1
|
Xue B, Li YY, Zheng BFC, Zhang C, Hadiatullah H, Dai WT, Wang YJ, Fan ZC. Expression and Characterization of Recombinant Triple Laterosporulin in Chlamydomonas reinhardtii. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10523-4. [PMID: 40131641 DOI: 10.1007/s12602-025-10523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Antimicrobial peptides with broad-spectrum antibacterial properties have emerged as promising candidates for combating bacterial infections. Laterosporulin (LS), a class II bacteriocin initially isolated from Brevibacillus sp. strain GI-9, has demonstrated broad-spectrum antibacterial activity and notable biochemical characteristics. However, the limited expression levels of LS in Brevibacillus sp. GI-9 restrict its potential for large-scale production and therapeutic and food preservation applications. In this study, a triple peptide comprising three tandem repeats of LS (3 × LS), tagged with C-terminal hemagglutinin (HA) and 6 × His, was successfully expressed heterologously in Chlamydomonas reinhardtii. The purified 3 × LS-HA-6 × His effectively inhibited the growth of both Gram-positive and Gram-negative bacteria. Additionally, 3 × LS-HA-6 × His demonstrated stable antibacterial activity over a wide range of temperatures and pH values and showed significant resistance to multiple proteolytic enzymes. Furthermore, 3 × LS-HA-6 × His disrupted bacterial cell membrane integrity while exhibiting nonhemolytic activity toward rabbit erythrocytes and noncytotoxicity toward HEK293T cells. These findings underscore the potential of C. reinhardtii as a promising host for the production of bioactive and biosafe LS, providing valuable insights for the development of alternative antimicrobial strategies.
Collapse
Affiliation(s)
- Bin Xue
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Deqing, 313200, Zhejiang, China
| | - Yang-Yang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Bei-Feng-Chu Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Chan Zhang
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hadiatullah Hadiatullah
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wen-Ting Dai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Deqing, 313200, Zhejiang, China
| | - Ya-Jun Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Deqing, 313200, Zhejiang, China
| | - Zhen-Chuan Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
2
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
3
|
Walker L, Sun S, Thippareddi H. Growth comparison and model validation for growth of Shiga toxin-producing Escherichia coli (STEC) in ground beef. Lebensm Wiss Technol 2023; 182:114823. [DOI: 10.1016/j.lwt.2023.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
|
4
|
Ismael M, Wang T, Yue F, Cui Y, Yantin Q, Qayyum N, Lü X. A comparison of mining methods to extract novel bacteriocins from Lactiplantibacillus plantarum NWAFU-BIO-BS29. Anal Biochem 2023; 661:114938. [PMID: 36379249 DOI: 10.1016/j.ab.2022.114938] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022]
Abstract
One of the most important challenges in the field of food safety is producing natural and safe substances that act against pathogens in food. Bacteriocins and antimicrobial peptides (AMPs) have an anti-pathogens effect for both Gram-negative and positive bacteria. The aim of this study was to isolate and characterize safe lactic acid bacteria from traditional Chinese fermented milk that can produce anti-bacterial molecule compounds and does not harm for humans and animals. Lactiplantibacillus plantarum NWAFU-BIO-BS29 was found to be safe, lacking 16 genes for virulence factors, biogenic amine production and antibiotic resistance, and no hemolysis activity was observed. In contrast, it has ability to produce a novel potential bacteriocin of Plantaricin Bio-LP1. Precipitation of bacteriocin by Ethyl-acetate proved to be a suitable method for the extraction the bacteriocin. Whilst, the purification steps were performed as follows: the protein purification system (AKTA-Purifier equipped with HiTrap (gel column)), followed by reversed phase high-performance liquid chromatography (RP-HPLC) equipped with C18 column. In addition, LC-MS-MS and MALDI-TOF were used to identify the peptide sequences and estimate the molecular weight, respectively. Notably, among the eight peptide sequences considered, a couple of sequences have been announced as uncharacterized in protein database (FDYYFFDKK and KEIDDNSIAVK) with a molecular mass less than 1.3 kDa. The MIC was 0.552 mg/ml and exhibited high stability under various temperature, pH, and enzymes conditions. The best activity was found at temperature and pH of 4 °C and 6 °C, respectively, which are the optimal conditions for preservation of most foods. We concluded that, the described method can arouse a growing interest in mining novel bacteriocins. Plantaricin Bio-LP1 is a potentially unique bacteriocin that is effective as a bio-preservative and could make a promising contribution in food and animal feed industries or in the medical field with further clinical studies.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Sudanese Standard and Metrology Organization, Khartoum, 13573, Sudan.
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Qin Yantin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Nageena Qayyum
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Martinenghi LD, Leisner JJ. Scientists’ Assessments of Research on Lactic Acid Bacterial Bacteriocins 1990–2010. Front Microbiol 2022; 13:908336. [PMID: 35722309 PMCID: PMC9204228 DOI: 10.3389/fmicb.2022.908336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
The antimicrobial activity of bacteriocins from lactic acid bacteria has constituted a very active research field within the last 35 years. Here, we report the results of a questionnaire survey with assessments of progress within this field during the two decades of the 1990s and the 2000s by 48 scientists active at that time. The scientists had research positions at the time ranging from the levels of Master’s and Ph.D. students to principal investigators in 19 Asian, European, Oceanian and North American countries. This time period was evaluated by the respondents to have resulted in valuable progress regarding the basic science of bacteriocins, whereas this was not achieved to the same degree with regard to their applications. For the most important area of application, food biopreservation, there were some success stories, but overall the objectives had not been entirely met due to a number of issues, such as limited target spectrum, target resistance, poor yield as well as economic and regulatory challenges. Other applications of bacteriocins such as enhancers of the effects of probiotics or serving as antimicrobials in human clinical or veterinary microbiology, were not evaluated as having been implemented successfully to any large extent at the time. However, developments in genomic and chemical methodologies illustrate, together with an interest in combining bacteriocins with other antimicrobials, the current progress of the field regarding potential applications in human clinical microbiology and food biopreservation. In conclusion, this study illuminates parameters of importance not only for R&D of bacteriocins, but also for the broader field of antimicrobial research.
Collapse
|
6
|
Dewi G, Kollanoor Johny A. Lactobacillus in Food Animal Production—A Forerunner for Clean Label Prospects in Animal-Derived Products. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.831195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lactobacillus, the largest genus within the lactic acid bacteria group, has served diverse roles in improving the quality of foods for centuries. The heterogeneity within this genus has resulted in the industry's continued use of their well-known functions and exploration of novel applications. Moreover, the perceived health benefits in many applications have also made them fond favorites of consumers and researchers alike. Their familiarity lends to their utility in the growing “clean label” movement, of which consumers prefer fewer additions to the food label and opt for recognizable and naturally-derived substances. Our review primarily focuses on the historical use of lactobacilli for their antimicrobial functionality in improving preharvest safety, a critical step to validate their role as biocontrol agents and antibiotic alternatives in food animal production. We also explore their potential as candidates catering to the consumer-driven demand for more authentic, transparent, and socially responsible labeling of animal products.
