presenting cells in vitro, cytosolic SWAP-70 protein is selectively recruited to the interface in Treg cells. In this context, Swap-70-/- Treg cells fail to downregulate CD80/CD86 on osteoclast precursor cells by trans-endocytosis and to efficiently suppress osteoclastogenesis and osteoclast function. These data provide first evidence for a crucial role of SWAP-70 in Treg cell biology and further highlight the important non-immune function of Foxp3+ Treg cells in bone homeostasis mediated through direct SWAP-70-dependent mechanisms.
Collapse
Affiliation(s)
- Sebastian Dohnke
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Stephanie Moehser
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Alexey Surnov
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Annette I. Garbe
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Annette I. Garbe,
| |
Collapse
|
4
|
Zhang Y, Wang Y, Li C, Jiang T. Systemic Analysis of the Prognosis-Associated Alternative Polyadenylation Events in Breast Cancer. Front Genet 2020; 11:590770. [PMID: 33329736 PMCID: PMC7673440 DOI: 10.3389/fgene.2020.590770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/08/2020] [Indexed: 01/22/2023] Open
Abstract
Alternative polyadenylation (APA) is a post-translational modification that occurs during mRNA maturation in humans. Studies suggested that abnormal APA events are associated with the genesis and progression of malignant tumors. Here, we aimed to comprehensively evaluate the prognostic value of APA events involved in breast cancer (BC). Both APA events and clinical information for BC patients were downloaded from The Cancer Genome Atlas (TCGA) database to identify prognosis-related APA events in BC. A total of 462 APA events and 374 APA events were shown to be significantly related to overall survival (OS) and relapse-free survival (RFS), respectively, of BC patients. The TCGA set was randomly divided into a training and a test set. Key prognosis-related APA events were selected by LASSO regression to build prediction signatures for OS and RFS by multivariate Cox regression analysis in the training, test, and whole set. BC patients were stratified into high-risk and low-risk groups based on median risk scores. Kaplan–Meier survival analysis demonstrated that low-risk groups had better OS and RFS than high-risk groups in all three sets. The time-dependent receiver operating characteristic (ROC) curves showed that our signatures had a good predictive ability for survival and recurrence for BC patients in all three sets. The independent prognostic indicators-based nomogram model had excellent performance and considerable net benefit for predicting the OS and RFS in BC. A PPI network was constructed between key prognosis and core regulators associated with APA, consisting of 48 nodes and 244 edges. Functional enrichment analysis also revealed their association with RNA processing and RNA synthesis. Collectively, our data indicate that prognostic signatures based on APA events may be powerful prognostic predictors for OS and RFS in BC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Blood Transfusion, People's Hospital of Deyang City, Deyang, China
| | - Yuzhi Wang
- Department of Laboratory Medicine, People's Hospital of Deyang City, Deyang, China
| | - Chengwen Li
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Tianhua Jiang
- Department of Blood Transfusion, People's Hospital of Deyang City, Deyang, China
| |
Collapse
|
5
|
Zhu ZP, Lin LR, Lv TD, Xu CR, Cai TY, Lin J. High expression levels of DEF6 predicts a poor prognosis for patients with clear cell renal cell carcinoma. Oncol Rep 2020; 44:2056-2066. [PMID: 33000227 PMCID: PMC7551049 DOI: 10.3892/or.2020.7736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignant tumors and early detection contributes to a better prognosis. Finding new biomarkers for the diagnosis or treatment remains meaningful. DEF6 guanine nucleotide exchange factor (DEF6) is upregulated in ccRCC compared to normal controls, but the relationship between DEF6 expression and prognosis in ccRCC is unclear. Moreover, the potential biological functions of DEF6 in ccRCC remains unclear. In the present study, the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), TISIDB and the clinical database of the Peking University First Hospital were used to analyze DEF6 expression in ccRCC. Immunohistochemistry (IHC), western blotting and reverse transcription-quantitative PCR were used to examine the DEF6 protein and mRNA expression levels in cell lines and clinical samples. Subsequently, the Kaplan-Meier method and Cox regression analyses were used to determine the impact of DEF6 expression on the overall survival of patients alongside other clinical variables in both the TCGA database and the present clinical database. The results showed that both DEF6 mRNA and protein expression levels were upregulated in ccRCC compared to normal controls. The Kaplan-Meier survival analysis showed that patients with high DEF6 expression had poor prognoses from both the TCGA database and the present clinical database. Univariate survival analysis and multivariate survival analysis revealed that DEF6 could be an independent prognostic factor for ccRCC. Additionally, bioinformatics analysis indicated that differentially expressed genes related to DEF6 expression influenced ccRCC by regulating the tumor immune microenvironment. In conclusion, overexpression of DEF6 is significantly correlated with a poor prognosis for patients with ccRCC and DEF6 may influence the biological processes involved with ccRCC by regulating the immune microenvironment.
Collapse
Affiliation(s)
- Zhen-Peng Zhu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan-Ruo Lin
- College of Basic Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Tong-De Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chun-Ru Xu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Tian-Yu Cai
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
6
|
Single Nucleotide Polymorphisms in PPARD Associated with Systemic Lupus Erythematosus in Chinese Populations. J Immunol Res 2020; 2020:7285747. [PMID: 32566688 PMCID: PMC7281840 DOI: 10.1155/2020/7285747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by apoptotic clearance deficiency provoking autoimmune responses and leading to multiple organ damage. PPAR-δ, encoded by the PPARD gene, was induced in macrophages promoting the timely disposal of apoptotic cells. Biological studies had provided solid foundation of PPARD involvement in SLE; it is worthwhile to further explore the genetic contribution of PPARD to SLE. Methods We performed a discovery-replication genetic association study. The discovery study was based on previous reported GWAS data. And the replication study was conducted in 1003 SLE patients and 815 healthy controls from Henan, Middle East of China. Further, we analyzed the eQTL effect to identify possible functional significance. Results In the genetic association analysis, we observed significant association between the risk C allele of rs4713853 (p = 0.03, OR 1.167, 95% CI 1.015-1.341) and increased SLE susceptibility. Moreover, individuals with the risk C allele were associated with lower expression of PPARD and DEF6. Our clinical analysis showed that SLE patients with the risk C allele of rs4713853 were more likely to present a higher proportion of anti-Sm antibody presence (CC+CT vs. TT, 20.0% vs. 14.2%, p = 0.039) and higher level of Scr (median inter quarter range CC+CT vs. TT, 56 48-71 vs. 54 46-64 μmol/L, p = 0.002). Conclusions In conclusion, our study identified a novel association between PPARD rs4713853 and SLE susceptibility in Chinese populations. By integrating multiple layers of analysis, we suggested that PPARD might be a main candidate in the pathogenesis of SLE.
Collapse
|
7
|
Zhao B. Intrinsic Restriction of TNF-Mediated Inflammatory Osteoclastogenesis and Bone Resorption. Front Endocrinol (Lausanne) 2020; 11:583561. [PMID: 33133025 PMCID: PMC7578415 DOI: 10.3389/fendo.2020.583561] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF-κB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Baohong Zhao,
| |
Collapse
|
8
|
Serwas NK, Hoeger B, Ardy RC, Stulz SV, Sui Z, Memaran N, Meeths M, Krolo A, Yüce Petronczki Ö, Pfajfer L, Hou TZ, Halliday N, Santos-Valente E, Kalinichenko A, Kennedy A, Mace EM, Mukherjee M, Tesi B, Schrempf A, Pickl WF, Loizou JI, Kain R, Bidmon-Fliegenschnee B, Schickel JN, Glauzy S, Huemer J, Garncarz W, Salzer E, Pierides I, Bilic I, Thiel J, Priftakis P, Banerjee PP, Förster-Waldl E, Medgyesi D, Huber WD, Orange JS, Meffre E, Sansom DM, Bryceson YT, Altman A, Boztug K. Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 2019; 10:3106. [PMID: 31308374 PMCID: PMC6629652 DOI: 10.1038/s41467-019-10812-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.
