1
|
Zhou Y, Li XH, He LN, Wang LN, Zang J, Wang DM, Gao J, Yu XF. Combined therapy of human amnion-derived mesenchymal stem cells and scalp acupuncture alleviates brain damage in a rat model of cerebral palsy. IBRO Neurosci Rep 2025; 18:263-269. [PMID: 39935855 PMCID: PMC11810711 DOI: 10.1016/j.ibneur.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Background Cerebral palsy (CP) is a prevalent cause of physical disability in children, often resulting from hypoxic-ischemic encephalopathy, with current therapies often failing to address the underlying pathophysiology. This study aimed to investigate the potential synergistic effects of human amnion-derived mesenchymal stem cells (hAMSCs) combined with scalp acupuncture in a rat model of CP. Methods Twenty male Sprague-Dawley rats were randomly divided into four groups: Sham, CP, hAMSCs, and hAMSCs+scalp acupuncture (hAMSCs+AP). The CP model was induced via left common carotid artery ligation. hAMSCs were administered through tail vein injection, followed by scalp acupuncture at Baihui (GV20) and Qubin (GB7) points. Neurobehavioral function was assessed using the Bederson score, and brain tissues were analyzed using hematoxylin and eosin (H&E) staining, TUNEL staining, and RT-qPCR for apoptosis-related genes. Results The CP group exhibited significant neurobehavioral deficits and increased apoptosis. Both hAMSCs and hAMSCs+AP treatments improved neurobehavioral function and reduced apoptosis. The combination therapy further decreased apoptosis levels, normalized mRNA expression of Bax, Caspase 9, and Caspase 3, and alleviated histological damage. Conclusions The combination of hAMSCs and scalp acupuncture provides a promising treatment for CP, potentially alleviating brain damage through apoptosis regulation. Further studies are required to elucidate the detailed mechanisms and assess clinical feasibility and safety.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatric Rehabilitation, Huai’an Maternal and Child Health Care Hospital Affiliated to Yangzhou University Huai’an, Jiangsu 223021, China
| | - Xu-Huan Li
- Department of Orthopedics, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330003, China
| | - Lu-Na He
- Department of Pediatric Rehabilitation, Huai’an Maternal and Child Health Care Hospital Affiliated to Yangzhou University Huai’an, Jiangsu 223021, China
| | - Li-Na Wang
- Department of Pediatric Rehabilitation, Huai’an Maternal and Child Health Care Hospital Affiliated to Yangzhou University Huai’an, Jiangsu 223021, China
| | - Jing Zang
- Department of Pediatric Rehabilitation, Huai’an Maternal and Child Health Care Hospital Affiliated to Yangzhou University Huai’an, Jiangsu 223021, China
| | - Dong-Ming Wang
- Department of Pediatric Rehabilitation, Huai’an Maternal and Child Health Care Hospital Affiliated to Yangzhou University Huai’an, Jiangsu 223021, China
| | - Jing Gao
- Department of Pediatric Rehabilitation, Huai’an Maternal and Child Health Care Hospital Affiliated to Yangzhou University Huai’an, Jiangsu 223021, China
| | - Xue-feng Yu
- Department of Orthopedics, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330003, China
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China
| |
Collapse
|
2
|
Bu F, Yuan X, Cui X, Guo R. Bibliometric Analysis and Visualized Study of Research on Mesenchymal Stem Cells in Ischemic Stroke. Stem Cell Rev Rep 2025:10.1007/s12015-025-10878-9. [PMID: 40257541 DOI: 10.1007/s12015-025-10878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND One of the major global causes of death and disability is ischemic stroke (IS). Mesenchymal stem cells (MSCs) emerge as a cell-based therapy for numerous diseases. Recently, research on the role of MSCs in ischemic stroke has developed rapidly worldwide. Bibliometric analysis of MSCs for IS has not yet been published, though. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on MSCs in the field of ischemic stroke research worldwide and to identify important results, major research areas, and emerging trends. METHODS Publications related to MSCs in ischemic stroke from January 1, 2002, to December 31, 2022, were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSViewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. We employed the Total Global Citation Score (TGCS) to assess the impact of publications. RESULTS The bibliometric analysis included a total of 2,048 publications. The 1,386 papers used in this study were authored by 200 individuals across 200 organizations in 72 countries, published in 202 journals. Cesar V Borlongan published the most documents among high-productivity authors. Michael Chopp was the author with the highest average number of citations per paper, with an average paper citation time of 118.54. We found that research of MSCs in ischemic stroke developed rapidly starting in 2008. Neurosciences were the most productive journals, and Chinese researchers have produced the most research papers in this subject. The most cited article is "Systemic administration of exosomes released from mesenchymal stromal cells promotes functional recovery and neurovascular plasticity after stroke in rats". CONCLUSION This study uses both numbers and descriptions to thoroughly review the research on MSCs related to IS. This information provides valuable experience for researchers to carry out MSCs' work on IS.