Collapse
|
7
|
Fernandes A, Jobby R. Bacteriocins from lactic acid bacteria and their potential clinical applications. Appl Biochem Biotechnol 2022; 194:4377-4399. [PMID: 35290605 DOI: 10.1007/s12010-022-03870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 01/03/2023]
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides that have long been used in the food industry. Being a highly diverse and heterogeneous group of molecules the classification is ever-evolving. Their production is widespread among bacteria; nevertheless, their biosynthesis and mode of action remain fairly similar. With the advances in drug resistance mechanisms, it is important to look for alternatives to conventional approaches. Therefore, the advantages of bacteriocin over antibiotics need to be considered to provide a scientific basis for their use. Particularly in the last decade, intensive studies look at their potential as next-generation therapeutics against drug-resistant bacteria. Bacteriocins from lactic acid bacteria are being tested as controlling agents for bacterial and viral infections; they can inhibit biofilm synthesis and have potential as contraceptives. Bioengineered peptides have shown enhanced activity and thereby indicate the lack of knowledge we possess regarding these bacteriocins. In this review, we have listed various Gram-positive LAB bacteriocins with their synthesis and mechanism of action. Recent developments in screening and purification technologies have been analyzed with an emphasis on their potential clinical applications. Although extensive research has been done to identify multifunctional bacteriocins, it is important to focus on the mechanism of action of these peptides to get them from bench to bedside.
Collapse
Affiliation(s)
- Abigail Fernandes
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India. .,Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India.
| |
Collapse
|
8
|
Zhao D, Wang Q, Lu F, Bie X, Zhao H, Lu Z, Lu Y. A Novel Class IIb Bacteriocin-Plantaricin EmF Effectively Inhibits Listeria monocytogenes and Extends the Shelf Life of Beef in Combination with Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2187-2196. [PMID: 35019260 DOI: 10.1021/acs.jafc.1c06269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plantaricin EmF separated and identified from L. plantarum 163 was a novel class IIb bacteriocin. The molecular masses of plantaricin Em and F were 1638 and 3702 Da, respectively, with amino acid sequences FNRGGYNFGKSVRH and VFHAYSARGVRNNYKSAVGPADWVISAVRGFIHG, respectively. Plantaricin EmF not only exhibited broad-pH adaptability and thermostability but also showed high efficiency and broad-spectrum antibacterial activity. Its mode of action on L. monocytogenes damaged cell membrane integrity, resulting in the leakage of cytoplasm, changes in cell structure and morphology, and ultimately cell death. Additionally, plantaricin EmF inactivated L. monocytogenes in beef, effectively improving the quality indices of beef, thereby extending its shelf life, especially in combination with chitosan. Plantaricin EmF + 1.0% chitosan extended the shelf life of beef to 15 d, demonstrating its potential application value to replace chemical preservatives to control food-borne pathogenic microorganisms and extend the shelf life of meat and meat products in agriculture and the food industry.
Collapse
Affiliation(s)
- Deyin Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
9
|
LAMBERTI MÓNICAFTORREZ, LÓPEZ FABIÁNE, PESCARETTI MARÍADELASMERCEDES, DELGADO MÓNICAA. Characterization of a bacteriocin produced by a clinical isolate of Shigella flexneri 2. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220200982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - FABIÁN E. LÓPEZ
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Argentina; Universidad Nacional de Chilecito (UNdeC), Argentina
| | | | - MÓNICA A. DELGADO
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Argentina
| |
Collapse
|
10
|
Yuliana T, Hayati F, Rialita T, Cahyana Y. Partial Purification of Bacteriocin from Lactobacillus pentosus Strain 124-2 Isolated from "Dadih". Pak J Biol Sci 2022; 25:796-802. [PMID: 36098081 DOI: 10.3923/pjbs.2022.796.802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> Preservation using antimicrobials has been observed to inhibit the growth of pathogenic bacteria in food. Nowadays many people choose food preservatives that are safe for health and natural. Bacteriocins as food preservatives are safe because antimicrobials from the antimicrobial peptide group include GRAS (Generally Recognized As Safe). Bacteriocin-producing LAB can be found in various fermented foods, one of which is "Dadih". Bacteriocins are expected to inhibit the growth of pathogenic bacteria so that they can be developed as an alternative to food preservatives. <b>Materials and Methods:</b> In this study, all experiments were performed with two replicates and the results were expressed as Mean±Standard Deviation (SD). <b>Results:</b> Screening results showed that the DK8 isolate had the highest antimicrobial activity. The DK8 isolate was identified molecularly using 16s RNA sequencing, showing that the DK8 isolate had the highest similarity to <i>Lactobacillus pentosus</i> strain 124-2. Bacteriocins from DK8 isolate and partially purified using ammonium sulfate precipitation at concentrations of 50, 60 and 70%. The addition of ammonium sulfate with a concentration of 50% showed the highest antimicrobial activity against <i>Salmonella</i> sp. (12.63 mm) and <i>Escherichia coli</i> (11.33 mm) while the highest antimicrobial activity against <i>Staphylococcus aureus</i> was the addition of 60% ammonium sulfate (8.13 mm). <b>Conclusion:</b> Lactic acid bacteria isolate was identified to have the highest similarity with <i>Lactobacillus pentosus</i> strain 124-2 and precipitation using 50% ammonium sulfate showed the highest antimicrobial activity.
Collapse
|
11
|
Alves da Costa Ribeiro Quintans IL, Alves da Costa Ribeiro Souza J, Deyholos MK. Orbitides and free polyamines have similarly limited fungicidal activity against three common pathogens of flax in vitro. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fusarium oxysporum f. sp. lini and Septoria linicola are causes of fusarium wilt and pasmo in flax ( Linum usitatissimum). Members of a third fungal genus, Alternaria spp., have also been found in fiber and linseed varieties of flax, and are a source of post-harvest spoilage and mycotoxins in a wide range of crops. We performed a microdilution assay and calculated the median effective concentration (EC50) to compare the potency of cyclolinopeptides (CLPs), two polyamines (spermidine and spermine), and the fungicide carbendazimin in the control of three fungi that have potential pathogenic activity ( F. oxysporum, S. linicola, and Alternaria spp), of which the first two are particulary significant causes of disease in flax. For carbendazim, all EC50 values were <0.6 μg/mL. The observed EC50 ranged from 111 to 340 μg/mL for a mixture of six unique CLPs, 109 to 778 μg/mL for spermine, and 21 to 272 μg/mL for spermidine. Spermidine was most effective against Alternaria sp., with an EC50 of 21 μg/mL. The results presented here showed that polyamines and CLPs possess limited antifungal activities against several fungi, with spermidines the most effective naturally occurring compound tested. Our findings do not support the hypothesis that CLPs act as potent antifungals against the three species of pathogens tested.
