1
|
Parkhomenko YM, Vovk AI, Protasova ZS, Pylypchuk SY, Chorny SA, Pavlova OS, Mejenska OA, Chehovska LI, Stepanenko SP. Thiazolium salt mimics the non-coenzyme effects of vitamin B 1 in rat synaptosomes. Neurochem Int 2024; 178:105791. [PMID: 38880231 DOI: 10.1016/j.neuint.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Long-term studies have confirmed a causal relationship between the development of neurodegenerative processes and vitamin B1 (thiamine) deficiency. However, the biochemical mechanisms underlying the high neurotropic activity of thiamine are not fully understood. At the same time, there is increasing evidence that vitamin B1, in addition to its coenzyme functions, may have non-coenzyme activities that are particularly important for neurons. To elucidate which effects of vitamin B1 in neurons are due to its coenzyme function and which are due to its non-coenzyme activity, we conducted a comparative study of the effects of thiamine and its derivative, 3-decyloxycarbonylmethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride (DMHT), on selected processes in synaptosomes. The ability of DMHT to effectively compete with thiamine for binding to thiamine-binding sites on the plasma membrane of synaptosomes and to participate as a substrate in the thiamine pyrophosphokinase reaction was demonstrated. In experiments with rat brain synaptosomes, unidirectional effects of DMHT and thiamine on the activity of the pyruvate dehydrogenase complex (PDC) and on the incorporation of radiolabeled [2-14C]pyruvate into acetylcholine were demonstrated. The observed effects of thiamine and DMHT on the modulation of acetylcholine synthesis can be explained by suggesting that both compounds, which interact in cells with enzymes of thiamine metabolism, are phosphorylated and exert an inhibitory/activating effect (concentration-dependent) on PDC activity by affecting the regulatory enzymes of the complex. Such effects were not observed in the presence of structural analogues of thiamine and DMHT without a 2-hydroxyethyl substituent at position 5 of the thiazolium cycle. The effect of DMHT on the plasma membrane Ca-ATPase was similar to that of thiamine. At the same time, DMHT showed high cytostatic activity against neuroblastoma cells.
Collapse
Affiliation(s)
- Yu M Parkhomenko
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine.
| | - A I Vovk
- Department of Bioorganic Mechanisms, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, 02094, Ukraine
| | - Z S Protasova
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - S Yu Pylypchuk
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - S A Chorny
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - O S Pavlova
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - O A Mejenska
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - L I Chehovska
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - S P Stepanenko
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| |
Collapse
|
2
|
Zimatkin SM, Oganesian NA, Kiselevski YV, Deitrich RA. Acetate-dependent mechanisms of inborn tolerance to ethanol. Alcohol Alcohol 2011; 46:233-8. [PMID: 21349883 DOI: 10.1093/alcalc/agr014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To clarify the role of acetate in neurochemical mechanisms of the initial (inborn) tolerance to ethanol. METHODS Rats with low and high inborn tolerance to hypnotic effect of ethanol were used. In the brain region homogenates (frontal and parietal cortex, hypothalamus, striatum, medulla oblongata) and brain cortex synaptosomes, the levels of acetate, acetyl-CoA, acetylcholine (AcH), the activity of pyruvate dehydrogenase (PDG) and acetyl-CoA synthetase were examined. RESULTS It has been found that brain cortex of rats with high tolerance to hypnotic effect of ethanol have higher level of acetate and activity of acetyl-CoA synthetase, but lower level of acetyl-СCoA and activity of PDG. In brain cortex synaptosomes of tolerant rats, the pyruvate oxidation rate as well as the content of acetyl-CoA and AcH synthesis were lower when compared with intolerant animals. The addition of acetate into the medium significantly increased the AcH synthesis in synaptosomes of tolerant, but not of intolerant animals. Calcium ions stimulated the AcH release from synaptosomes twice as high in tolerant as in intolerant animals. Acetate eliminated the stimulating effect of calcium ions upon the release of AcH in synaptosomes of intolerant rats, but not in tolerant animals. As a result, the quantum release of AcH from synaptosomes in the presence of acetate was 6.5 times higher in tolerant when compared with intolerant rats. CONCLUSION The brain cortex of rats with high inborn tolerance to hypnotic effect of ethanol can better utilize acetate for the acetyl-CoA and AcH synthesis, as well as being resistant to inhibitory effect of acetate to calcium-stimulated release of AcH. It indicates the metabolic and cholinergic mechanisms of the initial tolerance to ethanol.