Collapse
Affiliation(s)
- Fanwei Bu
- Xinxiang First People's Hospital, Xinxiang, China
| | | | - Xiaocan Cui
- Xinxiang First People's Hospital, Xinxiang, China
| | - Ruyue Guo
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
3
|
Combination of stem cell therapy and acupuncture to treat ischemic stroke: a prospective review. Stem Cell Res Ther 2022; 13:87. [PMID: 35241146 PMCID: PMC8896103 DOI: 10.1186/s13287-022-02761-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Stroke is the second leading cause globally that leads to severe disability and death. Stem cell therapy has been developed over the recent years to treat stroke and diminish the mortality and disability rate of brain injuries. Acupuncture, which can activate endogenous recovery via physical stimuli, has been applied to enhance the recovery and rehabilitation of stroke patients. Attempts have been made to combine stem cell therapy and acupuncture to treat stroke patients and have shown the promising results. This prospective review will look into the possible mechanisms of stem cell therapy and acupuncture and intend to undercover the potential benefit of the combined therapy. It intends to bridge the modern emerging stem cell therapy and traditional acupuncture at cellular and molecular levels and to demonstrate the potential benefit to improve clinical outcomes.
Collapse
|
4
|
10-O-(N N-Dimethylaminoethyl)-Ginkgolide B Methane-Sulfonate (XQ-1H) Ameliorates Cerebral Ischemia Via Suppressing Neuronal Apoptosis. J Stroke Cerebrovasc Dis 2021; 30:105987. [PMID: 34273708 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.
Collapse
|
5
|
Hung HS, Hsu SH. Surface Modification by Nanobiomaterials for Vascular Tissue Engineering Applications. Curr Med Chem 2020; 27:1634-1646. [DOI: 10.2174/0929867325666180914104633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022]
Abstract
Treatment of cardiovascular disease has achieved great success using artificial implants,
particularly synthetic-polymer made grafts. However, thrombus formation and
restenosis are the current clinical problems need to be conquered. New biomaterials, modifying
the surface of synthetic vascular grafts, have been created to improve long-term patency
for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic
or natural polymers for vascular tissue engineering. Stem cells can be seeded by different
techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the
vascular tissues. To overcome the thrombogenesis and promote the endothelialization
effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue
made and have been engineered by various approaches such as prepared as a simple surface
coating on the vascular biomaterials. It has now become an important and interesting
field to find novel approaches to better endothelization of vascular biomaterials. In this article,
we focus to review the techniques with better potential improving endothelization and summarize
for vascular biomaterial application. This review article will enable the development
of biomaterials with a high degree of originality, innovative research on novel techniques for
surface fabrication for vascular biomaterials application.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, China
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, China
| |
Collapse
|
6
|
Luo D, Chen R, Liang FX. Modulation of Acupuncture on Cell Apoptosis and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8268736. [PMID: 29279719 PMCID: PMC5723958 DOI: 10.1155/2017/8268736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Acupuncture has been historically practiced to treat medical disorders by mechanically stimulating specific acupoints. Despite its well-documented efficacy, its biological basis largely remains elusive. Recent studies suggested that cell apoptosis and autophagy might play key roles in acupuncture therapy. Therefore, we searched PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI), aiming to find the potential relationship between acupuncture and cell apoptosis and autophagy. To provide readers with objective evidence, some problems regarding the design method, acupoints selection, acupuncture intervention measure, and related diseases existing in 40 related researches were shown in this review. These findings demonstrated that acupuncture has a potential role in modulating cell apoptosis and autophagy in animal models, suggesting it as a candidate mechanism in acupuncture therapy to maintain physiologic homeostasis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Rui Chen
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Feng-xia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Traditional Chinese Medicine, No. 1 Tanhualin Street, Wuhan, Hubei 430060, China
| |
Collapse
|
7
|