Collapse
Affiliation(s)
| | | | - Michael K Deyholos
- IK Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
12
|
Kawahara A, Murakami C, Hayashi R, Zendo T, Matsusaki H. Characterization of multiple bacteriocin-producing Lactiplantibacillus plantarum PUK6 isolated from misozuke-tofu. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ai Kawahara
- Division of Food and Health Environmental Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto
| | - Chiaki Murakami
- Division of Food and Health Environmental Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto
| | - Riho Hayashi
- Division of Food and Health Environmental Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto
| | - Takeshi Zendo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Hiromi Matsusaki
- Division of Food and Health Environmental Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto
| |
Collapse
|
13
|
Molecular Dynamics Insight into the Lipid II Recognition by Type A Lantibiotics: Nisin, Epidermin, and Gallidermin. MICROMACHINES 2021; 12:mi12101169. [PMID: 34683220 PMCID: PMC8538299 DOI: 10.3390/mi12101169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/21/2023]
Abstract
Lanthionine-containing peptides (lantibiotics) have been considered as pharmaceutical candidates for decades, although their clinical application has been restricted. Most lantibiotics kill bacteria via targeting and segregating of the cell wall precursor—membrane-inserted lipid II molecule—in some cases accompanied by pores formation. Nisin-like lantibiotics specifically bind to pyrophosphate (PPi) moiety of lipid II with their structurally similar N-terminal thioether rings A and B. Although possessing higher pore-forming capability, nisin, in some cases, is 10-fold less efficient in vivo as compared to related epidermin and gallidermin peptides, differing just in a few amino acid residues within their target-binding regions. Here, using molecular dynamics simulations, we investigated atomistic details of intermolecular interactions between the truncated analogues of these peptides (residues 1–12) and lipid II mimic (dimethyl pyrophosphate, DMPPi). The peptides adopt similar conformation upon DMPPi binding with backbone amide protons orienting into a single center capturing PPi moiety via simultaneous formation of up to seven hydrogen bonds. Epidermin and gallidermin adopt the complex-forming conformation twice as frequent as nisin does, enhancing the binding by the lysine 4 side chain. Introduction of the similar residue to nisin in silico improves the binding, providing ideas for further design of prototypic antibiotics.
Collapse
|
14
|
Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nat Microbiol 2021; 6:1118-1128. [PMID: 34446927 DOI: 10.1038/s41564-021-00952-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Environmental bacteria, such as Streptomyces spp., produce specialized metabolites that are potent antibiotics and therapeutics. Selected specialized antimicrobials are co-produced and function together synergistically. Co-produced antimicrobials comprise multiple chemical classes and are produced by a wide variety of bacteria in different environmental niches, suggesting that their combined functions are ecologically important. Here, we highlight the exquisite mechanisms that underlie the simultaneous production and functional synergy of 16 sets of co-produced antimicrobials. To date, antibiotic and antifungal discovery has focused mainly on single molecules, but we propose that methods to target co-produced antimicrobials could widen the scope and applications of discovery programs.
Collapse
|
15
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Dai M, Li Y, Xu L, Wu D, Zhou Q, Li P, Gu Q. A Novel Bacteriocin From Lactobacillus Pentosus ZFM94 and Its Antibacterial Mode of Action. Front Nutr 2021; 8:710862. [PMID: 34368212 PMCID: PMC8342802 DOI: 10.3389/fnut.2021.710862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Bacteriocins are bioactive antimicrobial peptides synthesized in the ribosome of numerous bacteria and released extracellularly. Pentocin ZFM94 produced by Lactobacillus pentosus (L. pentosus) ZFM94, isolated from infant feces with strong antibacterial activity, was purified by ammonium sulfate precipitation, dextran gel chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of the purified bacteriocin was 3,547.74 Da determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pentocin ZFM94 exhibited broad-spectrum antimicrobial activity against tested Gram-positive and Gram-negative bacteria, and the minimal inhibitory concentrations (MICs) of Micrococcus luteus (M. luteus) 10,209, Staphylococcus aureus (S. aureus) D48, and Escherichia coli (E. coli) DH5α were 1.75, 2.00, and 2.50 μm, respectively. Pentocin ZFM94 was heat-stable (30 min at 80°C) and showed inhibitory activity over a wide pH range (5.00–7.00). It could be degraded by trypsin and pepsin, but not by amylase, lysozyme, lipase, and ribonuclease A. Fluorescence leakage assay showed that pentocin ZFM94 induced disruption of the cell membrane and caused leakage of cellular content. Furthermore, lipid II was not an antibacterial target of pentocin ZFM94. This study laid the foundation for further development and utilization of L. pentosus ZFM94 and its bacteriocin.
Collapse
Affiliation(s)
- Mengdi Dai
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanran Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Luyao Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Danli Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
17
|
Plantaricin NC8 αβ prevents Staphylococcus aureus-mediated cytotoxicity and inflammatory responses of human keratinocytes. Sci Rep 2021; 11:12514. [PMID: 34131160 PMCID: PMC8206081 DOI: 10.1038/s41598-021-91682-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance bacteria constitue an increasing global health problem and the development of novel therapeutic strategies to face this challenge is urgent. Antimicrobial peptides have been proven as potent agents against pathogenic bacteria shown by promising in vitro results. The aim of this study was to characterize the antimicrobial effects of PLNC8 αβ on cell signaling pathways and inflammatory responses of human keratinocytes infected with S. aureus. PLNC8 αβ did not affect the viability of human keratinocytes but upregulated several cytokines (IL-1β, IL-6, CXCL8), MMPs (MMP1, MMP2, MMP9, MMP10) and growth factors (VEGF and PDGF-AA), which are essential in cell regeneration. S. aureus induced the expression of several inflammatory mediators at the gene and protein level and PLNC8 αβ was able to significantly suppress these effects. Intracellular signaling events involved primarily c-Jun via JNK, c-Fos and NFκB, suggesting their essential role in the initiation of inflammatory responses in human keratinocytes. PLNC8 αβ was shown to modulate early keratinocyte responses, without affecting their viability. The peptides have high selectivity towards S. aureus and were efficient at eliminating the bacteria and counteracting their inflammatory and cytotoxic effects, alone and in combination with low concentrations of gentamicin. We propose that PLNC8 αβ may be developed to combat infections caused by Staphylococcus spp.
Collapse
|
18
|
Huang L, Goda HA, Abdel-Hamid M, Renye Jr JA, Yang P, Huang Z, Zeng QK, Li L. Partial characterization of probiotic lactic acid bacteria isolated from Chinese dairy products. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1900233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Li Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Hanan A. Goda
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud Abdel-Hamid
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - John A. Renye Jr
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, USA
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Zizhen Huang
- Guangxi Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Nanning, China
| | - Qing-Kun Zeng
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
19
|
Kloosterman AM, Cimermancic P, Elsayed SS, Du C, Hadjithomas M, Donia MS, Fischbach MA, van Wezel GP, Medema MH. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. PLoS Biol 2020; 18:e3001026. [PMID: 33351797 PMCID: PMC7794033 DOI: 10.1371/journal.pbio.3001026] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/08/2021] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria. This study shows that decRiPPter, an innovative algorithmic approach using pan-genomics and machine learning, can discover novel types of ribosomally synthesized peptide (RIPP) natural products, including a new class of lanthipeptides.