Collapse
Affiliation(s)
- Nina K Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Rico C Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sigrun V Stulz
- Centre for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Zhenhua Sui
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Nima Memaran
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Centre for Paediatrics and Adoloscent Medicine, Hannover Medical School, Hannover, Germany
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Pathophysiology of Toulouse Purpan, INSERM UMR1043, CNRS UMR5282, Paul Sabatier University, Toulouse, France
| | - Tie Z Hou
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | | | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- Columbia University Medical Center, Columbia, NY, USA
| | - Malini Mukherjee
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Bianca Tesi
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Schrempf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jakob Huemer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wojciech Garncarz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Iro Pierides
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Takeda (Shire), Vienna, Austria
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, 79106, Germany
| | - Peter Priftakis
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Pinaki P Banerjee
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- MD Anderson Cancer Center, Houston, TX, USA
| | - Elisabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - David Medgyesi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolf-Dietrich Huber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- Columbia University Medical Center, Columbia, NY, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
- St. Anna Kinderspital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Gao Y, Jiang J, Yang S, Cao J, Han B, Wang Y, Zhang Y, Yu Y, Zhang S, Zhang Q, Fang L, Cantrell B, Sun D. Genome-wide association study of Mycobacterium avium subspecies Paratuberculosis infection in Chinese Holstein. BMC Genomics 2018; 19:972. [PMID: 30591025 PMCID: PMC6307165 DOI: 10.1186/s12864-018-5385-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Paratuberculosis is a contagious, chronic and enteric disease in ruminants, which is caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection, resulting in enormous economic losses worldwide. There is currently no effective cure for MAP infection or a vaccine, it is thus important to explore the genetic variants that contribute to host susceptibility to infection by MAP, which may provide a better understanding of the mechanisms of paratuberculosis and benefit animal genetic improvement. Herein we performed a genome-wide association study (GWAS) to identify genomic regions and candidate genes associated with susceptibility to MAP infection in dairy cattle. Results Using Illumina Bovine 50 K (54,609 SNPs) and GeneSeek HD (138,893 SNPs) chips, two analytical approaches were performed, GRAMMAR-GC and ROADTRIPS in 937 Chinese Holstein cows, among which individuals genotyped by the 50 K chip were imputed to HD SNPs with Beagle software. Consequently, 15 and 11 significant SNPs (P < 5 × 10− 5) were identified with GRAMMAR-GC and ROADTDRIPS, respectively. A total of 10 functional genes were in proximity to (i.e., within 1 Mb) these SNPs, including IL4, IL5, IL13, IRF1, MyD88, PACSIN1, DEF6, TDP2, ZAP70 and CSF2. Functional enrichment analysis showed that these genes were involved in immune related pathways, such as interleukin, T cell receptor signaling pathways and inflammatory bowel disease (IBD), implying their potential associations with susceptibility to MAP infection. In addition, by examining the publicly available cattle QTLdb, a previous QTL for MAP was found to be overlapped with one of regions detected currently at 32.5 Mb on BTA23, where the TDP2 gene was anchored. Conclusions In conclusion, we identified 26 SNPs located on 15 chromosomes in the Chinese Holstein population using two GWAS strategies with high density SNPs. Integrated analysis of GWAS, biological functions and the reported QTL information helps to detect positional candidate genes and the identification of regions associated with susceptibility to MAP traits in dairy cattle. Electronic supplementary material The online version of this article (10.1186/s12864-018-5385-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yahui Gao
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Jiang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaohua Yang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bo Han
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingzhao Fang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Bonnie Cantrell
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Xu Y, Hou Y, Liu T, Lou G. Overexpression and clinical significance of IBP in epithelial ovarian carcinoma. Oncol Lett 2018; 15:6604-6610. [PMID: 29616123 DOI: 10.3892/ol.2018.8125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/16/2017] [Indexed: 11/05/2022] Open
Abstract
Interferon regulatory factor-4 binding protein (IBP) is as a type of ρ GTPase suggested to serve an important role in tumor occurrence and development through the effects of cytoskeletal remodeling, and cell conduction mechanism. IBP is widely expressed in the immune system and expressed in several types of tumors. However, its expression and prognostic value in epithelial ovarian carcinoma (EOC) remain unclear. The present study aimed to investigate the expression of IBP in EOC, and its effect on clinicopathological variables and prognosis. A total of 107 and 30 cases of epithelial ovarian carcinoma and benign ovarian disease tissue sections, respectively, were examined using immunohistochemistry. The results indicated that the IBP expression status was negative or markedly weak in normal tissues, but highly expressed in EOC tissues. A significant association was observed between IBP overexpression and various clinicopathological factors, including advanced International Federation of Gynecology and Obstetrics stage (P<0.001), poor histologic grade (P=0.002), peritoneal carcinomatosis (P<0.001), lymph-node metastasis (P=0.023) and recurrence (P<0.001). Multivariate Cox regression analysis additionally suggested that IBP overexpression was an independent factor affecting recurrence-free survival [hazard ratio (HR)=4.099; 95% confidence interval (CI), 2.209-7.606; P<0.001) and overall survival (HR=2.317; 95% CI, 1.484-3.617; P<0.001) in patients with EOC. The results of the present study demonstrated that IBP overexpression may be associated with tumor development and progression in EOC, and therefore may serve as a novel target for treating this disease.
Collapse
Affiliation(s)
- Yingjuan Xu
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yangming Hou
- Department of Hepatobiliary and Pancreatic Surgery, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Tianbo Liu
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ge Lou
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
11
|
Regulation of age-associated B cells by IRF5 in systemic autoimmunity. Nat Immunol 2018; 19:407-419. [PMID: 29483597 PMCID: PMC6095139 DOI: 10.1038/s41590-018-0056-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Age-associated B cells (ABCs) are a T-bet–dependent B cell subset,
which accumulates prematurely in autoimmune settings. The pathways regulating
ABCs in autoimmunity are largely unknown. SWAP-70 and
DEF6 (also known as IBP or SLAT) are the only two
members of the SWEF family, a unique family of Rho GTPase-regulatory proteins
that controls both cytoskeletal dynamics and IRF4 activity. Notably,
DEF6 is a newly identified human SLE-risk variant. Here we
show that the lupus syndrome that developed in SWEF-deficient mice is
accompanied by the accumulation of ABCs, which produce autoantibodies upon
stimulation. ABCs from SWEF-deficient mice exhibited a distinctive transcriptome
and a unique chromatin landscape characterized by enrichment in motifs bound by
transcription factors of the IRF family, AP-1/BATF, and T-bet. Enhanced ABC
formation in SWEF-deficient mice was controlled by interleukin 21 (IL-21) and
IRF5, whose variants are strongly associated with lupus. The lack of SWEF
proteins led to dysregulated IRF5 activity in response to IL-21 stimulation.
These studies thus uncover a new genetic pathway controlling ABCs in
autoimmunity.
Collapse
|
12
|
|
13
|
Manni M, Ricker E, Pernis AB. Regulation of systemic autoimmunity and CD11c + Tbet + B cells by SWEF proteins. Cell Immunol 2017; 321:46-51. [PMID: 28780965 DOI: 10.1016/j.cellimm.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed the existence of a T-bet dependent subset of B cells, which expresses unique phenotypic and functional characteristics including high levels of CD11c and CD11b. In the murine system this B cell subset has been termed Age/autoimmune-associated B cells (ABCs) since it expands with age in non-autoimmune mice and it prematurely accumulates in autoimmune-prone strains. The molecular mechanisms that promote the expansion and function of ABCs are largely unknown. This review will focus on the SWEF proteins, a small family of Rho GEFs comprised of SWAP-70 and its homolog DEF6, a newly identified risk variant for human SLE. We will first provide an overview of the SWEF proteins and then discuss the complex array of biological processes that they control and the autoimmune phenotypes that spontaneously develop in their absence, highlighting the emerging involvement of these proteins in regulating ABCs. A better understanding of the pathways controlled by the SWEF proteins could help provide new insights into the mechanisms responsible for the expansion of ABCs in autoimmunity and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
14
|
Chandrasekaran U, Yi W, Gupta S, Weng CH, Giannopoulou E, Chinenov Y, Jessberger R, Weaver CT, Bhagat G, Pernis AB. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol 2017; 68:1454-66. [PMID: 26816213 DOI: 10.1002/art.39599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/14/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. METHODS Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. RESULTS The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. CONCLUSION This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development.
Collapse
Affiliation(s)
| | - Woelsung Yi
- Hospital for Special Surgery, New York, New York
| | - Sanjay Gupta
- Hospital for Special Surgery, New York, New York
| | - Chien-Huan Weng
- Hospital for Special Surgery and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Eugenia Giannopoulou
- Hospital for Special Surgery, New York, and New York City College of Technology, City University of New York, Brooklyn, New York
| | | | | | | | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Alessandra B Pernis
- Hospital for Special Surgery, Weill Cornell Graduate School of Medical Sciences, and Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
15
|
Identification of a Novel Alternatively Spliced Form of Inflammatory Regulator SWAP-70-Like Adapter of T Cells. Int J Inflam 2017; 2017:1324735. [PMID: 28523202 PMCID: PMC5421089 DOI: 10.1155/2017/1324735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Activation of naive CD4+ T cells results in the development of several distinct subsets of effector Th cells, including Th2 cells that play a pivotal role in allergic inflammation and helminthic infections. SWAP-70-like adapter of T cells (SLAT), also known as Def6 or IBP, is a guanine nucleotide exchange factor for small GTPases, which regulates CD4+ T cell inflammatory responses by controlling Ca2+/NFAT signaling. In this study, we have identified a novel alternatively spliced isoform of SLAT, named SLAT2, which lacks the region encoded by exons 2-7 of the Def6 gene. SLAT2 was selectively expressed in differentiated Th2 cells after the second round of in vitro stimulation, but not in differentiated Th1, Th17, or regulatory T (Treg) cells. Functional assays revealed that SLAT2 shared with SLAT the ability to enhance T cell receptor- (TCR-) mediated activation of NFAT and production of IL-4 but was unable to enhance TCR-induced adhesion to ICAM-1. Ectopic expression of SLAT2 or SLAT in Jurkat T cells resulted in the expression of distinct forms of filopodia, namely, short versus long ones, respectively. These results demonstrate that modulating either SLAT2 or SLAT protein expression could play critical roles in cytokine production and actin reorganization during inflammatory immune responses.