Collapse
Affiliation(s)
- Sergey M Zimatkin
- Grodno State Medical University, 80 Gorkogo Street, Grodno 230015, Belarus.
| | | | | | | |
Collapse
|
3
|
Abstract
Synthesis of [3H]acetylcholine from [3H]acetyl-L-carnitine was demonstrated in vitro by coupling the enzyme systems choline acetyltransferase and carnitine acetyltransferase. Likewise, both [3H] and [14C] labeled acetylcholine were produced when [3H]acetyl-L-carnitine and D-[U-14C] glucose were incubated with synaptosomal membrane preparations from rat brain. Transfer of the acetyl moiety from acetyl-L-carnitine to acetylcholine was dependent on concentration of acetyl-L-carnitine and required the presence of coenzyme A, which is normally produced as an inhibitory product of choline acetyltransferase. These results provide further evidence for a role of mitochondrial carnitine acetyltransferase in facilitating transfer of acetyl groups across mitochondrial membranes, thus regulating the availability in the cytoplasm of acetyl-CoA, a substrate of choline acetyltransferase. They are also consistent with a possible utility of acetyl-L-carnitine in the treatment of age-related cholinergic deficits.
Collapse
Affiliation(s)
- H L White
- Division of Pharmacology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
4
|
Sheu KF, Szabo P, Ko LW, Hinman LM. Abnormalities of pyruvate dehydrogenase complex in brain disease. Ann N Y Acad Sci 1989; 573:378-91. [PMID: 2517466 DOI: 10.1111/j.1749-6632.1989.tb15013.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K F Sheu
- Cornell University Medical College, Burke Rehabilitation Center, White Plains, New York 10605
| | | | | | | |
Collapse
|
5
|
Willoughby J, Craig FE, Harvey SA, Clark JB. 2-Oxoglutarate: oxidation and role as a potential precursor of cytosolic acetyl-CoA for the synthesis of acetylcholine in rat brain synaptosomes. J Neurochem 1989; 52:896-901. [PMID: 2493071 DOI: 10.1111/j.1471-4159.1989.tb02539.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The possibility that 2-oxoglutarate may supply acetyl units for the cytosolic synthesis of acetylcholine in rat brain synaptosomes was investigated. The contribution of [14C]2-oxoglutarate to the synaptosomal synthesis of [14C]acetylcholine was found to be negligible despite evidence for its uptake and oxidation. The activity of the enzymes NADP-isocitrate dehydrogenase (EC 1.1.1.42), aconitate hydratase (EC 4.2.1.3), and ATP citrate-lyase (EC 4.1.3.8) were measured in the synaptosol. NADP-isocitrate dehydrogenase and aconitate hydratase are present at three- to 1.5-fold higher activities than ATP citrate-lyase. It seems likely that these enzymes contribute to the metabolism of citrate and prevent detectable formation of cytosolic acetyl-CoA from exogenously added 2-oxoglutarate (or citrate). The data further suggest that ATP citrate-lyase may in part be associated with the mitochondrial fraction.