Collapse
Affiliation(s)
| | - Peter Cimermancic
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Chao Du
- Institute of Biology, Leiden University, the Netherlands
| | | | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, NJ, United States of America
| | | | - Gilles P. van Wezel
- Institute of Biology, Leiden University, the Netherlands
- Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, the Netherlands
- * E-mail: (GPvW); (MHM)
| | - Marnix H. Medema
- Bioinformatics group, Wageningen University, the Netherlands
- * E-mail: (GPvW); (MHM)
| |
Collapse
|
20
|
Yuliana T, Hayati F, Cahyana Y, Rialita T, Mardawati E, Harahap BM, Safitri R. Indigenous Bacteriocin of Lactic Acid Bacteria from "Dadih" a Fermented Buffalo Milk from West Sumatra, Indonesia as Chicken Meat Preservative. Pak J Biol Sci 2020; 23:1572-1580. [PMID: 33274889 DOI: 10.3923/pjbs.2020.1572.1580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The bacteriocin isolated from fermented buffalo milk from West Sumatra-Indonesia, called Dadih, can be considered as a natural and safe antimicrobial compound for food products. The objective of this research was to evaluate the antimicrobial activity of bacteriocin from Dadih and its effectiveness as a preservative in chicken meat. MATERIALS AND METHODS This study used experimental method followed by statistical analysis using 3 experiments with duplication including experiment of meat samples (0 and 10% bacteriocin), storage temperatures (7 and 26°C) and storage duration (0, 1, 2, 3, 4, 5, 6 days and 0, 6, 12 hrs). Each experiment consists of a bacteriocin test, antimicrobial activity assay, physicochemical measurement and storability. RESULTS From 10 LAB isolates successfully obtained from Dadih, two isolates with D7 code and D10 code had the highest antimicrobial activity, reaching 11.75 mm and 12 mm, respectively. The meat treated by 10% of bacteriocin gave the lower total microbial (3rd and 5th day) and total E. coli (5th day) at 7 and 26°C. The pH and water activity (aw) values of chicken meat with 10% of bacteriocin showed lower values at 7 and 26°C. The application of bacteriocin to chicken meat was able to inhibit the microbial growth that was still below standard for 3 days at 7°C and 6 hrs at 26°C. CONCLUSION Based on research, lactic acid bacteria isolated from buffalo milk curd produced bacteriocin compound which has antimicrobial properties. This bacteriocin showed potential as a natural preservative for chicken meat by inhibiting the growth of pathogen microorganisms.
Collapse
|
21
|
Expression of Hybrid Peptide EF-1 in Pichia pastoris, Its Purification, and Antimicrobial Characterization. Molecules 2020; 25:molecules25235538. [PMID: 33255863 PMCID: PMC7728367 DOI: 10.3390/molecules25235538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
EF-1 is a novel peptide derived from two bacteriocins, plantaricin E and plantaricin F. It has a strong antibacterial activity against Escherichia coli and with negligible hemolytic effect on red blood cells. However, the chemical synthesis of EF-1 is limited by its high cost. In this study, we established a heterologous expression of EF-1 in Pichia pastoris. The transgenic strain successfully expressed hybrid EF-1 peptide, which had a molecular weight of ~5 kDa as expected. The recombinant EF-1 was purified by Ni2+ affinity chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), which achieved a yield of 32.65 mg/L with a purity of 94.9%. The purified EF-1 exhibited strong antimicrobial and bactericidal activities against both Gram-positive and -negative bacteria. Furthermore, propidium iodide staining and scanning electron microscopy revealed that EF-1 can directly induce cell membrane permeabilization of E. coli. Therefore, the hybrid EF-1 not only preserves the individual properties of the parent peptides, but also acquires the ability to disrupt Gram-negative bacterial membrane. Meanwhile, such an expression system can reduce both the time and cost for large-scale peptide production, which ensures its potential application at the industrial level.
Collapse
|
22
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
|
24
|
THE USE OF NON-TRADITIONAL RAW MATERIALS AT MAKING SOUR-MILK PRODUCTS. EUREKA: LIFE SCIENCES 2020. [DOI: 10.21303/2504-5695.2020.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The results of using flour of sprouted soya and chickpea at making sour-milk products, based on goat milk, are presented. The object of the study is sour milk products, based on goat milk with using flour of sprouted leguminous, enriched with iodine and selenium with the associated use of acidophilic baccilus Lactobacillus acidophilus and bifidobacteria Bifidobacterium lactis.
One of today problems is a deficiency of iodine and selenium, coming to the human organism with food in organically available forms. In this connection the development of new sour-milk products that are carriers of organic forms of microelements with organoleptic characteristics, usual for consumers, is an important task. At the research the dependence of changes of organoleptic parameters of sour-milk product quality has been established.
It has been determined, that it is expedient to use flour, enriched with iodine and selenium in amount 2 % of the sour-milk product mass. Introduction of the aforesaid amount of flour in a sour-milk product favors the improvement of organoleptic parameters and gives developed products a special dietetic destination. At consuming 100 g of a sour-milk vegetable product, 16.8 and 24.5 % of the daily need in iodine and selenium (respectively) is covered.
Based on the obtained results, the recipe of a sour milk product that provides the use of goat milk in amount 93 %, flour of sprouted leguminous (1:1) in amount 2 %, acidophilic bacillus Lactobacillus acidophilus and bifidobacteria Bifidobacterium lactis in amount 5 % of the product mass has been elaborated.
Comparing with analogous known methods, the offered method provides a series of advantages. The most important of them are organoleptic parameters of a ready product, usual for consumers, and its safe enrichment with iodine and selenium. It takes place at the expanse of using organic forms of microelements that excludes a possibility of accumulation in the organism
Collapse
|
25
|
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 2020; 21:387. [PMID: 32493223 PMCID: PMC7268733 DOI: 10.1186/s12864-020-06785-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lanthipeptides belong to the ribosomally synthesized and post-translationally modified peptide group of natural products and have a variety of biological activities ranging from antibiotics to antinociceptives. These peptides are cyclized through thioether crosslinks and can bear other secondary post-translational modifications. While lanthipeptide biosynthetic gene clusters can be identified by the presence of genes encoding characteristic enzymes involved in the post-translational modification process, locating the precursor peptides encoded within these clusters is challenging due to their short length and high sequence variability, which limits the high-throughput exploration of lanthipeptide biosynthesis. To address this challenge, we enhanced the predictive capabilities of Rapid ORF Description & Evaluation Online (RODEO) to identify members of all four known classes of lanthipeptides. RESULTS Using RODEO, we mined over 100,000 bacterial and archaeal genomes in the RefSeq database. We identified nearly 8500 lanthipeptide precursor peptides. These precursor peptides were identified in a broad range of bacterial phyla as well as the Euryarchaeota phylum of archaea. Bacteroidetes were found to encode a large number of these biosynthetic gene clusters, despite making up a relatively small portion of the genomes in this dataset. A number of these precursor peptides are similar to those of previously characterized lanthipeptides, but even more were not, including potential antibiotics. One such new antimicrobial lanthipeptide was purified and characterized. Additionally, examination of the biosynthetic gene clusters revealed that enzymes installing secondary post-translational modifications are more widespread than initially thought. CONCLUSION Lanthipeptide biosynthetic gene clusters are more widely distributed and the precursor peptides encoded within these clusters are more diverse than previously appreciated, demonstrating that the lanthipeptide sequence-function space remains largely underexplored.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM, 87131, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Kenton J Hetrick
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Sarah E Ackenhusen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Genetic Analysis of Mutacin B-Ny266, a Lantibiotic Active against Caries Pathogens. J Bacteriol 2020; 202:JB.00762-19. [PMID: 32229530 DOI: 10.1128/jb.00762-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriocins are ribosomally synthesized proteinaceous antibacterial peptides. They selectively interfere with the growth of other bacteria. The production and secretion of bacteriocins confer a distinct ecological advantage to the producer in competing against other bacteria that are present in the same ecological niche. Streptococcus mutans, a significant contributor to the development of dental caries, is one of the most prolific producers of bacteriocins, known as mutacins in S. mutans In this study, we characterized the locus encoding mutacin B-Ny266, a lantibiotic with a broad spectrum of activity. The chromosomal locus is composed of six predicted operon structures encoding proteins involved in regulation, antimicrobial activity, biosynthesis, modification, transport, and immunity. Mutacin B-Ny266 was purified from semisolid cultures, and two inhibitory peptides, LanA and LanA', were detected. Both peptides were highly modified. Such modifications include dehydration of serine and threonine and the formation of a C-terminal aminovinyl-cysteine (AviCys) ring. While LanA peptide alone is absolutely required for antimicrobial activity, the presence of LanA' enhanced the activity of LanA, suggesting that B-Ny266 may function as a two-peptide lantibiotic. The activation of lanAA' expression is most likely controlled by the conserved two-component system NsrRS, which is activated by LanA peptide but not by LanA'. The chromosomal locus encoding mutacin B-Ny266 was not universally conserved in all sequenced S. mutans genomes. Intriguingly, the genes encoding LanAA' peptides were restricted to the most invasive serotypes of S. mutans IMPORTANCE Although dental caries is largely preventable, it remains the most common and costly infectious disease worldwide. Caries is initiated by the presence of dental plaque biofilm that contains Streptococcus mutans, a species extensively characterized by its role in caries development and formation. S. mutans deploys an arsenal of strategies to establish itself within the oral cavity. One of them is the production of bacteriocins that confer a competitive advantage by targeting and killing closely related competitors. In this work, we found that mutacin B-Ny266 is a potent lantibiotic that is effective at killing a wide array of oral streptococci, including nearly all S. mutans strains tested. Lantibiotics produced by oral bacteria could represent a promising strategy to target caries pathogens embedded in dental plaque biofilm.