Collapse
|
16
|
Ripich T, Chacón-Martínez CA, Fischer L, Pernis A, Kiessling N, Garbe AI, Jessberger R. SWEF Proteins Distinctly Control Maintenance and Differentiation of Hematopoietic Stem Cells. PLoS One 2016; 11:e0161060. [PMID: 27561029 PMCID: PMC4999197 DOI: 10.1371/journal.pone.0161060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 07/29/2016] [Indexed: 12/24/2022] Open
Abstract
SWAP-70 and DEF6, two proteins that feature similar domain and motif arrangements, are mainly known for their functions in differentiated hematopoietic cells. Both proteins interact with and regulate RhoGTPases and F-actin dynamics, yet their role in hematopoietic stem and precursor cells (HSPCs) remained unexplored. Here, the role of the SWEF proteins SWAP-70 and DEF6 in HSPCs was examined. Both SWEF proteins are expressed in HSCs. HSCs and different precursor populations were analyzed in mice deficient for SWAP-70, DEF6, SWAP-70 and DEF6 (double knockout, DKO), and wild-type controls. HSPCs isolated from these strains were used for competitive adoptive transfer into irradiated wild-type mice. Reconstitution of the myeloid and lymphoid lineages in the recipient mice was determined. The numbers of HSPCs in the bone marrow of Swap-70-/- and Swap-70-/-Def6-/- mice were >3-fold increased. When transplanted into lethally irradiated wild-type recipients, the reconstitution potential of Swap-70-/- HSPCs was intrinsically impaired in competing with wild-type HSPCs for contribution to hematopoiesis. Def6-/- HSPCs show wild type-like reconstitution potential under the same transplantation conditions. DKO HSPCs reconstituted to only 25% of wild-type levels, indicating a partial rescue by DEF6 deficiency in the Swap-70-/- background. Our study reveals the two SWEF proteins as important contributors to HSPC biology. Despite their similarity these two proteins regulate HSC/progenitor homeostasis, self-renewal, lineage contributions and repopulation in a distinct and mostly antagonistic manner.
Collapse
Affiliation(s)
- Tatsiana Ripich
- Institute of Physiological Chemistry, Technische Universität Dresden, 01307, Dresden, Germany
| | | | - Luise Fischer
- Osteoimmunology, CRTD, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alessandra Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, 10021, United States of America
| | - Nadine Kiessling
- Institute of Physiological Chemistry, Technische Universität Dresden, 01307, Dresden, Germany
| | - Annette I. Garbe
- Institute of Physiological Chemistry, Technische Universität Dresden, 01307, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, 01307, Dresden, Germany
- * E-mail:
| |
Collapse
|
17
|
Liew PL, Fang CY, Lee YC, Lee YC, Chen CL, Chu JS. DEF6 expression in ovarian carcinoma correlates with poor patient survival. Diagn Pathol 2016; 11:68. [PMID: 27488395 PMCID: PMC4973116 DOI: 10.1186/s13000-016-0518-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased expression of DEF6 is correlated with the malignant behavior of various cancers. Both DEF6 and p16 contribute to the regulation of cell cycle progression, and p53 plays important role in the cell cycle checkpoints. This study was designed to elucidate the prognostic significance of DEF6, p53 and p16 immunoexpressions in different histology subtypes of ovarian carcinoma. METHODS Immunohistochemistry results of DEF6, p53 and p16 on ovarian carcinoma were compared with histology subtypes, clinical data, overall survival (OS) and disease-free survival (DFS) by Cox regression and Kaplan-Meier analysis. RESULTS We studied 180 cases of ovarian carcinomas (75 high-grade serous, 41 clear cell, 36 mucinous and 28 endometrioid), including 109 FIGO stage I-II cases and 71 FIGO stage III-IV cases. Ovarian carcinomas positive for both DEF6 and p16 expression were associated with the worst OS (P = 0.027) and DFS (P = 0.023), whereas those negative for both DEF6 and p16 had the best OS and DFS. Aberrant p53 expression combined with positive DEF6 was associated with worst OS (P = 0.031) and DFS (P = 0.028). Kaplan-Meier analysis showed that significantly shorter survival rates were seen in patients with high expressions of DEF6 (P = 0.008) and p16 (P = 0.022). Patients with aberrant p53 expression in high-grade serous carcinoma (P = 0.012) and patients with high DEF6 expression in clear cell carcinoma (P = 0.001) were also associated with shorter overall survival. In univariate analysis, FIGO stage, DEF6 and p16 were associated with poor prognosis. DEF6 expression was the only independent prognostic factor correlated with shorted OS (HR 2.115; P = 0.025) and DFS (HR 2.248; P = 0.016) upon multivariate analysis. CONCLUSIONS DEF6 expression may serve as an independent prognostic factor, and interacted positively with p16 toward high tumor stage and shorter survival.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/mortality
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/mortality
- Cell Line, Tumor
- Cohort Studies
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cystadenoma, Serous/diagnosis
- Cystadenoma, Serous/metabolism
- Cystadenoma, Serous/mortality
- DNA-Binding Proteins/metabolism
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Immunohistochemistry
- Middle Aged
- Multivariate Analysis
- Nuclear Proteins/metabolism
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Prognosis
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561 Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
| | - Chih-Yeu Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116 Taiwan
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Yi-Chih Lee
- Department of International Business, Chien Hsin University of Science and Technology, Taoyuan, 32097 Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
| | - Jan-Show Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
| |
Collapse
|
18
|
Weng CH, Gupta S, Geraghty P, Foronjy R, Pernis AB. Cigarette smoke inhibits ROCK2 activation in T cells and modulates IL-22 production. Mol Immunol 2016; 71:115-122. [PMID: 26882474 PMCID: PMC4797327 DOI: 10.1016/j.molimm.2016.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/29/2022]
Abstract
Gene-environment interactions are known to play a key role in the development of rheumatoid arthritis (RA). Exposure to cigarette smoke (CS) is one of the strongest environmental risk factors associated with RA and has been shown to mediate a range of complex immunomodulatory effects from decreased T and B cell activation to depressed phagocytic function. The effects of CS on the function of TH17 cells, one of the key TH effector subsets implicated in RA pathogenesis, are not fully understood. IRF4 is one of the crucial transcription factors involved in TH-17 differentiation and is absolutely required for the production of IL-17 and IL-21 but, interestingly, inhibits the synthesis of IL-22. The production of IL-17 and IL-21 by IRF4 can be augmented by its phosphorylation by the serine-threonine kinase ROCK2. Given that CS has been reported to increase ROCK activity in endothelial cells, here we investigated the effects of CS on the ROCK2-IRF4 axis in T cells. Surprisingly, we found that CS leads to decreased ROCK2 activation and IRF4 phosphorylation in T cells. This effect was associated with increased IL-22 production. Using a GEF pull-down assay we furthermore identify ARHGEF1 as a key upstream regulator of ROCK2 whose activity in T cells is inhibited by CS. Thus CS can inhibit the ROCK2-IRF4 axis and modulate T cell production of IL-22.
Collapse
Affiliation(s)
- Chien-Huan Weng
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Patrick Geraghty
- SUNY Downstate Medical Center, 450Clarkson Avenue, Brooklyn, New York, NY 11203, USA.
| | - Robert Foronjy
- SUNY Downstate Medical Center, 450Clarkson Avenue, Brooklyn, New York, NY 11203, USA.
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
19
|
Côte M, Fos C, Canonigo-Balancio AJ, Ley K, Bécart S, Altman A. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1. J Cell Sci 2015; 128:4341-52. [PMID: 26483383 DOI: 10.1242/jcs.172742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023] Open
Abstract
SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4(+) T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6(-/-)) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling.