Collapse
Affiliation(s)
- J Willoughby
- Department of Biochemistry, St. Bartholomew's Hospital Medical College, University of London, England
| | | | | | | |
Collapse
|
6
|
Massarelli R, Ferret B, Sorrentino G, Hattori H, Kanfer JN. Choline acetyltransferase-like activity bound to neuronal plasma membranes. Neurochem Res 1988; 13:1193-8. [PMID: 3237311 DOI: 10.1007/bf00971638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A form of CAT-like activity was found bound present in rat brain synaptosomal membranes which could be recovered in the Triton X-114 phase. The enzyme activity was slightly activated by NaCl, had a pH maximum around 8 and showed a temperature dependence with a Q10 of 2.28. It was inhibited 100% by 10(-6) M naphthyl vinyl pyridinium but not by 10(-5) M diisopropyl phosphofluoridate. The kinetics of this bound form of CAT were similar to the soluble form of the enzyme. The Km was 405 +/- 58 microM for choline and 62 +/- 8 microM for AcCoA. Five isoelectric forms were found with pH's of 4.55, 6.05, 7.05, 7.36, and 8.00 which is in contrast to the three isoelectric forms found of the soluble enzyme in rat brain. The presence of a CAT-like activity in the plasma membrane was confirmed with experiments performed using intact synaptosomes and intact cells in culture. Acetylcholine, synthesized from radioactive AcCoA by intact rat brain synaptosomes, was recovered in the incubation medium and only in the presence of exogenous choline or when the production of choline was stimulated by oleate via the activation of phospholipase D. This was also seen in experiments with intact pheochromocytoma cell cultures (PC 12) which synthesize acetylcholine that was recovered in the incubation medium. Acetylcholine formation in the presence of choline and AcCoA was stimulated in cells that had been grown in the presence of nerve growth factor (NGF).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Massarelli
- Centre de Neurochimie du C.N.R.S., Strasbourg, France
| | | | | | | | | |
Collapse
|
7
|
Sanchez-Prieto J, Harvey SA, Clark JB. Effects of in vitro anoxia and low pH on acetylcholine release by rat brain synaptosomes. J Neurochem 1987; 48:1278-84. [PMID: 3819730 DOI: 10.1111/j.1471-4159.1987.tb05658.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acetylcholine and choline release from rat brain synaptosomes have been measured using a chemiluminescent technique under a variety of conditions set up to mimic anoxic insult, including conditions of low pH (6.2) and the presence of lactate plus pyruvate as substrate. Lactate plus pyruvate as substrate consistently gave higher respiration rates than glucose alone, but with either substrate (glucose or lactate plus pyruvate) the omission of Ca2+ caused an increase in respiration whereas a low pH caused a decreased respiration. Acetylcholine release under control conditions (glucose, pH 7.4) was Ca2+-dependent, stimulated by high K+ concentrations, and decreased significantly during anoxia but recovered fully after a period of postanoxic oxygenation. Low pH (6.2) suppressed K+ stimulation of acetylcholine release, and after a period of anoxia at low pH the recovery of acetylcholine release was only partial. With lactate plus pyruvate as substrate, the effects of anoxia and/or low pH on acetylcholine release and its subsequent recovery were exacerbated. Choline release from synaptosomes, however, was not affected by anoxic/ionic conditions in the same way as acetylcholine release. At low pH (6.2) there was a marked reduction in choline release both under aerobic and anoxic conditions. These results suggest that acetylcholine release per se from the nerve is very sensitive to anoxic insult and that the low pH occurring during anoxia may be an important contributory factor.
Collapse
|
8
|
Willoughby J, Harvey SA, Clark JB. Compartmentation and regulation of acetylcholine synthesis at the synapse. Biochem J 1986; 235:215-23. [PMID: 3091003 PMCID: PMC1146670 DOI: 10.1042/bj2350215] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acetylcholine and choline release was measured by using an automated and modified version of the chemiluminescence technique of Israel & Lesbats [(1981) Neurochem. Int. 3, 81-90]. A comparison of acetylcholine and choline release from synaptosomes demonstrated that acetylcholine release was K+-stimulated and inhibited by the Ca2+ ionophore A23187 and cyanide. Choline release, however, did not vary markedly under different conditions, suggesting that it is not associated with acetylcholine release at the nerve ending. Total acetylcholine synthesis in synaptosomal preparations was measured concurrently with the incorporation of [14C]acetyl and [3H]choline moieties by using the chemiluminescence method. Under sub-optimal glucose concentrations or in the absence of treatment of the synaptosomes with the acetylcholinesterase inhibitor phospholine, the incorporation of radioactivity exceeded total synthesis, indicating that cycling between acetylcholine and its precursors may occur. After treatment with phospholine, acetyl-group incorporation from D-[U-14C]glucose occurred without dilution of the precursor at optimal (1.0 mM) and low (0.1 mM) glucose concentrations; however, at very low (0.01 mM) glucose concentrations, dilution by a small endogenous pool occurred. [14C]Acetyl incorporation into acetylcholine was compared with various metabolic parameters. A closer correlation was observed between [14C]acetyl-group incorporation into acetylcholine and the calculated acetyl-carrier efflux from the mitochondria than with the calculated pyruvate-dehydrogenase-complex flux. The results are discussed with respect to the regulation of acetylcholine concentrations at the synapse and the mechanism whereby turnover occurs.