Collapse
|
27
|
Huo L, Zhao X, Acedo JZ, Estrada P, Nair SK, van der Donk WA. Characterization of a Dehydratase and Methyltransferase in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides in Lachnospiraceae. Chembiochem 2020; 21:190-199. [PMID: 31532570 PMCID: PMC6980331 DOI: 10.1002/cbic.201900483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/15/2022]
Abstract
As a result of the exponential increase in genomic data, discovery of novel ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has progressed rapidly in the past decade. The lanthipeptides are a major subset of RiPPs. Through genome mining we identified a novel lanthipeptide biosynthetic gene cluster (lah) from Lachnospiraceae bacterium C6A11, an anaerobic bacterium that is a member of the human microbiota and which is implicated in the development of host disease states such as type 2 diabetes and resistance to Clostridium difficile colonization. The lah cluster encodes at least seven putative precursor peptides and multiple post-translational modification (PTM) enzymes. Two unusual class II lanthipeptide synthetases LahM1/M2 and a substrate-tolerant S-adenosyl-l-methionine (SAM)-dependent methyltransferase LahSB are biochemically characterized in this study. We also present the crystal structure of LahSB in complex with product S-adenosylhomocysteine. This study sets the stage for further exploration of the final products of the lah pathway as well as their potential physiological functions in human/animal gut microbiota.
Collapse
Affiliation(s)
- Liujie Huo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
- State Key Laboratory for Microbial Technology (SKLMT), Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao, 266237, P. R. China
| | - Xiling Zhao
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Paola Estrada
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
28
|
Nazari M, Smith DL. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17 Characteristics and Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:916. [PMID: 32733506 PMCID: PMC7358586 DOI: 10.3389/fpls.2020.00916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/04/2020] [Indexed: 05/08/2023]
Abstract
A wide range of prokaryotes produce and excrete bacteriocins (proteins with antimicrobial activity) to reduce competition from closely related strains. Application of bacteriocins is of great importance in food industries, while little research has been focused on the agricultural potential of bacteriocins. A number of bacteriocin producing bacteria are members of the phytomicrobiome, and some strains are plant growth promoting rhizobacteria (PGPR). Thuricin 17 is a single small peptide with a molecular weight of 3.162 kDa, a subclass IId bacteriocin produced by Bacillus thuringiensis NEB17, isolated from soybean nodules. It is either cidal or static to a wide range of prokaryotes. In this way, it removes key competition from the niche space of the producer organism. B. thuringiensis NEB17 was isolated from soybean root nodules, and thus is a member of the phytomicrobiome. Interestingly, thuricin 17 is not active against a wide range of rhizobial strains involved in symbiotic nitrogen fixation with legumes or against other PGPR. In addition, it stimulates plant growth, particularly in the presence of abiotic stresses. The stresses it assists with include key ones associated with climate change (drought, high temperature, and soil salinity). Hence, in the presence of stress, it increases the size of the overall niche space, within plant roots, for B. thuringiensis NEB17. Through its anti-microbial activity, it could also enhance plant growth via control of specific plant pathogens. None of the isolated bacteriocins have been examined as broadly as thuricin 17 on plant growth promotion. Thus, this review focuses on the effect of thuricin 17 as a microbe to plant signal that assists crop plants in managing stress and making agricultural systems more climate change resilient.
Collapse
|
29
|
Abdulhussain Kareem R, Razavi SH. Plantaricin bacteriocins: As safe alternative antimicrobial peptides in food preservation—A review. J Food Saf 2019. [DOI: 10.1111/jfs.12735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raghda Abdulhussain Kareem
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and TechnologyUniversity of Tehran Karaj Iran
| | - Seyed Hadi Razavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and TechnologyUniversity of Tehran Karaj Iran
| |
Collapse
|
30
|
Xu Y, Yang L, Li P, Gu Q. Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expr Purif 2019; 159:10-16. [DOI: 10.1016/j.pep.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
|
31
|
Qin Y, Wang Y, He Y, Zhang Y, She Q, Chai Y, Li P, Shang Q. Characterization of Subtilin L-Q11, a Novel Class I Bacteriocin Synthesized by Bacillus subtilis L-Q11 Isolated From Orchard Soil. Front Microbiol 2019; 10:484. [PMID: 30930878 PMCID: PMC6429107 DOI: 10.3389/fmicb.2019.00484] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
Bacteriocins are peptides or proteins synthesized by bacterial ribosomes that show killing or inhibitory activities against different groups of bacteria. Bacteriocins are considered potential alternatives to traditional antibiotics, preservatives in pharmaceutical and food industries. A strain L-Q11 isolated from orchard soil was phylogenetically characterized as Bacillus subtilis based on 16S rRNA gene sequencing analysis. A novel class I bacteriocin (Subtilin L-Q11), was identified and purified from L-Q11 cell-free supernatant in a four-step procedure, including salt precipitation, cation exchange, gel filtration, and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass (3,552.9 Da) of this novel bacteriocin was determined by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The purified Subtilin L-Q11 exhibited optimal features in pH tolerance, thermostability, and sensitivity to proteases. Further, Subtilin L-Q11 showed inhibitory activities against a number of bacteria including some human pathogens and food spoilage bacteria, in particular Staphylococcus aureus. All these important features make this novel bacteriocin a potential candidate for the development of a new antibacterial drug or food preservative in the future.