Collapse
Affiliation(s)
- Marjorie Côte
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Camille Fos
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Ann J Canonigo-Balancio
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Fos C, Becart S, Canonigo Balancio AJ, Boehning D, Altman A. Association of the EF-hand and PH domains of the guanine nucleotide exchange factor SLAT with IP₃ receptor 1 promotes Ca²⁺ signaling in T cells. Sci Signal 2014; 7:ra93. [PMID: 25270259 DOI: 10.1126/scisignal.2005565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The guanine nucleotide exchange factor SLAT (SWAP-70-like adaptor of T cells) regulates T cell activation and differentiation by enabling Ca(2+) release from intracellular stores in response to stimulation of the T cell receptor (TCR). We found a TCR-induced association between SLAT and inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1). The N-terminal region of SLAT, which contains two EF-hand motifs that we determined bound Ca(2+), and the SLAT pleckstrin homology (PH) domain independently bound to IP3R1 by associating with a conserved motif within the IP3R1 ligand-binding domain. Disruption of the SLAT-IP3R1 interaction with cell-permeable, IP3R1-based fusion peptides inhibited TCR-stimulated Ca(2+) signaling, activation of the transcription factor NFAT (nuclear factor of activated T cells), and production of cytokines, suggesting that this interaction is required for optimal T cell activation. The finding that SLAT is an IP3R1-interacting protein required for T cell activation suggests that this interaction could be a potential target for a selective immunosuppressive drug.
Collapse
Affiliation(s)
- Camille Fos
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Stephane Becart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Ann J Canonigo Balancio
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Worthmann K, Leitges M, Teng B, Sestu M, Tossidou I, Samson T, Haller H, Huber TB, Schiffer M. Def-6, a novel regulator of small GTPases in podocytes, acts downstream of atypical protein kinase C (aPKC) λ/ι. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1945-1959. [PMID: 24096077 PMCID: PMC5707189 DOI: 10.1016/j.ajpath.2013.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/23/2022]
Abstract
The atypical protein kinase C (aPKC) isotypes PKCλ/ι and PKCζ are both expressed in podocytes; however, little is known about differences in their function. Previous studies in mice have demonstrated that podocyte-specific loss of PKCλ/ι leads to a severe glomerular phenotype, whereas mice deficient in PKCζ develop no renal phenotype. We analyzed various effects caused by PKCλ/ι and PKCζ deficiency in cultured murine podocytes. In contrast to PKCζ-deficient podocytes, PKCλ/ι-deficient podocytes exhibited a severe actin cytoskeletal phenotype, reduced cell size, decreased number of focal adhesions, and increased activation of small GTPases. Comparative microarray analysis revealed that the guanine nucleotide exchange factor Def-6 was specifically up-regulated in PKCλ/ι-deficient podocytes. In vivo Def-6 expression is significantly increased in podocytes of PKCλ/ι-deficient mice. Cultured PKCλ/ι-deficient podocytes exhibited an enhanced membrane association of Def-6, indicating enhanced activation. Overexpression of aPKCλ/ι in PKCλ/ι-deficient podocytes could reduce the membrane-associated expression of Def-6 and rescue the actin phenotype. In the present study, PKCλ/ι was identified as an important factor for actin cytoskeletal regulation in podocytes and Def-6 as a specific downstream target of PKCλ/ι that regulates the activity of small GTPases and subsequently the actin cytoskeleton of podocytes.
Collapse
Affiliation(s)
- Kirstin Worthmann
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Beina Teng
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Marcello Sestu
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
| | - Irini Tossidou
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Samson
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hermann Haller
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias B Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Mario Schiffer
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
22
|
Rogatsky I, Chandrasekaran U, Manni M, Yi W, Pernis AB. Epigenetics and the IRFs: A complex interplay in the control of immunity and autoimmunity. Autoimmunity 2013; 47:242-55. [DOI: 10.3109/08916934.2013.853050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Chen S, Han Q, Wang X, Yang M, Zhang Z, Li P, Chen A, Hu C, Li S. IBP-mediated suppression of autophagy promotes growth and metastasis of breast cancer cells via activating mTORC2/Akt/FOXO3a signaling pathway. Cell Death Dis 2013; 4:e842. [PMID: 24113176 PMCID: PMC3824689 DOI: 10.1038/cddis.2013.380] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/04/2023]
Abstract
Interferon regulatory factor-4 binding protein (IBP) is a novel upstream activator of Rho GTPases. Our previous studies have shown that ectopic expression of IBP was correlated with malignant behaviors of human breast cancer cells, and invasive human breast cancer had high expression of IBP that promoted the proliferation of these cells. However, it remains unknown whether autophagy inhibition contributes to IBP-mediated tumorigenesis. In this study, we for the first time, reported that upregulation of IBP expression significantly suppressed the autophagy of breast cancer cells, and downregulation of IBP expression markedly induced autophagy of these cells. Further investigation revealed that IBP effectively counteracted autophagy by directly activating mammalian target of rapamycin complex 2 (mTORC2) and upregulating phosphorylation of Akt on ser473 and FOXO3a on Thr32. Moreover, IBP-mediated suppression of autophagy was dependent on mTORC2/Akt/FOXO3a signaling pathway. Finally, our results demonstrated that IBP-mediated breast cancer cell growth in vitro and in vivo was strongly correlated with suppression of mTORC2-dependent autophagy. These findings suggest that the anti-autophagic property of IBP has an important role in IBP-mediated tumorigenesis, and IBP may serve as an attractive target for treatment of breast cancer.
Collapse
Affiliation(s)
- S Chen
- Department of Clinical Biochemistry, Southwestern Hospital, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
IBP regulates epithelial-to-mesenchymal transition and the motility of breast cancer cells via Rac1, RhoA and Cdc42 signaling pathways. Oncogene 2013; 33:3374-82. [PMID: 23975422 PMCID: PMC4078416 DOI: 10.1038/onc.2013.337] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/04/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial process for the invasion and metastasis of epithelial tumors. However, the molecular mechanisms underlying this transition are poorly understood. In this study, we demonstrate that interferon regulatory factor 4 binding protein (IBP) regulates EMT and the motility of breast cancer cells through Rac1, RhoA and Cdc42 signaling pathways. We found that increased expression of IBP was associated with the progression of breast cancer and that IBP protein levels were significantly elevated in matched distant metastases. High IBP levels also predict shorter overall survival of breast cancer patients. Furthermore, the forced expression of IBP decreased the expression of the epithelial marker E-cadherin but increased the mesenchymal markers in breast cancer cells. In contrast, silencing IBP in metastatic breast tumor cells promoted a shift toward an epithelial morphology concomitant with increased expression of E-cadherin and decreased expression of mesenchymal markers. IBP silencing also reduced the expression of EMT-inducing transcription factors (Snail, Slug, ZEB1 and ZEB2). Moreover, we identified a role for IBP in endogenous EMT induced by epidermal growth factor (EGF) and deletion of IBP attenuated EGF receptor (EGFR) signaling in breast cancer cells. Furthermore, IBP regulates the migration, invasion and matrix metalloprotease production in breast cancer cells as well as actin cytoskeleton rearrangement and the activation of GTP-Rac1, GTP-RhoA and GTP-Cdc42. Taken together, our findings demonstrate an oncogenic property for IBP in promoting the metastatic potential of breast cancer cells.
Collapse
|
25
|
Feau S, Schoenberger SP, Altman A, Bécart S. SLAT regulates CD8+ T cell clonal expansion in a Cdc42- and NFAT1-dependent manner. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197258 DOI: 10.4049/jimmunol.1201685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After antigenic stimulation, CD8(+) T cells undergo clonal expansion and differentiation into CTLs that can mount a strong defense against intracellular pathogens and tumors. SWAP-70-like adapter of T cells (SLAT), also known as Def6, is a novel guanine nucleotide exchange factor for the Cdc42 GTPase and plays a role in CD4(+) T cell activation and Th cell differentiation by controlling Ca(2+)/NFAT signaling, but its requirement in CD8(+) T cell response has not been explored. Using a range of transgenic and knockout in vivo systems, we show that SLAT is required for efficient expansion of CD8(+) T cells during the primary response but is not necessary for CTL differentiation. The reduced clonal expansion observed in the absence of SLAT resulted from a CD8(+) T cell-intrinsic proliferation defect and a reduced IL-2-dependent cell survival. On a molecular level, we show that Def6 deficiency resulted in defective TCR/CD28-induced NFAT translocation to the nucleus in CD8(+) T cells. Constitutively active Cdc42 or NFAT1 mutants fully restored the impaired expansion of Def6(-/-) CD8(+) T cells. Taken together, these data describe a new and pivotal role of SLAT-mediated NFAT activation in CD8(+) T cells, providing new insight into the signaling pathways involved in CD8(+) T cell proliferation.