Collapse
|
9
|
Corthay J, Dunant Y, Eder L, Loctin F. Incorporation of acetate into acetylcholine, acetylcarnitine, and amino acids in the Torpedo electric organ. J Neurochem 1985; 45:1809-19. [PMID: 4056793 DOI: 10.1111/j.1471-4159.1985.tb10538.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The metabolism of acetate was investigated in the nerve-electroplaque system of Torpedo marmorata. In intact fragments of electric organ, radiolabeled acetate was incorporated into acetylcholine (ACh), acetylcarnitine (ACar), and three amino acids: aspartate, glutamate, and glutamine. These compounds were identified by TLC, high-voltage electrophoresis, column chromatography, and enzymic tests. The system responsible for acetate transport and incorporation into ACh displayed a higher affinity but a lower Vmax than that involved in the synthesis of ACar and amino acids. Choline, when added to the medium, increased the rate of acetate incorporation into ACh but decreased (at concentrations greater than 10(-5) M) that into ACar and amino acids. Monofluoroacetate slightly depressed ACh and ACar synthesis from external acetate but inhibited much more the synthesis of amino acids. During repetitive nerve stimulation, the level of the newly synthetized [14C]ACh was found to oscillate together with that of endogenous ACh, but the level of neither [14C]ACar nor the 14C-labeled amino acids exhibited any significant change as a function of time. This means that there is probably no periodic transfer of acetyl groups between ACh and the investigated metabolites in the course of activity. Acetate metabolism was also tested in the electric lobe (which contains the cell bodies of the neurons innervating the electric organ) and in Torpedo synaptosomes (which are nerve terminals isolated from the same neurons). Radioactive pyruvate and glutamine were also assayed in some experiments for comparison with acetate. These observations are discussed in connection with ACh metabolism under resting and active conditions in tissues where acetate is the preferred precursor of the neurotransmitter.
Collapse
|
10
|
Tucek S. Problems in the organization and control of acetylcholine synthesis in brain neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1984; 44:1-46. [PMID: 6385131 DOI: 10.1016/0079-6107(84)90011-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Harvey SA, Booth RF, Clark JB. The effect of [Ca2+] and [H+] on the functional recovery of rat brain synaptosomes from anoxic insult in vitro. Biochem J 1983; 212:289-95. [PMID: 6882373 PMCID: PMC1152046 DOI: 10.1042/bj2120289] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The energy status (as measured by the ATP/ADP ratio), oxidative metabolism (14CO2 output) and neurotransmitter synthesis ( [14C]acetylcholine production) by rat brain synaptosomes utilizing [U-14C]glucose has been studied. The ability of anoxia in vitro to permanently alter these parameters was investigated with reference to external [Ca2+] and [H+]. It has previously been shown that anoxic damage to synaptosomal preparations is only apparent when their metabolism is stimulated by veratridine [Harvey, Booth & Clark (1982) Biochem. J. 206, 433-439]. It is concluded that low [Ca2+] ameliorates, and high [H+] exacerbates, the damage sustained by veratridine-stimulated anoxic synaptosomes. The combined effects of low pH, anoxia and veratridine stimulation on synaptosomal metabolism most closely approximated to the irreversible damage to brain metabolism observed during acute hypoxia in vivo [Booth, Harvey & Clark (1983) J. Neurochem. 40, 106-110]. Suitably treated synaptosomal preparations may therefore be usefully employed as models to study impaired neurotransmitter synthesis in vivo.
Collapse
|
12
|
Choline fluxes in primary nerve cell cultures. Correlation with the endocellular metabolism of choline. Neurochem Int 1983; 5:73-9. [DOI: 10.1016/0197-0186(83)90011-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1982] [Accepted: 06/14/1982] [Indexed: 11/18/2022]
|
13
|
Rícný J, Tucek S. Acetylcoenzyme A and acetylcholine in slices of rat caudate nuclei incubated with (-)-hydroxycitrate, citrate, and EGTA. J Neurochem 1982; 39:668-73. [PMID: 6808088 DOI: 10.1111/j.1471-4159.1982.tb07944.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effects of (-)-hydroxycitrate (OHC) and citrate on the concentration of acetylcoenzyme A (acetyl-CoA) and acetylcholine (ACh) in the tissue and on the release of ACh into the medium were investigated in experiments on slices of rat caudate nuclei incubated in media with 6.2 or 31.2 mM K+, 0 or 2.5 mM Ca2+, and 0, 1, or 10 mM EGTA. OHC diminished the concentration of acetyl-CoA in the slices under all conditions used; in experiments with 2.5 mM OHC, the concentration of acetyl-CoA was lowered by 25-38%. Citrate, in contrast, had no effect on the level of acetyl-CoA in the tissue. Although both OHC and citrate lowered the concentration of ACh in the slices during incubations with 6.2 mM K+ and 1 mM EGTA, they had different effects on the content of ACh during incubations in the presence of Ca2+. The concentration of ACh in the slices was increased by citrate during incubations with 2.5 mM Ca2+ and 31.2 or 6.2 mM K+, but it was lowered or unchanged by OHC under the same conditions. The release of ACh into the medium was lowered or unchanged by OHC and lowered, unchanged, or increased by citrate. It is concluded that most effects of OHC on the metabolism of ACh can be explained by the inhibition of ATP-citrate lyase; with glucose as the main metabolic substrate, ATP-citrate lyase appears to provide about one-third of the acetyl-CoA used for the synthesis of ACh. Experiments with citrate indicate that an increased supply of citrate may increase the synthesis of ACh. The inhibitory effect of citrate on the synthesis of ACh, observed during incubations without Ca2+, is interpreted to be a consequence of the chelation of intracellular Ca2+; this interpretation is supported by the observation of a similar effect caused by 10 mM EGTA.