Collapse
Affiliation(s)
- Yuxuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China.,Department of Biology, Northeastern University, Boston, MA, United States
| | - Yao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Yinghao He
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Ying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Qianxuan She
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Qingmao Shang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides containing thioether cross-links formed through addition of a cysteine to a dehydroalanine (to form lanthionine) or to a dehydrobutyrine (to form 3-methyllanthionine). Genome sequencing of marine cyanobacteria lead to the discovery of 1.6 million open reading frames encoding lanthipeptides. In many cases, a genome encodes a single lanthipeptide synthetase, but a large number of substrates. The enzymatic modification process in Prochlorococcus MIT9313 has been reconstituted in vitro, and a variety of experimental approaches have been used to try and understand how one enzyme is capable of modifying 30 different substrates. The methods used to characterize this system will be described along with a brief genomic description of the lanthipeptide landscape found in Prochlorococcus and Synechococcus.
Collapse
|
33
|
Fisher MF, Zhang J, Taylor NL, Howard MJ, Berkowitz O, Debowski AW, Behsaz B, Whelan J, Pevzner PA, Mylne JS. A family of small, cyclic peptides buried in preproalbumin since the Eocene epoch. PLANT DIRECT 2018; 2:e00042. [PMID: 30417166 PMCID: PMC6223261 DOI: 10.1002/pld3.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Orbitides are cyclic ribosomally-synthesized and post-translationally modified peptides (RiPPs) from plants; they consist of standard amino acids arranged in an unbroken chain of peptide bonds. These cyclic peptides are stable and range in size and topologies making them potential scaffolds for peptide drugs; some display valuable biological activities. Recently two orbitides whose sequences were buried in those of seed storage albumin precursors were said to represent the first observable step in the evolution of larger and hydrophilic bicyclic peptides. Here, guided by transcriptome data, we investigated peptide extracts of 40 species specifically for the more hydrophobic orbitides and confirmed 44 peptides by tandem mass spectrometry, as well as obtaining solution structures for four of them by NMR. Acquiring transcriptomes from the phylogenetically important Corymboideae family confirmed the precursor genes for the peptides (called PawS1-Like or PawL1) are confined to the Asteroideae, a subfamily of the huge plant family Asteraceae. To be confined to the Asteroideae indicates these peptides arose during the Eocene epoch around 45 Mya. Unlike other orbitides, all PawL-derived Peptides contain an Asp residue, needed for processing by asparaginyl endopeptidase. This study has revealed what is likely to be a very large new family of orbitides, uniquely buried alongside albumin and processed by asparaginyl endopeptidase.
Collapse
Affiliation(s)
- Mark F. Fisher
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Jingjing Zhang
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Nicolas L. Taylor
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Mark J. Howard
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil SciencesSchool of Life Sciences & ARC Centre of Excellence in Plant Energy BiologyAgriBioThe Centre for AgriBioscienceLa Trobe UniversityBundooraVic.Australia
| | - Aleksandra W. Debowski
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- Marshall Centre for Infectious Disease Research and TrainingSchool of Biomedical SciencesThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Bahar Behsaz
- Department of Computer Science & EngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - James Whelan
- Department of Animal, Plant and Soil SciencesSchool of Life Sciences & ARC Centre of Excellence in Plant Energy BiologyAgriBioThe Centre for AgriBioscienceLa Trobe UniversityBundooraVic.Australia
| | - Pavel A. Pevzner
- Department of Computer Science & EngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Joshua S. Mylne
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| |
Collapse
|
34
|
Xu R, Shen Q, Wu R, Li P. Structural analysis and mucosal immune regulation of exopolysaccharide fraction from Bifidobacterium animalis RH. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1333578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Rihua Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Qian Shen
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Ruiyun Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Life Science, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Zmantar T, Ben Slama R, Fdhila K, Kouidhi B, Bakhrouf A, Chaieb K. Modulation of drug resistance and biofilm formation of Staphylococcus aureus isolated from the oral cavity of Tunisian children. Braz J Infect Dis 2016; 21:27-34. [PMID: 27916605 PMCID: PMC9425528 DOI: 10.1016/j.bjid.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/12/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aims to investigate the antimicrobial and the anti-biofilm activities of Lactobacillus plantarum extract (LPE) against a panel of oral Staphylococcus aureus (n = 9) and S. aureus ATCC 25923. The in vitro ability of LPE to modulate bacterial resistance to tetracycline, benzalchonium chloride, and chlorhexidine were tested also. Methods The minimum inhibitory concentrations (MICs) and the minimal bactericidal concentrations of Lactobacillus plantarum extract, tetracycline, benzalchonium chloride and clohrhexidine were determined in absence and in presence of a sub-MIC doses of LPE (1/2 MIC). In addition, the LPE potential to inhibit biofilm formation was assessed by microtiter plate and atomic force microscopy assays. Statistical analysis was performed on SPSS v. 17.0 software using Friedman test and Wilcoxon signed ranks test. These tests were used to assess inter-group difference (p < 0.05). Results Our results revealed that LPE exhibited a significant antimicrobial and anti-biofilm activities against the tested strains. A synergistic effect of LPEs and drug susceptibility was observed with a 2–8-fold reduction. Conclusion LPE may be considered to have resistance-modifying activity. A more detailed investigation is necessary to determine the active compound responsible for therapeutic and disinfectant modulation.
Collapse
Affiliation(s)
- Tarek Zmantar
- Faculty of Pharmacy, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Monastir University, Tunisia
| | - Rihab Ben Slama
- Faculty of Pharmacy, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Monastir University, Tunisia
| | - Kais Fdhila
- Faculty of Pharmacy, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Monastir University, Tunisia
| | - Bochra Kouidhi
- College of Applied Medical Sciences, Medical Laboratory Technology Department, Yanbu al Bahr, Taibah University, Al Madinah Al Monawarah, Saudi Arabia
| | - Amina Bakhrouf
- Faculty of Pharmacy, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Monastir University, Tunisia
| | - Kamel Chaieb
- College of Sciences, Biology Department, Yanbu al Bahr, Taibah University, Al Madinah Al Monawarah, Saudi Arabia.
| |
Collapse
|
36
|
Xin B, Zheng J, Liu H, Li J, Ruan L, Peng D, Sajid M, Sun M. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens. Front Microbiol 2016; 7:1115. [PMID: 27486447 PMCID: PMC4949975 DOI: 10.3389/fmicb.2016.01115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 12/28/2022] Open
Abstract
Due to the rapidly increasing prevalence of multidrug-resistant bacterial strains, the need for new antimicrobial drugs to treat infections has become urgent. Bacteriocins, which are antimicrobial peptides of bacterial origin, are considered potential alternatives to conventional antibiotics and have attracted widespread attention in recent years. Among these bacteriocins, lantibiotics, especially two-component lantibiotics, exhibit potent antimicrobial activity against some clinically relevant Gram-positive pathogens and have potential applications in the pharmaceutical industry. In this study, we characterized a novel two-component lantibiotic termed thusin that consists of Thsα, Thsβ, and Thsβ' (mutation of Thsβ, A14G) and that was isolated from a B. thuringiensis strain BGSC 4BT1. Thsα and Thsβ (or Thsβ') exhibit optimal antimicrobial activity at a 1:1 ratio and act sequentially to affect target cells, and they are all highly thermostable (100°C for 30 min) and pH tolerant (pH 2.0 to 9.0). Thusin shows remarkable efficacy against all tested Gram-positive bacteria and greater activities than two known lantibiotics thuricin 4A-4 and ticin A4, and one antibiotic vancomycin against various bacterial pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus (MRSA), Staphylococcus sciuri, Enterococcus faecalis, and Streptococcus pneumoniae). Moreover, thusin is also able to inhibit the outgrowth of B. cereus spores. The potent antimicrobial activity of thusin against some Gram-positive pathogens indicates that it has potential for the development of new drugs.