Collapse
Affiliation(s)
- Sonia Feau
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
26
|
Jian CX, Yang MZ, Li P, Xiong J, Zhang ZJ, Li CJ, Chen A, Hu CM, Zhou JX, Li SH. Ectopically expressed IBP promotes cell proliferation in oral squamous cell carcinoma. Cancer Invest 2012; 30:748-56. [PMID: 23088770 DOI: 10.3109/07357907.2012.734355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IFN regulatory factor 4 binding protein (IBP) has been shown to play an important role in the progression of malignant tumors such as breast cancer cells, but its function in oral squamous cell carcinoma (OSCC) remains unclear. We found that IBP ectopically expressed in some OSCC specimens but not in normal oral mucosa epithelium tissues. IBP expression was significantly correlated with tumor size, differentiation, clinical stage, and distant metastasis. Furthermore, IBP markedly promoted OSCC cell proliferation, shortened the G1 interval in the cell cycle, and increased cyclin D1 expression. These findings suggest that IBP may be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Cong-Xiang Jian
- Department of Clinical Biochemistry, Laboratory Sciences, the Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Small GTPases like Rac2 are crucial regulators of many cell functions central to life itself. Our laboratory has recently found that phospholipase D2 (PLD2) can act as a guanine nucleotide exchange factor (GEF) for Rac2. PLD2 has a Pleckstrin Homology (PH) domain but does not bear a Dbl homology (DH) or DOCK homology region (DHR) domain. It has, however, a Phox (PX) domain upstream of its PH domain. To better understand the novel finding of PLD2 as an enhancer of GDP/GTP exchange, we modeled the N-terminal portion of PLD2 (as the crystal structure of this protein has not as of yet been resolved), and studied the correlation with two known GEFs, SWAP-70 and the Leukemic Associated RhoGEF (LARG). Structural similarities between PLD2's PH and SWAP-70s or LARG's PH domain are very extensive, while similarities between PLD2's PX and SWAP-70s or LARG's DH domains are less evident. This indicates that PLD functions as a GEF utilizing its PH domain and part of its PX domain and possibly other regions. All this makes PLD unique, and an entirely new class of GEF. By bearing two enzymatic activities (break down of PC and GDP/GTP exchange), it is realistic to assume that PLD is an important signaling node for several intracellular pathways. Future experiments will ascertain how the newly described PLD2's GEF is regulated in the context of cell activation.
Collapse
|
28
|
Yang M, Yuan F, Li P, Chen Z, Chen A, Li S, Hu C. Interferon regulatory factor 4 binding protein is a novel p53 target gene and suppresses cisplatin-induced apoptosis of breast cancer cells. Mol Cancer 2012; 11:54. [PMID: 22888789 PMCID: PMC3447665 DOI: 10.1186/1476-4598-11-54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/02/2012] [Indexed: 12/03/2022] Open
Abstract
Background Our previous work demonstrated that ectopic expression of interferon regulatory factor 4 binding protein (IBP) was correlated with the malignant behaviour of human breast cancer cells. The mechanisms controlling differential expression of IBP in breast cancer still remain unknown. Results To investigate the mechanism of IBP dysregulation in breast cancer, we identified IBP was a novel p53 target gene. IBP expression was negatively regulated by wild-type p53 and was p53 dependently suppressed by DNA damage agent cisplatin. Furthermore, high levels of IBP were found to decrease cisplatin-induced growth suppression and apoptotic cell death, which was associated with decreased p53 activity and imbalanced Bcl-2 family member expression. Conclusions IBP is a novel p53 target gene which suppresses cisplatin-mediated apoptosis of breast cancer cells via negative feedback regulation of the p53 signalling pathway, suggesting IBP may serve as a target for pharmacologic intervention of breast cancer resistant to cisplatin therapy.
Collapse
Affiliation(s)
- Mingzhen Yang
- Department of Clinical Biochemistry, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Hey F, Czyzewicz N, Jones P, Sablitzky F. DEF6, a novel substrate for the Tec kinase ITK, contains a glutamine-rich aggregation-prone region and forms cytoplasmic granules that co-localize with P-bodies. J Biol Chem 2012; 287:31073-84. [PMID: 22829599 DOI: 10.1074/jbc.m112.346767] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Localization of DEF6 (SLAT/IBP), a Rho-family guanine nucleotide exchange factor, to the center of the immune synapse is dependent upon ITK, a Tec-family kinase that regulates the spatiotemporal organization of components of T cell signaling pathways and Cdc42-dependent actin polymerization. Here we demonstrate that ITK both interacts with DEF6 and phosphorylates DEF6 at tyrosine residues Tyr(210) and Tyr(222). Expression of a GFP-tagged Y210E-Y222E phosphomimic resulted in the formation of DEF6 cytoplasmic granules that co-localized with decapping enzyme 1 (DCP1), a marker of P-bodies; sites of mRNA degradation. Similarly treatment of cells with puromycin or sodium arsenite, reagents that arrest translation, also resulted in the accumulation of DEF6 in cytoplasmic granules. Bioinformatics analysis identified a glutamine-rich, heptad-repeat region; a feature of aggregating proteins, within the C-terminal region of DEF6 with the potential to promote granule formation through a phosphorylation-dependent unmasking of this region. These data suggest that in addition to its role as a GEF, DEF6 may also function in regulating mRNA translation.
Collapse
Affiliation(s)
- Fiona Hey
- School of Biology, Molecular Cell and Developmental Biology, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
30
|
Yamaguchi K, Imai K, Akamatsu A, Mihashi M, Hayashi N, Shimamoto K, Kawasaki T. SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:389-97. [PMID: 22142166 DOI: 10.1111/j.1365-313x.2011.04874.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rho family small GTPases are involved in diverse signaling processes including immunity, growth, and development. The activity of Rho GTPases is regulated by cycling between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active forms, in which guanine nucleotide exchange factors (GEFs) predominantly function to promote activation of the GTPases. In animals, most Rho GEFs possess a Dbl (diffuse B-cell lymphoma) homology (DH) domain which functions as a GEF-catalytic domain. However, no proteins with the DH domain have been identified in plants so far. Instead, plant-specific Rho GEFs with the PRONE domain responsible for GEF activity have been found to constitute a large family in plants. In this study, we found rice homologs of human SWAP70, Oryza sativa (Os) SWAP70A and SWAP70B, containing the DH domain. OsSWAP70A interacted with rice Rho GTPase OsRac1, an important signaling factor for immune responses. The DH domain of OsSWAP70A exhibited the GEF-catalytic activity toward OsRac1 as found in animal Rho GEFs, indicating that plants have the functional DH domains. Transient expression of OsSWAP70A enhanced OsRac1-mediated production of reactive oxygen species in planta. Reduction of OsSWAP70A and OsSWAP70B mRNA levels by RNA interference resulted in the suppression of chitin elicitor-induced defense gene expression and ROS production. Thus, it is likely that OsSWAP70 regulates immune responses through activation of OsRac1.
Collapse
Affiliation(s)
- Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond) 2012; 122:487-511. [PMID: 22324470 DOI: 10.1042/cs20110496] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IL-17 (interleukin-17), a hallmark cytokine of Th17 (T-helper 17) cells, plays critical roles in host defence against bacterial and fungal infections, as well as in the pathogenesis of autoimmune diseases. The present review focuses on current knowledge of the regulation, functional mechanisms and targeting strategies of IL-17 in the context of inflammatory autoimmune diseases. Evidence shows that IL-17 is highly up-regulated at sites of inflammatory tissues of autoimmune diseases and amplifies the inflammation through synergy with other cytokines, such as TNF (tumour necrosis factor) α. Although IL-17 was originally thought to be produced mainly by Th17 cells, a newly defined T-cell subset with a specific differentiation programme and tight regulation, several other cell types (especially innate immune cells) are also found as important sources for IL-17 production. Although IL-17 activates common downstream signalling, including NF-κB (nuclear factor κB), MAPKs (mitogen-activated protein kinases), C/EBPs (CCAAT/enhancer-binding proteins) and mRNA stability, the immediate receptor signalling has been shown to be quite unique and tightly regulated. Mouse genetic studies have demonstrated a critical role for IL-17 in the pathogenesis of variety of inflammatory autoimmune diseases, such as RA (rheumatoid arthritis) and MS (multiple sclerosis). Importantly, promising results have been shown in initial clinical trials of monoclonal antibodies against IL-17 or its receptor (IL-17R) to block IL-17-mediated function in treating autoimmune patients with psoriasis, RA and MS. Therefore targeting IL-17/IL-17R, IL-17-producing pathways or IL-17-mediated signalling pathways can be considered for future therapy in autoimmune diseases.