Collapse
|
14
|
O'Regan S. The synthesis, storage, and release of propionylcholine by the electric organ of Torpedo marmorata. J Neurochem 1982; 39:764-72. [PMID: 7097283 DOI: 10.1111/j.1471-4159.1982.tb07958.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Little is known about the specificity of the mechanisms involved in the synthesis and release of acetylcholine for the acetyl moiety. To test this, blocks of tissue from the electric organ of Torpedo were incubated with either [1-14C]acetate or [1-14C]propionate, and the synthesis, storage, and release of [14C]acetylcholine and [14C]propionylcholine were compared. To obtain equivalent amounts of the two labeled choline esters, a 50-fold higher concentration of propionate than of acetate was needed. Following subcellular fractionation, similar proportions of [14C]acetylcholine and [14C]propionylcholine were recovered with synaptosomes and with synaptic vesicles. Furthermore, both labeled choline esters were protected to a similar extent from degradation during homogenization of tissue in physiological medium, indicating that the two choline esters were equally well incorporated into synaptic vesicles. Yet depolarization of tissue blocks by 50 mM KCl released much less [14C]propionylcholine than [14C]acetylcholine. During field stimulation of the tissue blocks, the difference between the releasibility of the two choline esters was less marked, but acetylcholine was still released in preference to propionylcholine. Evidence for specificity of the release mechanism was also obtained when the release of the two choline esters in response to field stimulation was compared in tissue blocks preincubated with both [3H]choline and [14C]propionate.
Collapse
|
15
|
Szutowicz A, Srere PA, Allen CN, Crawford IL. Effects of septal lesions on enzymes of acetyl-CoA metabolism in the cholinergic system of the rat hippocampus. J Neurochem 1982; 39:458-63. [PMID: 7086427 DOI: 10.1111/j.1471-4159.1982.tb03967.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrolytic lesions made in the medial septum of the rat brain caused an 80% decrease in the activity of choline acetyltransferase and a 33% reduction in ATP-citrate lyase activity in the synaptosomal fraction from the hippocampus. Decreases in the activities of the two enzymes in the cytosol (S3) fraction were 70 and 13%, respectively. The activities of pyruvate dehydrogenase, citrate synthase, acetyl-CoA synthase, and carnitine acetyltransferase in crude hippocampal homogenates and in subcellular fractions were not affected by septal lesions. The data indicate that ATP-citrate lyase is linked to the septal-hippocampal pathway and that the enzyme is preferentially located in cholinergic nerve endings that terminate within the hippocampus.