Collapse
Affiliation(s)
- Bingyue Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Hualin Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Junhua Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
37
|
Chen YC, Tsai TL, Ye XH, Lin TH. Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15. Cancer Biol Ther 2016; 16:1172-83. [PMID: 26147829 DOI: 10.1080/15384047.2015.1056407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The antimicrobial and anticancer activities of an antimicrobial peptide (AMP) KL15 obtained through in silico modification on the sequences of 2 previously identified bacteriocins m2163 and m2386 from Lactobacillus casei ATCC 334 by us have been studied. While significant bactericidal effect on the pathogenic bacteria Listeria, Escherichia, Bacillus, Staphylococcus, Enterococcus is exerted by KL15, the AMP can also kill 2 human adenocarcinoma cells SW480 and Caco-2 with measured IC50 as 50 μg/ml or 26.3 μM. However, the IC50 determined for KL15 on killing the normal human mammary epithelial cell H184B5F5/M10 is 150 μg/ml. The conformation of KL15 dissolved in 50% 2,2,2-trifluroroethanol or in 2 large unilamellar vesicle systems determined by circular dichroism spectroscopy appears to be helical. Further, the cell membrane permeability of treated SW480 cells by KL15 appears to be significantly enhanced as studied by both flow cytometry and confocal microscopy. As observed under a scanning electron microscope, the morphology of treated SW480 cells is also significantly changed as treating time by 80 μg/ml KL15 is increased. KL15 appears to be able to pierce the cell membrane of treated SW480 cells so that numerous porous structures are generated and observable. Therefore, KL15 is likely to kill the treated SW480 cells through the necrotic pathway similar to some recently identified AMPs by others.
Collapse
Key Words
- ABC, ATB-binding cassette
- HFFF, human foetal foreskin fibroblast
- HNSCC, head and neck squamous cell carcinoma
- HPK, histidine protein kinase
- MTT, 3-(4 5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
- PS, phospholipid phosphatidylyserine
- TFE, 2,2,2-trifluoroethanol
- anticancer
- antimicrobial
- antiproliferation
- apoptotic
- membrane permeability
- necrotic
- peptide
Collapse
Affiliation(s)
- Yu-Ching Chen
- a Institute of Molecular Medicine and Department of Life Science ; National Tsing Hua University ; HsinChu , Taiwan, R.O.C
| | | | | | | |
Collapse
|
38
|
Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci 2016; 120:118-132. [PMID: 27118166 DOI: 10.1016/j.meatsci.2016.04.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/21/2022]
Abstract
Meat and meat products have always been an important part of human diet, and contain valuable nutrients for growth and health. Nevertheless, they are perishable and susceptible to microbial contamination, leading to an increased health risk for consumers as well as to the economic loss in meat industry. The utilization of bacteriocins produced by lactic acid bacteria (LAB) as a natural preservative has received a considerable attention. Inoculation of bacteriocin-producing LAB cell as starter or protective cultures is suitable for fermented meats, whilst the direct addition of bacteriocin as food additive is more preferable when live cells of LAB could not produce bacteriocin in the real meat system. The incorporation of bacteriocins in packaging is another way to improve meat safety to avoid direct addition of bacteriocin to meat. Utilization of bacteriocins can effectively contribute to food safety, especially when integrated into hurdle concepts. In this review, LAB bacteriocins and their applications in meat and meat products are revisited. The molecular structure and characteristics of bacteriocins recently discovered, as well as exemplary properties are also discussed.
Collapse
Affiliation(s)
- Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Supaluk Sorapukdee
- Faculty of Agricultural Technology, King Mongkut's Institiute of Technology Ladkrabang (KMITL), Chalong-krung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Adisorn Swetwiwathana
- Faculty of Agro-industry, King Mongkut's Institiute of Technology Ladkrabang (KMITL), Chalong-krung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand.
| |
Collapse
|
39
|
Liu L, Li P. Complete genome sequence of Lactobacillus paraplantarum L-ZS9, a probiotic starter producing class II bacteriocins. J Biotechnol 2016; 222:15-6. [DOI: 10.1016/j.jbiotec.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
|
40
|
Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:274-80. [DOI: 10.1016/j.bbamem.2015.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/16/2015] [Accepted: 11/21/2015] [Indexed: 11/24/2022]
|
41
|
Zorič Peternel M, Čanžek Majhenič A, Holo H, Nes IF, Salehian Z, Berlec A, Rogelj I. Wide-Inhibitory Spectra Bacteriocins Produced by Lactobacillus gasseri K7. Probiotics Antimicrob Proteins 2016; 2:233-40. [PMID: 26781318 DOI: 10.1007/s12602-010-9044-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of our study was to determine the genetic characterization and classification of Lb. gasseri K7 bacteriocins, comparison with bacteriocins of the Lb. gasseri LF221 strain and other related strains. Bacteriocin-encoding genes were amplified by PCR, subjected to DNA sequencing, and BLAST sequence analysis was performed to search the database for homologous peptides. Lb. gasseri K7 produces two two-peptide bacteriocins, named gassericin K7 A and gassericin K7 B. Their nucleotide sequences were deposited at GenBank, under accession numbers EF392861 for the gassericin K7 A and AY307382 for the gassericin K7 B. Analysis of gene clusters of bacteriocins in Lb. gasseri K7 strain revealed a 100 percent sequence identity with bacteriocins in LF221 strain. An active peptide of gassericin K7 B is homologous to the complementary peptide of gassericin T, and a complementary peptide of gassericin K7 B is homologous to the active peptide of gassericin T. Another surprising finding was that the sakacin T-beta peptide is partly homologous to the active peptide of gassericin K7 A, while the other sakacin T peptide (alfa) is partly homologous to the complementary peptide of gassericin K7 B. Gassericins of Lb. gasseri K7 strain were both classified as two-peptide bacteriocins. Human probiotic strains Lb. gasseri K7 and LF221 are different isolates but with identical bacteriocin genes. They produce wide-inhibitory spectra bacteriocins that are new members of two-peptide bacteriocins with some homologies to other bacteriocins in this group. Described bacteriocins offer a great potential in applications in food industry, pharmacy and biomedicine.
Collapse
Affiliation(s)
- Metoda Zorič Peternel
- Chair of Dairy Science, Zootechnical Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Andreja Čanžek Majhenič
- Chair of Dairy Science, Zootechnical Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Helge Holo
- Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås, Norway
| | - Ingolf F Nes
- Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås, Norway
| | - Zhian Salehian
- Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås, Norway
| | - Aleš Berlec
- Department of Biotechnology, Chemistry and Biochemistry, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Irena Rogelj
- Chair of Dairy Science, Zootechnical Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
42
|
Guo X, Liu X, Pan J, Yang H. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa. Sci Rep 2015; 5:14720. [PMID: 26423356 PMCID: PMC4589682 DOI: 10.1038/srep14720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/02/2015] [Indexed: 11/08/2022] Open
Abstract
A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.