Collapse
|
32
|
Ni A, Chen H, Wu Y, Li W, Chen S, Li J. Expression of IRF-4 and IBP in skin lesions of patients with psoriasis vulgaris. ACTA ACUST UNITED AC 2012; 32:287-290. [PMID: 22528235 DOI: 10.1007/s11596-012-0050-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Indexed: 01/17/2023]
Abstract
The expression of the interferon regulatory factor 4 (IRF-4) and the IRF-4-binding protein (IBP) in psoriatic skin lesions was investigated. The expression of IRF-4 and IBP in skin lesions of 20 patients with psoriasis vulgaris were immunohistochemically dectected. Normal skin from 10 healthy people was used as normal control. The study showed that expression of IRF-4 was increased significantly in keratinocytes and inflammatory cells in the lesions of psoriasis vulgaris than that in the normal control. The detection revealed that IBP expression in keratinocytes, lymphocytes, hair follicles, and sebaceous glands in normal skin was significantly lower than that in the lesions of psoriasis vulgaris (P<0.05). Both IRF-4 and IBP might be involved in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Anhong Ni
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shanjuan Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawen Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
33
|
De Silva NS, Simonetti G, Heise N, Klein U. The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol Rev 2012; 247:73-92. [DOI: 10.1111/j.1600-065x.2012.01113.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Biswas PS, Gupta S, Stirzaker RA, Kumar V, Jessberger R, Lu TT, Bhagat G, Pernis AB. Dual regulation of IRF4 function in T and B cells is required for the coordination of T-B cell interactions and the prevention of autoimmunity. ACTA ACUST UNITED AC 2012; 209:581-96. [PMID: 22370718 PMCID: PMC3302237 DOI: 10.1084/jem.20111195] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effective humoral responses to protein antigens require the precise execution of carefully timed differentiation programs in both T and B cell compartments. Disturbances in this process underlie the pathogenesis of many autoimmune disorders, including systemic lupus erythematosus (SLE). Interferon regulatory factor 4 (IRF4) is induced upon the activation of T and B cells and serves critical functions. In CD4(+) T helper cells, IRF4 plays an essential role in the regulation of IL-21 production, whereas in B cells it controls class switch recombination and plasma cell differentiation. IRF4 function in T helper cells can be modulated by its interaction with regulatory protein DEF6, a molecule that shares a high degree of homology with only one other protein, SWAP-70. Here, we demonstrate that on a C57BL/6 background the absence of both DEF6 and SWAP-70 leads to the development of a lupus-like disease in female mice, marked by simultaneous deregulation of CD4(+) T cell IL-21 production and increased IL-21 B cell responsiveness. We furthermore show that DEF6 and SWAP-70 are differentially used at distinct stages of B cell differentiation to selectively control the ability of IRF4 to regulate IL-21 responsiveness in a stage-specific manner. Collectively, these data provide novel insights into the mechanisms that normally couple and coordinately regulate T and B cell responses to ensure tight control of productive T-B cell interactions.
Collapse
Affiliation(s)
- Partha S Biswas
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Biswas PS, Kang K, Gupta S, Bhagat G, Pernis AB. A murine autoimmune model of rheumatoid arthritis and systemic lupus erythematosus associated with deregulated production of IL-17 and IL-21. Methods Mol Biol 2012; 900:233-51. [PMID: 22933072 DOI: 10.1007/978-1-60761-720-4_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T-helper cell 17 (Th17) cells play an important role in the pathogenesis of many autoimmune disorders including Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). In this chapter we describe a murine model where deregulated production of IL-17 and IL-21 can lead to either lupus-like disease or RA-like symptoms depending on the genetic background. We delineate the key techniques that can be used to dissect the mechanisms responsible for the pathogenesis of these diseases at both a cellular and molecular level including in vitro Th17 cell differentiation, chromatin immunoprecipitation assays, and retroviral transduction experiments. We also describe the methodologies that can be utilized to monitor the classic clinical findings of RA and SLE in murine models. Given the broad involvement of deregulated production of IL-17 and IL-21 in autoimmunity, many of these techniques could also be valuable for the investigation of these pathways in murine models of other autoimmune diseases.
Collapse
Affiliation(s)
- Partha S Biswas
- Autoimmunity & Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | | | | | | | | |
Collapse
|
36
|
Jo SH, Ren R. IRF-4 suppresses BCR/ABL transformation of myeloid cells in a DNA binding-independent manner. J Biol Chem 2011; 287:1770-8. [PMID: 22110133 DOI: 10.1074/jbc.m111.289728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon regulatory factor 4 (IRF-4) is essential for B and T cell development and immune response regulation, and has both nuclear and cytoplasmic functions. IRF-4 was originally identified as a proto-oncogene resulting from a t(6;14) chromosomal translocation in multiple myeloma and its expression was shown to be essential for multiple myeloma cell survival. However, we have previously shown that IRF-4 functions as a tumor suppressor in the myeloid lineage and in early stages of B cell development. In this study, we found that IRF-4 suppresses BCR/ABL transformation of myeloid cells. To gain insight into the molecular pathways that mediate IRF-4 tumor suppressor function, we performed a structure-function analysis of IRF-4 as a suppressor of BCR/ABL transformation. We found that the DNA binding domain deletion mutant of IRF-4, which is localized only in the cytoplasm, is still able to inhibit BCR/ABL transformation of myeloid cells. IRF-4 also functions as a tumor suppressor in bone marrow cells deficient in MyD88, an IRF-4-interacting protein found in the cytoplasm. However, IRF-4 tumor suppressor activity is lost in IRF association domain (IAD) deletion mutants. These results demonstrate that IRF-4 suppresses BCR/ABL transformation by a novel cytoplasmic function involving its IAD domain.
Collapse
Affiliation(s)
- Seung-Hee Jo
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
37
|
Goudevenou K, Martin P, Yeh YJ, Jones P, Sablitzky F. Def6 is required for convergent extension movements during zebrafish gastrulation downstream of Wnt5b signaling. PLoS One 2011; 6:e26548. [PMID: 22039507 PMCID: PMC3198796 DOI: 10.1371/journal.pone.0026548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
During gastrulation, convergent extension (CE) cell movements are regulated through the non-canonical Wnt signaling pathway. Wnt signaling results in downstream activation of Rho GTPases that in turn regulate actin cytoskeleton rearrangements essential for co-ordinated CE cell movement. Rho GTPases are bi-molecular switches that are inactive in their GDP-bound stage but can be activated to bind GTP through guanine nucleotide exchange factors (GEFs). Here we show that def6, a novel GEF, regulates CE cell movement during zebrafish gastrulation. Def6 morphants exhibit broadened and shortened body axis with normal cell fate specification, reminiscent of the zebrafish mutants silberblick and pipetail that lack Wnt11 or Wnt5b, respectively. Indeed, def6 morphants phenocopy Wnt5b mutants and ectopic overexpression of def6 essentially rescues Wnt5b morphants, indicating a novel role for def6 as a central GEF downstream of Wnt5b signaling. In addition, by knocking down both def6 and Wnt11, we show that def6 synergises with the Wnt11 signaling pathway.
Collapse
Affiliation(s)
- Katerina Goudevenou
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Paul Martin
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Yu-Jung Yeh
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Peter Jones
- School of Biomedical Sciences, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Fred Sablitzky
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Chopin M, Chacón-Martínez CA, Jessberger R. Fine tuning of IRF-4 expression by SWAP-70 controls the initiation of plasma cell development. Eur J Immunol 2011; 41:3063-74. [PMID: 21728176 DOI: 10.1002/eji.201141742] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/14/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022]
Abstract
The generation of plasma cells (PCs) is key for proper humoral immune responses. The transcription factors IRF-4 and BLIMP-1 (B-lymphocyte induce maturation protein-1) control PC commitment, but the underlying regulatory mechanisms are incompletely understood. Here we have identified SWAP-70 as being critically involved in Toll-like receptor (TLR)-triggered PC differentiation. Upon activation through various TLRs, Swap-70(-/-) B cells were activated and proliferated normally. However, expression of BLIMP-1 was markedly reduced and PC differentiation was impaired. Four hours of LPS stimulation were sufficient to drive PC differentiation, and SWAP-70 was required during this initial period. Swap-70(-/-) B cells pre-activated in vitro failed to efficiently differentiate into PCs upon adoptive transfer into recipient mice. Re-introduction of SWAP-70 into Swap-70(-/-) B cells rescued their development into PCs, and SWAP-70 over-expression in wild-type (WT) B cells increased PC generation. In the absence of SWAP-70, IRF-4 protein levels were reduced and the IRF-4(high) B220(+) CD138(-) compartment, including PC precursors, was strongly diminished. Ectopic expression of SWAP-70 increases IRF-4 protein levels and PC differentiation in WT and Swap-70(-/-) B cells, and IRF-4 over-expression in Swap-70(-/-) B cells elevates PC differentiation to WT levels. Thus, in a dose-dependent manner, SWAP-70 controls IRF-4 protein expression and thereby regulates the initiation of PC differentiation.
