1
|
Kobayashi K, Mita H, Kebukawa Y, Nakagawa K, Kaneko T, Obayashi Y, Sato T, Yokoo T, Minematsu S, Fukuda H, Oguri Y, Yoda I, Yoshida S, Kanda K, Imai E, Yano H, Hashimoto H, Yokobori SI, Yamagishi A. Space Exposure of Amino Acids and Their Precursors during the Tanpopo Mission. ASTROBIOLOGY 2021; 21:1479-1493. [PMID: 34793260 DOI: 10.1089/ast.2021.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amino acids have been detected in extraterrestrial bodies such as carbonaceous chondrites (CCs), which suggests that extraterrestrial organics could be the source of the first life on Earth, and interplanetary dust particles (IDPs) or micrometeorites (MMs) are promising carriers of extraterrestrial organic carbon. Some amino acids found in CCs are amino acid precursors, but these have not been well characterized. The Tanpopo mission was conducted in Earth orbit from 2015 to 2019, and the stability of glycine (Gly), hydantoin (Hyd), isovaline (Ival), 5-ethyl-5-methylhydantoin (EMHyd), and complex organics formed by proton irradiation from CO, NH3, and H2O (CAW) in space were analyzed by high-performance liquid chromatography and/or gas chromatography/mass spectrometry. The target substances showed a logarithmic decomposition over 1-3 years upon space exposure. Recoveries of Gly and CAW were higher than those of Hyd, Ival, and EMHyd. Ground simulation experiments showed different results: Hyd was more stable than Gly. Solar ultraviolet light was fatal to all organics, and they required protection when carried by IDPs/MMs. Thus, complex amino acid precursors (such as CAW) were possibly more robust than simple precursors during transportation to primitive Earth. The Tanpopo 2 mission is currently being conducted to expose organics to more probable space conditions.
Collapse
Affiliation(s)
- Kensei Kobayashi
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Hajime Mita
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Higashi-ku, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Yoko Kebukawa
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Kazumichi Nakagawa
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Takeo Kaneko
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Yumiko Obayashi
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Tomohito Sato
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Takuya Yokoo
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Saaya Minematsu
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Higashi-ku, Fukuoka Institute of Technology, Fukuoka, Japan
| | | | | | - Isao Yoda
- Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Satoshi Yoshida
- National Institute for Quantum and Radiological Science and Technology, Inage-ku, Chiba, Japan
| | - Kazuhiro Kanda
- University of Hyogo, Kamigori-cho, Ako-gun, Hyogo, Japan
| | - Eiichi Imai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Investigating the biological potential of galactic cosmic ray-induced radiation-driven chemical disequilibrium in the Martian subsurface environment. Sci Rep 2020; 10:11646. [PMID: 32724041 PMCID: PMC7387464 DOI: 10.1038/s41598-020-68715-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022] Open
Abstract
There is growing evidence suggesting the presence of aqueous environment on ancient Mars, raising the question of the possibility of life in such an environment. Subsequently, with the erosion of the Martian atmosphere resulting in drastic changes in its climate, surface water disappeared, shrinking habitable spaces on the planet, with only a limited amount of water remaining near the surface in form of brines and water-ice deposits. Life, if it ever existed, would have had to adapt to harsh modern conditions, which includes low temperatures and surface pressure, and high radiation dose. Presently, there is no evidence of any biological activity on the planet's surface, however, the subsurface environment, which is yet to be explored, is less harsh, has traces of water in form of water-ice and brines, and undergoes radiation-driven redox chemistry. I hypothesize that Galactic Cosmic Ray (GCR)-induced radiation-driven chemical disequilibrium can be used for metabolic energy by extant life, and host organisms using mechanisms seen in similar chemical and radiation environments on Earth. I propose a GCR-induced radiolytic zone, and discuss the prospects of finding such life with Rosalind Franklin rover of the ExoMars mission.
Collapse
|
3
|
Kurihara H, Takano Y, Kaneko T, Obayashi Y, Kobayashi K. Stability of Amino Acids and Related Compounds in Simulated Submarine Hydrothermal Systems. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20110349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Takeo Kaneko
- Faculty of Engineering, Yokohama National University
| | | | | |
Collapse
|
4
|
Abstract
Radioactivity in the continental crust (due mainly to the isotopes 238U, 235U, 232Th and 40K), as a energy source for chemical evolution in the early Archean (between 3.5 and approximately 4 Ga bp), is reviewed. The most important radioactive source in the continental crust is due to the production and accumulation of radioactive gases within the crust voids (porosity). The study of such mechanism has allowed us to reach a deeper understanding about the nature of the radioactive source and to describe its behavior, particularly with regard to prebiotic chemical evolution. An effective total energy of 3 x 10(18) Ja-1 has been obtained for a depth of 1 km, 4 Ga ago. If a depth of 30 km is taken, the obtained value is almost equal to the UV solar energy radiation (lambda < 150 nm). Within the voids the radioactive source of the continental crust played a relevant role in prebiotic synthesis. In uranium deposits of the same age, the role of radioactivity must have been even more relevant in favoring chemical evolution.
Collapse
Affiliation(s)
- L Garzón
- Departamento de Energía, Universidad, Independencia, 13, 33004-Oviedo, Spain
| | | |
Collapse
|
5
|
Kobayashi K, Masuda H, Ushio KI, Ohashi A, Yamanashi H, Kaneko T, Takahashi JI, Hosokawa T, Hashimoto H, Saito T. Formation of bioorganic compounds in simulated planetary atmospheres by high energy particles or photons. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:207-215. [PMID: 11605633 DOI: 10.1016/s0273-1177(01)00049-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kobayashi K, Kaneko T, Saito T. Characterization of complex organic compounds formed in simulated planetary atmospheres by the action of high energy particles. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1999; 24:461-464. [PMID: 11543332 DOI: 10.1016/s0273-1177(99)00088-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A wide variety of organic compounds, which are not simple organics but also complex organics, have been found in planets and comets. We reported that complex organics was formed in simulated planetary atmospheres by the action of high energy particles. Here we characterized the experimental products by using chromatographic and mass spectrometric techniques. A gaseous mixture of CO, N2 and H2O was irradiated with high energy protons (major components of cosmic rays). Water-soluble non-volatile substances, which gave amino acids after acid-hydrolysis, were characterized by HPLC and mass spectrometry. Major part of the products were complex compounds with molecular weight of several hundreds. Amino acid precursors were produced even when no water was incorporated with the starting materials. It was suggested that complex molecules including amino acid precursors were formed not in solution from simple molecules like HCN, but directly in gaseous phase.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Japan
| | | | | |
Collapse
|
7
|
Kobayashi K, Kaneko T, Saito T, Oshima T. Amino acid formation in gas mixtures by high energy particle irradiation. ORIGINS LIFE EVOL B 1998; 28:155-65. [PMID: 11536862 DOI: 10.1023/a:1006561217063] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amino acids were formed from carbon monoxide, nitrogen and water, which are possible constituents of the primitive earth's atmosphere, by irradiation with high energy particles (components of cosmic rays). Glycine yield was proportional to the total energy deposited to the gas mixture, and its G-value was as high as 0.02 when the carbon monoxide/nitrogen ratio was 1. Based on an estimate of the effective energies of various types of energy sources available in the primitive earth's atmosphere for amino acid synthesis, it is suggested that cosmic rays were one of the most important energy sources for the synthesis of amino acids on the primitive earth.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Physical Chemistry, Yokohama National University, Japan
| | | | | | | |
Collapse
|
8
|
Abstract
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Physical Chemistry, Yokohama National University, Japan.
| |
Collapse
|