Collapse
Affiliation(s)
- Xingliang Guo
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xianglong Liu
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jianliang Pan
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Yang
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
43
|
The phosphoenolpyruvate:sugar phosphotransferase system is involved in sensitivity to the glucosylated bacteriocin sublancin. Antimicrob Agents Chemother 2015; 59:6844-54. [PMID: 26282429 DOI: 10.1128/aac.01519-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/11/2015] [Indexed: 12/25/2022] Open
Abstract
The mode of action of a group of glycosylated antimicrobial peptides known as glycocins remains to be elucidated. In the current study of one glycocin, sublancin, we identified the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Bacillus species as a key player in bacterial sensitivity. Sublancin kills several Gram-positive bacteria, such as Bacillus species and Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). Unlike other classes of bacteriocins for which the PTS is involved in their mechanism of action, we show that the addition of PTS-requiring sugars leads to increased resistance rather than increased sensitivity, suggesting that sublancin has a distinct mechanism of action. Collectively, our present mutagenesis and genomic studies demonstrate that the histidine-containing phosphocarrier protein (HPr) and domain A of enzyme II (PtsG) in particular are critical determinants for bacterial sensitivity to sublancin.
Collapse
|
44
|
Saraniya A, Jeevaratnam K. Purification and Mode of Action of Antilisterial Bacteriocins Produced by L
actobacillus pentosus
SJ65 Isolated from U
ttapam
Batter. J Food Biochem 2014. [DOI: 10.1111/jfbc.12098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Appukuttan Saraniya
- Department of Biochemistry and Molecular Biology; Pondicherry University; Kalapet Puducherry 605014 India
| | - Kadirvelu Jeevaratnam
- Department of Biochemistry and Molecular Biology; Pondicherry University; Kalapet Puducherry 605014 India
| |
Collapse
|
45
|
Dündar H, Atakay M, Çelikbıçak Ö, Salih B, Bozoğlu F. Comparison of Two Methods for Purification of Enterocin B, a Bacteriocin Produced byEnterococcus faeciumW3. Prep Biochem Biotechnol 2014; 45:796-809. [DOI: 10.1080/10826068.2014.958165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 2014; 13 Suppl 1:S3. [PMID: 25186038 PMCID: PMC4155820 DOI: 10.1186/1475-2859-13-s1-s3] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.
Collapse
Affiliation(s)
- Rodney H Perez
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
- Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
47
|
Swain MR, Anandharaj M, Ray RC, Parveen Rani R. Fermented fruits and vegetables of Asia: a potential source of probiotics. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2014; 2014:250424. [PMID: 25343046 PMCID: PMC4058509 DOI: 10.1155/2014/250424] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/30/2014] [Indexed: 11/17/2022]
Abstract
As world population increases, lactic acid fermentation is expected to become an important role in preserving fresh vegetables, fruits, and other food items for feeding humanity in developing countries. However, several fermented fruits and vegetables products (Sauerkraut, Kimchi, Gundruk, Khalpi, Sinki, etc.) have a long history in human nutrition from ancient ages and are associated with the several social aspects of different communities. Among the food items, fruits and vegetables are easily perishable commodities due to their high water activity and nutritive values. These conditions are more critical in tropical and subtropical countries which favour the growth of spoilage causing microorganisms. Lactic acid fermentation increases shelf life of fruits and vegetables and also enhances several beneficial properties, including nutritive value and flavours, and reduces toxicity. Fermented fruits and vegetables can be used as a potential source of probiotics as they harbour several lactic acid bacteria such as Lactobacillus plantarum, L. pentosus, L. brevis, L. acidophilus, L. fermentum, Leuconostoc fallax, and L. mesenteroides. As a whole, the traditionally fermented fruits and vegetables not only serve as food supplements but also attribute towards health benefits. This review aims to describe some important Asian fermented fruits and vegetables and their significance as a potential source of probiotics.
Collapse
Affiliation(s)
- Manas Ranjan Swain
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Marimuthu Anandharaj
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | | | - Rizwana Parveen Rani
- Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu 624302, India
| |
Collapse
|
48
|
Movsesyan I, Ahabekyan N, Bazukyan I, Madoyan R, Dalgalarrondo M, Chobert J, Popov Y, Haertlé T. Properties and Survival Under Simulated Gastrointestinal Conditions of Lactic Acid Bacteria Isolated from Armenian Cheeses and Matsuns. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2010.10817880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
49
|
Nigam A, Gupta D, Sharma A. Treatment of infectious disease: beyond antibiotics. Microbiol Res 2014; 169:643-51. [PMID: 24661689 DOI: 10.1016/j.micres.2014.02.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/09/2013] [Accepted: 02/23/2014] [Indexed: 11/29/2022]
Abstract
Several antibiotics have been discovered following the discovery of penicillin. These antibiotics had been helpful in treatment of infectious diseases considered dread for centuries. The advent of multiple drug resistance in microbes has posed new challenge to researchers. The scientists are now evaluating alternatives for combating infectious diseases. This review focuses on major alternatives to antibiotics on which preliminary work had been carried out. These promising anti-microbial include: phages, bacteriocins, killing factors, antibacterial activities of non-antibiotic drugs and quorum quenching.
Collapse
Affiliation(s)
- Anshul Nigam
- IPLS Building, School of Life Science, Pondicherry University, Puducherry 605014, India.
| | - Divya Gupta
- Department of Biotechnology, Mangalayatan University, Beswan, Aligarh, Uttar Pradesh 202145, India
| | - Ashwani Sharma
- Computer-Chemie-Centrum, Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| |
Collapse
|
50
|
Sharma A, Srivastava S. Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol 2014; 118:264-75. [PMID: 24528647 DOI: 10.1016/j.funbio.2013.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/12/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
The fungicidal effect of plantaricin peptides PlnE, -F, -J, and -K was studied against pathogenic yeast, Candida albicans. Dose-dependent inhibitory effect was observed by drop in cell viability, further demonstrated by measuring the fluorescence intensity of cells by exposing them to 5, (6)-carboxyfluorescein diacetate (CFDA). Live/dead staining by CFDA and propidium iodide (PI) also suggested the viability loss response. Also, the PI uptake by treated cells suggested the membrane damage. PlnJ was identified as most inhibitory among different plantaricins tested. PlnJ not only induced membrane potential dissipation but also resulted in the release of K(+). In addition, enhanced production of reactive oxygen species (ROS) was also observed by fluorometry using 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA). Dual staining with Hoechst stain and PI depicted both early apoptotic and necrotic cells in the treated population. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) positive staining further confirmed the ROS-mediated apoptosis. Scanning electron microscopy and transmission electron microscopy also revealed characteristic apoptotic features such as appearance of blebs, indentations, and wrinkling of the cell wall, discontinuity of cell membrane, undefined and damaged nuclei, and shrinkage of protoplasm. Taken together the results suggest that Pln-treatment initiate the apoptosis cell death which may lead to necrosis due to toxicity of the plantaricin peptides.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Genetics, University of Delhi, South Campus, New Delhi 110021, India.
| | - Sheela Srivastava
- Department of Genetics, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|