Collapse
|
16
|
Abstract
1. The synthesis of acetylcholine (ACh) has been measured in homogenates of the sciatic nerve, normal and denervated extensor digitorum longus (e.d.l.) muscles, and central (innervated) and peripheral (non-innervated) parts of the diaphragm of the rat. The synthesis proceeded under conditions accepted as optimal for the activity of choline acetyltransferase (ChAT). In view of the finding that cardiac carnitine acetyltransferase (CarAT) is able to acetylate choline (White & Wu, 1973), the possible contribution of CarAT to the synthesis of ACh in the muscles was investigated by using bromoacetylcholine (BrACh) as an inhibitor of ChAT and bromoacetylcarnitine (BrACar) as an inhibitor of CarAT.2. BrACh at a concentration of 2 mum inhibited the synthesis of ACh in nerve homogenates by 98%, in the homogenates of normal e.d.l. muscles by 53%, in denervated e.d.l. muscles by less than 5%; in the central part of the diaphragm BrACh inhibited ACh synthesis by 65%, and in the peripheral part by 13%. Comparative inefficiency of BrACh in inhibiting the synthesis of ACh in muscle homogenates was not due to its inactivation; the inhibitory effect of BrACh on the neural synthesis of ACh was preserved in the presence of muscle homogenates.3. BrACar at a concentration of 20 mum inhibited the synthesis of ACh in homogenates of the nerve by 18%, in those of normal e.d.l. muscles by 67%, in denervated e.d.l. muscles by 90%; in the central part of the diaphragm it inhibited the synthesis by 29%, and in the peripheral part by 76%.4. The inhibitory effects of BrACh and BrACar on the synthesis of ACh in muscle homogenates were roughly additive.5. Within 2 days of transection of the sciatic nerve, the BrACh-sensitive synthesis of ACh in the e.d.l. muscle diminished by 28%, whereas the BrACh-insensitive synthesis of ACh did not change. At 4 days after denervation, the rate of BrACh-sensitive synthesis decreased to 3% of control values.6. The results indicate that at least two enzymes are responsible for the synthesis of ACh in muscle homogenates is probably catalysed by CarAT. associated with intramuscular nerves, and probably corresponds to ChAT. The other enzyme is comparatively insensitive to BrACh, is sensitive to BrACar, and is probably localized in the muscle fibres. The BrACh-insensitive and BrACar-sensitive synthesis of ACh in muscle homogenates is probably catalysed by CarAT.7. Under the conditions used in the present experiments, CarAT was responsible for approximately one half of the synthesis of ACh in the homogenates of innervated e.d.l. muscles and for all ACh synthesized after denervation.8. The results provide an explanation for earlier findings of residual ACh synthesis in homogenates of denervated muscles, without resort to the idea that ChAT is localized in muscle fibres. It is proposed that CarAT catalyses some synthesis of ACh also in intact muscles, and that it is responsible for the synthesis of ACh observed during incubation of whole denervated muscles. It is not clear what is the physiological function of the synthesis of ACh catalysed by CarAT.9. Measurements of the BrACh-sensitive portion of the total ACh-synthesizing capacity of muscle homogenates provide a suitable procedure for obtaining information about the activity of neural ChAT in the muscles.
Collapse
|
17
|
Roeder LM, Poduslo SE, Tildon JT. Utilization of ketone bodies and glucose by established neural cell lines. J Neurosci Res 1982; 8:671-82. [PMID: 7161845 DOI: 10.1002/jnr.490080412] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rates of utilization of [3-14C]-acetoacetate, [3-14C]-3-hydroxybutyrate, and [6-14C]-glucose were measured in four established cell lines from neuroblastoma of rat (B103) and mouse (N4TG1) and from rat astrocytoma (RGC6) and mouse oligodendroglia (G2620). The rates of incorporation of acetoacetate into lipid were 3-5 times higher than glucose in all cell lines. The incorporation of 3-hydroxybutyrate was similar to that of glucose. Thin-layer chromatography of the total lipid extracts showed the same relative rates of use of these substrates for synthesis of various phospholipids and neutral lipids. The rates of incorporation into neutral lipids and phosphatidylcholine were essentially linear for 12 hr; however, that into phosphatidylethanolamine was markedly higher in the second 6 hr interval than in the first. In all cases, the greatest percentage of label (35-50%) appeared in the phosphatidylcholine fraction. The distribution of label from each of the three substrates among the various lipids was similar in the glial cells, but there were marked differences in distribution of the two ketone bodies in the neuroblastoma lines. These cells also synthesized lipids that migrated to the same area on the chromatogram as cholesterol esters and free fatty acids. In three of the four cell lines the rates of oxidation were highest for glucose, intermediate for acetoacetate, and lowest for 3-hydroxybutyrate. The ratios of the rate of incorporation to the rate of oxidation were higher for ketone bodies (3.32 for 3-hydroxybutyrate and 5.29 for acetoacetate) than for glucose (0.41). This indicates that in these cells ketone bodies are directed toward lipid synthesis rather than oxidation, and glucose is preferentially used as an energy source.