Collapse
Affiliation(s)
- Michaël Chopin
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
39
|
Biswas PS, Gupta S, Chang E, Song L, Stirzaker RA, Liao JK, Bhagat G, Pernis AB. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. J Clin Invest 2010; 120:3280-95. [PMID: 20697158 PMCID: PMC2929726 DOI: 10.1172/jci42856] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/30/2010] [Indexed: 12/25/2022] Open
Abstract
Deregulated production of IL-17 and IL-21 plays a key pathogenic role in many autoimmune disorders. A delineation of the mechanisms that underlie the inappropriate synthesis of IL-17 and IL-21 in autoimmune diseases can thus provide important insights into potential therapies for these disorders. Here we have shown that the serine-threonine kinase Rho-associated, coiled-coil-containing protein kinase 2 (ROCK2) becomes activated in mouse T cells under Th17 skewing conditions and phosphorylates interferon regulatory factor 4 (IRF4), a transcription factor that is absolutely required for the production of IL-17 and IL-21. We furthermore demonstrated that ROCK2-mediated phosphorylation of IRF4 regulated the synthesis of IL-17 and IL-21 and the differentiation of Th17 cells. Whereas CD4+ T cells from WT mice activated ROCK2 physiologically under Th17 conditions, CD4+ T cells from 2 different mouse models of spontaneous autoimmunity aberrantly activated ROCK2 under neutral conditions. Moreover, administration of ROCK inhibitors ameliorated the deregulated production of IL-17 and IL-21 and the inflammatory and autoantibody responses observed in these autoimmune mice. Our findings thus uncover a crucial link among ROCK2, IRF4, and the production of IL-17 and IL-21 and support the idea that selective inhibition of ROCK2 could represent an important therapeutic regimen for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Partha S Biswas
- Department of Medicine, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Biswas PS, Bhagat G, Pernis AB. IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol Rev 2010; 233:79-96. [PMID: 20192994 PMCID: PMC2920730 DOI: 10.1111/j.0105-2896.2009.00864.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence from murine and human studies supports a key role for interleukin-17 (IL-17) and IL-21 in the pathogenesis of inflammatory arthritis. The pathways and molecular mechanisms that underlie the production of IL-17 and IL-21 are being rapidly elucidated. This review focuses on interferon regulatory factor 4 (IRF4), a member of the IRF family of transcription factors, which has emerged as a crucial controller of both IL-17 and IL-21 production. We first outline the complex role of IRF4 in the function of CD4(+) T cells and then discuss recent studies from our laboratory that have revealed a surprising role for components of Rho GTPase-mediated pathways in controlling the activity of IRF4. A better understanding of these novel pathways will hopefully provide new insights into mechanisms responsible for the development of inflammatory arthritis and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Govind Bhagat
- Department of Pathology, Columbia University, New York, NY, USA
| | | |
Collapse
|
41
|
Canonigo-Balancio AJ, Fos C, Prod’homme T, Bécart S, Altman A. SLAT/Def6 plays a critical role in the development of Th17 cell-mediated experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:7259-67. [PMID: 19915062 PMCID: PMC2821872 DOI: 10.4049/jimmunol.0902573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SWAP-70-like adapter of T cells (SLAT; also known as Def6) is a novel guanine nucleotide exchange factor for Rho GTPases that has been previously shown to play a role in CD4+ T cell activation and Th1/Th2 differentiation. However, the role of SLAT/Def6 in autoimmunity and its associated Th1- and Th17-specific responses has not yet been clearly elucidated. We used a prototypical and pathologically relevant Th1/Th17-mediated autoimmune model, that is, experimental autoimmune encephalomyelitis, to assess the role of SLAT/Def6 in autoantigen-specific T cell response. We found that T cell-expressed SLAT/Def6 was critical for experimental autoimmune encephalomyelitis development and pathogenesis, as evidenced by the resistance of Def6-deficient (Def6(-/-)) mice to clinical signs of the disease associated with a lack of CNS inflammation and demyelination in myelin oligodendrocyte glycoprotein-immunized Def6(-/-) mice. Moreover, Def6 deficiency resulted in a severely diminished myelin oligodendrocyte glycoprotein-specific CD4+ T cell proliferation as well as a defect in IFN-gamma and IL-17 production in secondary lymphoid organs and the CNS. Lastly, Def6(-/-) CD4+ T cells were grossly deficient in their ability to differentiate into Th17 cells both in vitro and in vivo in a T cell-intrinsic manner. Therefore, our study establishes T cell-expressed SLAT/Def6 as a pivotal positive regulator of Th17 inflammatory responses and, thus, essential in controlling autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Camille Fos
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Thomas Prod’homme
- Department of Neurology and Program in Immunology, University of California San Francisco, San Francisco, CA 94143
| | - Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
42
|
Bécart S, Altman A. SWAP-70-like adapter of T cells: a novel Lck-regulated guanine nucleotide exchange factor coordinating actin cytoskeleton reorganization and Ca2+ signaling in T cells. Immunol Rev 2009; 232:319-33. [PMID: 19909373 PMCID: PMC2801603 DOI: 10.1111/j.1600-065x.2009.00839.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SWAP-70-like adapter of T cells (SLAT) is a recently identified guanine nucleotide exchange factor (GEF) for Cdc42 and Rac1, which is highly expressed in both thymocytes and peripheral T cells. Here, we present and discuss findings resulting from biochemical and genetic analyses aimed at unveiling the role of SLAT in CD4+ T-cell development, activation, and T-helper (Th) cell differentiation. Slat(-/-) mice display a developmental defect at one of the earliest stages of thymocyte differentiation, the double negative 1 (DN1) stage, leading to decreased peripheral T-cell numbers. Slat(-/-) peripheral CD4+ T cells demonstrate impaired T-cell receptor/CD28-induced proliferation and IL-2 production. Moreover, SLAT positively regulates the development of Th1 and Th2 inflammatory responses by controlling Ca2+/NFAT signaling. SLAT is also a positive regulator of the recently emerging Th subset, i.e., Th17 cells, as evidenced by its critical role in Th17 cell-mediated central nervous system inflammation. Furthermore, TCR engagement induces SLAT translocation to the immunological synapse, a process mediated by its Lck-dependent phosphorylation, which thereafter facilitates the triggering of SLAT GEF activity towards Cdc42 and Rac1, leading to NFAT activation and Th1/Th2 differentiation. Future work will aim to dissect the interacting partners of SLAT and may thus shed light on the poorly understood events that coordinate and link actin cytoskeleton reorganization to Ca2+ signaling and gene transcription in T cells.
Collapse
Affiliation(s)
- Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
43
|
Abstract
Rho family GTPases, and the proteins that regulate them, have important roles in many cellular processes, including cell division, survival, migration and adhesion. Although most of our understanding of these proteins has come from studies using cell lines, more recent gene targeting studies in mice are providing insights into the in vivo function of these proteins. Here we review recent progress revealing crucial roles for these proteins in lymphocyte development, activation, differentiation and migration. The emerging picture shows that Rho family GTPases transduce signals from receptors for antigens, chemokines and cytokines, as well as adhesion molecules and pattern recognition receptors, and that they function as focal points for crosstalk between different signalling pathways.
Collapse
|
44
|
|
45
|
Zhang Z, Wang Q, Li P, Zhou Y, Li S, Yi W, Chen A, Kong P, Hu C. Overexpression of the Interferon regulatory factor 4-binding protein in human colorectal cancer and its clinical significance. Cancer Epidemiol 2009; 33:130-6. [PMID: 19679060 DOI: 10.1016/j.canep.2009.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/20/2008] [Accepted: 05/28/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND IFN regulatory factor 4-binding protein (IBP) is a novel type of activator of Rho GTPases. It has been linked with differentiation and apoptosis of lymphocytes, but its function in oncogenesis remains unclear. Here we studied the expression of endogenous IBP in four human colorectal cancer cell lines, normal, adenoma and tumor colorectal tissues. METHODS Molecular (Western blot and RT-PCR), and confocal analyses were used to investigate IBP expression in human colorectal cancer cell lines. Matched normal and tumor tissue sections of 63 patients and 15 adenoma tissue sections were analyzed for IBP expression by immunohistochemistry (IHC). RESULTS IBP was ubiquitely expressed in human colorectal cancer cell lines. The expression of IBP can be detected at both the mRNA and protein level in SW480, SW620 and HT29 cells. Clinically, IBP were elevated in human colorectal cancer specimens in comparison to normal colorectal tissues. Substantial high expression of IBP was observed in colorectal cancer tissues (67%), whereas corresponding normal tissues and 15 adenoma tissues showed consistently absent immunoreactivity of IBP. Moreover, IBP expression is correlated with the differentiation level of colorectal cancer cells (p<0.05) and clinical stage of patients (p<0.01). CONCLUSIONS Our data show, for the first time, a dysregulated expression of IBP in human colorectal cancer, offering new perspectives for its role in cancer development and progression. IBP may be a novel tumor marker and a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Zhujun Zhang
- Department of Clinical Biochemistry, Laboratory Science, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Recent work has implicated a novel Th effector cell subset, the Th17 cell subset, in the development of both rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) because of the ability of Th17 cells to produce cytokines like IL-17 and IL-21 that can drive both inflammatory and humoral responses. In this review, we will discuss recent studies that have begun elucidating the factors that regulate the development of Th17 cells and provide a brief overview of the role of Th17 cells in RA and SLE.