Hosseini SR, Kaka G, Joghataei MT, Hooshmandi M, Sadraie SH, Yaghoobi K, Mohammadi A. Assessment of Neuroprotective Properties of Melissa officinalis in Combination With Human Umbilical Cord Blood Stem Cells After Spinal Cord Injury. ASN Neuro 2016; 8:1759091416674833. [PMID: 27815336 PMCID: PMC5098695 DOI: 10.1177/1759091416674833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION The pathophysiology of spinal cord injury (SCI) has a classically bad prognosis. It has been demonstrated that human umbilical cord blood stem cells (hUCBSCs) and Melissa officinalis (MO) are useful for the prevention of neurological disease. METHODS Thirty-six adult male rats were randomly divided into intact, sham, control (SCI), MO, hUCBSC, and MO-hUCBSC groups. Intraperitoneal injection of MO (150 mg/kg) was commenced 24 hr post-SCI and continued once a day for 14 days. Intraspinal grafting of hUCBSCs was commenced immediately in the next day. The motor and sensory functions of all animals were evaluated once a week after the commencement of SCI. Electromyography (EMG) was performed in the last day in order to measure the recruitment index. Immunohistochemistry, reverse transcription-polymerase chain reaction, and transmission electron microscopy evaluations were performed to determine the level of astrogliosis and myelination. RESULTS The results revealed that motor function (MO-hUCBSC: 15 ± 0.3, SCI: 8.2 ± 0.37, p < .001), sensory function (MO-hUCBSC: 3.57 ± 0.19, SCI: 6.38 ± 0.23, p < .001), and EMG recruitment index (MO-hUCBSC: 3.71 ± 0.18, SCI: 1.6 ± 0.1, p < .001) were significantly improved in the MO-hUCBSC group compared with SCI group. Mean cavity area (MO-hUCBSC: 0.03 ± 0.03, SCI: 0.07 ± 0.004, p < .001) was reduced and loss of lower motor neurons (MO-hUCBSC: 7.6 ± 0.43, SCI: 3 ± 0.12, p < .001) and astrogliosis density (MO-hUCBSC: 3.1 ± 0.15, SCI: 6.25 ± 1.42, p < 0.001) in the ventral horn of spinal cord were prevented in MO-hUCBSC group compared with SCI group. CONCLUSION The results revealed that the combination of MO and hUCBSCs in comparison with the control group has neuroprotective effects in SCI.
Collapse
Affiliation(s)
| | - Gholamreza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Hooshmandi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Homayoon Sadraie
- Department of Anatomy, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kayvan Yaghoobi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhang M, Pan K, Liu Q, Zhou X, Jiang T, Li Y. Growth differentiation factor 15 may protect the myocardium from no‑reflow by inhibiting the inflammatory‑like response that predominantly involves neutrophil infiltration. Mol Med Rep 2015; 13:623-32. [PMID: 26647773 PMCID: PMC4686086 DOI: 10.3892/mmr.2015.4573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
Abstract
The aim of the current study was to investigate the time course of the expression of growth differentiation factor‑15 (GDF‑15) in rat ischemic myocardium with increasing durations of reperfusion, and to elucidate its physiopathological role in the no‑reflow phenomenon. Wistar rats were randomly divided into ischemia reperfusion (I/R) and sham groups, and myocardial I/R was established by ligation of the left anterior descending coronary artery for 1 h followed by reperfusion for 2, 4, 6, 12, 24 h and 7 days whilst rats in the sham group were subjected to a sham operation. The expression levels of GDF‑15 and ICAM‑1 were measured, in addition to myeloperoxidase (MPO) activity. The myocardial anatomical no‑reflow and infarction areas were assessed. The area at risk was not significantly different following various periods of reperfusion, while the infarct area and no‑reflow area were significantly greater following 6 h of reperfusion (P<0.05). The mRNA and protein expression levels of GDF‑15 were increased during the onset and development of no‑reflow, and peaked following 24 h of reperfusion. MPO activity was reduced with increasing reperfusion duration, while ICAM‑1 levels were increased. Hematoxylin and eosin staining demonstrated that myocardial neutrophil infiltration was significantly increased by I/R injury, in particular following 2, 4 and 6 h of reperfusion. GDF‑15 expression levels were negatively correlated with MPO activity (r=‑0.55, P<0.001), and the MPO activity was negatively correlated with the area of no‑reflow (r=‑0.46, P<0.01). By contrast, GDF‑15 was significantly positively correlated with ICAM‑1 levels (r=0.52, P<0.01), which additionally were demonstrated to be significantly positively associated with the size of the no‑reflow area (r=0.39, P<0.05). The current study demonstrated the time course effect of reperfusion on the expression of GDF‑15 in the myocardial I/R rat model, with the shorter reperfusion times (6 h) resulting in significant no‑reflow in ischemic myocardium. GDF‑15 may protect the I/R myocardium from no‑reflow by inhibiting the inflammatory‑like response, which involves neutrophil infiltration and transendothelial migration.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Kunying Pan
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Qianping Liu
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Tiemin Jiang
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Yuming Li
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| |
Collapse
|