Collapse
|
18
|
Benjamin AM, Quastel JH. Acetylcholine synthesis in synaptosomes: mode of transfer of mitochondrial acetyl coenzyme A. Science 1981; 213:1495-7. [PMID: 7280667 DOI: 10.1126/science.7280667] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Labeled acetylcholine derived from labeled pyruvate in a synaptosomal preparation from rat brain, incubated with nicotinamide adenine dinucleotide as well as coenzyme A, is stimulated by calcium ions in the absence but not in the presence of Triton X-100. Whereas citrate is taken up by cholinergic synaptosomes because it suppresses the formation of acetylcholine from pyruvate, it is not itself converted into acetylcholine. The evidence suggests that there is a calcium-dependent transfer of mitochondrial acetyl coenzyme A into the cholinergic synaptoplasm, which is apparently devoid of the citrate cleavage enzyme, and is there converted into acetylcholine. The permeability of the inner mitochondrial membrane to coenzyme A and acetyl coenzyme A seems to be enhanced by calcium ions, and this effect may be mediated by mitochondrial phospholipase A2.
Collapse
|
19
|
Hancox AJ, Scrimshire DA. A proposed model for the synthesis, storage and release of acetylcholine at the neuromuscular junction. JOURNAL OF BIOMEDICAL ENGINEERING 1981; 3:183-95. [PMID: 7278203 DOI: 10.1016/0141-5425(81)90068-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Tucek S, Dolezal V, Sullivan AC. Inhibition of the synthesis of acetylcholine in rat brain slices by (-)-hydroxycitrate and citrate. J Neurochem 1981; 36:1331-7. [PMID: 6790670 DOI: 10.1111/j.1471-4159.1981.tb00570.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Szutowicz A, Bielarczyk H, Lysiak W. The role of citrate derived from glucose in the acetylcholine synthesis in rat brain synaptosomes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1981; 13:887-92. [PMID: 7274536 DOI: 10.1016/0020-711x(81)90014-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Abstract
Acetylcholine synthesis in rat brain synaptosomes was investigated with regard to the intracellular sources of its two precursors, acetyl coenzyme A and choline. Investigations with alpha-cyano-4-hydroxycinnamate, an inhibitor of mitochondrial pyruvate transport, indicated that pyruvate must be utilized by pyruvate dehydrogenase located in the mitochondria, rather than in the cytoplasm, as recently proposed. Evidence for a small, intracellular pool of choline available for acetylcholine synthesis was obtained under three experimental conditions. (1) Bromopyruvate competitively inhibited high-affinity choline transport, perhaps because of accumulation of intracellular choline which was not acetylated when acetyl coenzyme A production was blocked. (2) Choline that was accumulated under high-affinity transport conditions while acetyl coenzyme A production was impaired was subsequently acetylated when acetyl coenzyme A production was resumed. (3) Newly synthesized acetylcholine had a lower specific activity than that of choline in the medium. These results indicate that the acetyl coenzyme A that is used for the synthesis of acetylcholine is derived from mitochondrial pyruvate dehydrogenase and that there is a small pool of choline within cholinergic nerve endings available for acetylcholine synthesis, supporting the proposal that the high-affinity transport and acetylation of choline are kinetically coupled.
Collapse
|
23
|
Abstract
The activities of five enzymes involved in acetyl-CoA synthesis, pyruvate dehydrogenase complex, ATP citrate lyase, carnitine acetyltransferase, acetyl-CoA synthetase, and citrate synthase, were determined in normal nucleus interpeduncularis and nucleus interpeduncularis in which cholinergic terminals were removed following lesion of the habenulointerpeduncular tract. The activities of aspartate transaminase, fumarase, and GABA transaminase also were determined to compare the effect of lesion on other mitochondrial enzymes which are not linked to the biosynthesis of ACh. In normal nucleus interpeduncularis the activities of carnitine acetyltransferase and pyruvate dehydrogenase complex were higher than the activity of ChAT (choline acetyltransferase), whereas the activities of acetyl-CoA synthetase and citrate synthase were considerably lower than that of ChAT. The effect of the lesion separated the enzymes into two groups: the activities of pyruvate dehydrogenase complex, carnitine acetyltransferase, fumarase and aspartate transaminase decreased by 30--40%, whereas the activities of the other enzymes descreased 5--15%. ChAT activity was in all cases less than 15% of normal. It could be concluded that none of the acetyl-CoA synthesizing enzymes decreased to the degree that ChAT did. Only pyruvate dehydrogenase complex and carnitine acetyltransferase seem to be localized in cholinergic terminals to a significant degree. ATP citrate lyase as well as acetyl-CoA synthetase seem to have less significance in supporting acetyl-CoA formation in cholinergic nerve terminals.