Collapse
Affiliation(s)
- A B Pernis
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
47
|
Mehta H, Glogauer M, Bécart S, Altman A, Coggeshall KM. Adaptor protein SLAT modulates Fcgamma receptor-mediated phagocytosis in murine macrophages. J Biol Chem 2009; 284:11882-91. [PMID: 19251698 PMCID: PMC2673257 DOI: 10.1074/jbc.m809712200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 02/18/2009] [Indexed: 12/19/2022] Open
Abstract
SLAT (SWAP-70-like adaptor protein of T cells) is an adaptor protein expressed in cells of the hematopoietic system. SLAT interacts with and alters the function of small GTPase Rac1 in fibroblasts. In these nonhematopoietic models, the SLAT-Rac interaction leads to changes in F-actin and causes cytoskeletal reorganization. In T cells, SLAT expression regulates the development of T helper cells through Cdc42- and Rac1-mediated activation of the NF-AT transcription factor. Here we show that SLAT is expressed in macrophages. Overexpression of SLAT in a macrophage cell line inhibits the IgG Fcgamma receptor-mediated phagocytic ability of THP1 cells. In bone marrow-derived macrophages, SLAT protein is recruited to the early phagosomes formed via Fcgamma receptor engagement. SLAT recruitment to the phagosome was most efficient when the macrophages express at least one isoform of Rac (Rac1 or Rac2), because SLAT recruitment was reduced in macrophages of Rac-deficient mice. Macrophages derived from animals lacking SLAT show an elevation in the rate of Fcgamma receptor-mediated phagocytosis. The absence of SLAT is associated with an increase in the amount of F-actin formed around these phagosomes as well as an increase in the amount of Rac1 protein recruited to the phagosome. Our results suggest that SLAT acts as a gatekeeper for the amount of Rac recruited to the phagosomes formed by Fcgamma receptor engagement and thus is able to regulate F-actin re-organization and consequently phagocytosis.
Collapse
Affiliation(s)
- Harshini Mehta
- Program in Immunobiology and Cancer, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
48
|
Li P, Zhang Z, Wang Q, Li S, Zhang Y, Bian X, Chen A, Hu C. The ectopic expression of IFN regulatory factor 4-binding protein is correlated with the malignant behavior of human breast cancer cells. Int Immunopharmacol 2009; 9:1002-9. [PMID: 19393345 DOI: 10.1016/j.intimp.2009.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 04/01/2009] [Accepted: 04/15/2009] [Indexed: 01/22/2023]
Abstract
Many proteins that are aberrantly expressed in malignant tumors play important roles in promoting tumorigenesis, metastasis and immune escape. IFN regulatory factor 4-binding protein (IBP), which is a novel PH-DH-like protein related to SWAP-70, and functions as an upstream activator of Rho GTPases. It is widely expressed in cells of the immune system and is involved in coupling activated cell receptors to downstream signaling events that mediate cell proliferation, differentiation and polarization. Although IBP was detected in human chondrosarcoma, its function in tumor cells remains unknown. In this study, newly generated monoclonal anti-IBP antibodies were employed and they detected higher level expression of IBP in some human invasive breast carcinoma tissues and in two breast cancer cell lines that form highly invasive tumors in nude mice. In contrast, the levels of IBP mRNA and protein were low or undetectable in normal human breast tissues, benign breast lesions or low-tumorigenic breast cancer cell lines. Over-expression of wild-type IBP in an IBP-negative breast cancer cell line markedly increased its proliferation and invasiveness in vitro. Conversely, RNA interference-mediated knockdown of IBP expression in an IBP-positive breast cancer cell line significantly reduced cell growth and invasiveness. Our results indicate that IBP is expressed in more highly invasive human breast cancer cells, such as MCF-7 and MDA-MB-231, with lower expression in normal breast tissue, benign tumors and less aggressive breast cancer cells, such as SKBR3 and MDA-MB-453. Thus, expression of IBP is correlated with the degree of malignant breast tumors. Nevertheless, it should be pointed our that further study with more tumor types is required to fully elucidate the role of IBP in tumorigenesis and the potential of IBP as a marker for more highly malignant tumors.
Collapse
Affiliation(s)
- Peng Li
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Farkas B, Boldizsar F, Tarjanyi O, Laszlo A, Lin SM, Hutas G, Tryniszewska B, Mangold A, Nagyeri G, Rosenzweig HL, Finnegan A, Mikecz K, Glant TT. BALB/c mice genetically susceptible to proteoglycan-induced arthritis and spondylitis show colony-dependent differences in disease penetrance. Arthritis Res Ther 2009; 11:R21. [PMID: 19220900 PMCID: PMC2688253 DOI: 10.1186/ar2613] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/31/2009] [Accepted: 02/16/2009] [Indexed: 02/06/2023] Open
Abstract
Introduction The major histocompatibility complex (H-2d) and non-major histocompatibility complex genetic backgrounds make the BALB/c strain highly susceptible to inflammatory arthritis and spondylitis. Although different BALB/c colonies develop proteoglycan-induced arthritis and proteoglycan-induced spondylitis in response to immunization with human cartilage proteoglycan, they show significant differences in disease penetrance despite being maintained by the same vendor at either the same or a different location. Methods BALB/c female mice (24 to 26 weeks old after 4 weeks of acclimatization) were immunized with a suboptimal dose of cartilage proteoglycan to explore even minute differences among 11 subcolonies purchased from five different vendors. In vitro-measured T-cell responses, and serum cytokines and (auto)antibodies were correlated with arthritis (and spondylitis) phenotypic scores. cDNA microarrays were also performed using spleen cells of naïve and immunized BALB/cJ and BALB/cByJ mice (both colonies from The Jackson Laboratory, Bar Harbor, ME, USA), which represent the two major BALB/c sublines. Results The 11 BALB/c colonies could be separated into high (n = 3), average (n = 6), and low (n = 2) responder groups based upon their arthritis scores. While the clinical phenotypes showed significant differences, only a few immune parameters correlated with clinical or histopathological abnormalities, and seemingly none of them affected differences found in altered clinical phenotypes (onset time, severity or incidence of arthritis, or severity and progression of spondylitis). Affymetrix assay (Affymetrix, Santa Clara, CA, USA) explored 77 differentially expressed genes (at a significant level, P < 0.05) between The Jackson Laboratory's BALB/cJ (original) and BALB/cByJ (transferred from the National Institutes of Health, Bethesda, MD, USA). Fourteen of the 77 differentially expressed genes had unknown function; 24 of 77 genes showed over twofold differences, and only 8 genes were induced by immunization, some in both colonies. Conclusions Using different subcolonies of the BALB/c strain, we can detect significant differences in arthritis phenotypes, single-nucleotide polymorphisms (SNPs), and a large number of differentially expressed genes, even in non-immunized animals. A number of the known genes (and SNPs) are associated with immune responses and/or arthritis in this genetically arthritis-prone murine strain, and a number of genes of as-yet-unknown function may affect or modify clinical phenotypes of arthritis and/or spondylitis.
Collapse
Affiliation(s)
- Balint Farkas
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 W, Harrison Street, Cohn Research Building, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Effective immune responses require the appropriate activation and differentiation of peripheral CD4(+) T cells. These processes need to be followed by the timely elimination of the responding T cells in order to restore T cell homeostasis. Defects in the appropriate regulation of T cell activation, expansion, and survival underlie the pathogenesis of many autoimmune disorders including SLE. The molecular machinery employed by T cells to properly control these processes and prevent the onset of autoimmunity has not been fully elucidated. Rho GTPases (which include the Rac, Cdc42, and Rho subfamilies) are molecular switches that control a wide range of cellular processes. Their fundamental role in biology is due to their ability to regulate both cytoskeletal dynamics and a large number of signal transduction pathways. Activation of Rho GTPases is now recognized as a key event in the coordination of immune responses and, particularly, in the activation of T cells. In this review, we will first provide an overview of the role of Rho GTPase-mediated pathways in mature CD4(+) T cells and then we will discuss recent studies, which suggest that deregulation of these pathways may play a role in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Alessandra B Pernis
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|