Collapse
|
24
|
Patel TB, Clark JB. Lipogenesis in the brain of suckling rats. Studies on the mechansim of mitochondrial-cytosolic carbon transfer. Biochem J 1980; 188:163-8. [PMID: 7406877 PMCID: PMC1162551 DOI: 10.1042/bj1880163] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Studies on the incorporation of [3-(14)C]pyruvate and d-3-hydroxy[3-(14)C]butyrate into the brain lipid fraction by brain homogenates of the suckling (7-day-old) rat have been carried out. 2. Whereas approximately twice as much CO(2) was evolved from pyruvate compared with 3-hydroxybutyrate metabolism, similar amounts of the radioactivity of these two precursors were incorporated into the lipid fraction. Furthermore, in both cases the incorporation into lipid was almost tripled when glucose (10mm) or NADPH (2.5mm) was added to the incubation media. 3. If 5mm-(-)-hydroxycitrate, an ATP-citrate lyase inhibitor, was added to the incubation the incorporation of carbon from pyruvate was inhibited to 39% of the control and from 3-hydroxybutyrate to 73% of the control, whereas CO(2) production from both precursors was not affected. 4. The incorporation from pyruvate or 3-hydroxybutyrate into lipids was not affected by the presence of 10mm-glutamate in the medium (to encourage N-acetylaspartate production). However, incorporation from pyruvate was inhibited by 21% in the presence of 5mm-amino-oxyacetate (a transaminase inhibitor) and by 83% in the presence of both hydroxycitrate (5mm) and amino-oxyacetate. 5. Incorporation from 3-hydroxybutyrate into brain lipids was inhibited by 20% by amino-oxyacetate alone, but by 55% in the presence of both hydroxycitrate and amino-oxyacetate. 6. It is concluded that the mechanism of carbon transfer from pyruvate into lipids across the mitochondrial membrane in the suckling rat brain is mainly via citrate and N-acetylaspartate. 3-Hydroxybutyrate, in addition to using these routes, may also be incorporated via acetoacetate formation and transport to the cytosol.
Collapse
|
25
|
Gibson GE, Shimada M. Studies on the metabolic pathway of the acetyl group for acetylcholine synthesis. Biochem Pharmacol 1980; 29:167-74. [PMID: 7362632 DOI: 10.1016/0006-2952(80)90325-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Jope RS. High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res 1979; 180:313-44. [PMID: 394816 DOI: 10.1016/0165-0173(79)90009-2] [Citation(s) in RCA: 286] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent advances made in the understanding of the regulation of acetylcholine synthesis in brain with regard to the availability of its two precursors, choline and acetylCoA. Choline availability appears to be regulated by the high affinity choline transport system. Investigations of the localization and inhibition of this system are reviewed. Procedures for measuring high affinity choline transport and their shortcomings are described. The kinetics and effects of previous in vivo and in vitro treatments on high affinity choline transport are reviewed. Kinetic and direct coupling of the transport and acetylation of choline are discussed. Recent investigations of the source of acetylCoA used for the synthesis of acetylcholine are reviewed. Three sources of acetylCoA have recently received support: citrate conversion catalyzed by citrate lyase, direct release of acetylCoA from mitochondria following its synthesis from pyruvate catalyzed by pyruvate dehydrogenase, and production of acetylCoA by cytoplasmic pyruvate dehydrogenase. Investigations indicating that acetylCoA availability may limit acetylcholine synthesis are reviewed. A model for the regulation of acetylcholine synthesis which incorporates most of the reviewed material is presented.
Collapse
|
27
|
|
28
|
Lefresne P, Beaujouan JC, Glowinski J. Origin of the acetyl moiety of acetylcholine in rat striatal synaptosomes: a specific pyruvate dehydrogenase involved in ACh synthesis? Biochimie 1978; 60:479-87. [PMID: 698287 DOI: 10.1016/s0300-9084(78)80863-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Lefresne P, Beaujouan JC, Glowinski J. Evidence for extramitochondrial pyruvate dehydrogenase involved in acetylcholine synthesis in nerve endings. Nature 1978; 274:497-500. [PMID: 672978 DOI: 10.1038/274497a0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
|
31
|
|