1
|
Copeland PR, Howard MT. Ribosome Fate during Decoding of UGA-Sec Codons. Int J Mol Sci 2021; 22:ijms222413204. [PMID: 34948001 PMCID: PMC8704476 DOI: 10.3390/ijms222413204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Decoding of genetic information into polypeptides occurs during translation, generally following the codon assignment rules of the organism's genetic code. However, recoding signals in certain mRNAs can overwrite the normal rules of translation. An exquisite example of this occurs during translation of selenoprotein mRNAs, wherein UGA codons are reassigned to encode for the 21st proteogenic amino acid, selenocysteine. In this review, we will examine what is known about the mechanisms of UGA recoding and discuss the fate of ribosomes that fail to incorporate selenocysteine.
Collapse
Affiliation(s)
- Paul R. Copeland
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Correspondence: (P.R.C.); (M.T.H.)
| | - Michael T. Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (P.R.C.); (M.T.H.)
| |
Collapse
|
2
|
Serrão VHB, Fernandes ADF, Basso LGM, Scortecci JF, Crusca Júnior E, Cornélio ML, de Souza BM, Palma MS, de Oliveira Neto M, Thiemann OH. The Specific Elongation Factor to Selenocysteine Incorporation in Escherichia coli: Unique tRNA Sec Recognition and its Interactions. J Mol Biol 2021; 433:167279. [PMID: 34624294 DOI: 10.1016/j.jmb.2021.167279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Chemistry and Biochemistry, University California - Santa Cruz, 1156 High St., Santa Cruz, CA 95060, United States
| | - Adriano de Freitas Fernandes
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil
| | - Luis Guilherme Mansor Basso
- Physical Sciences Laboratory, State University of Northern Rio de Janeiro Darcy Ribeiro - UENF, Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Faculty of Science, Philosophy and Letters, University of Sao Paulo, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Jéssica Fernandes Scortecci
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Science Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Edson Crusca Júnior
- Department of Physical Chemistry, Chemistry Institute of the São Paulo State University - UNESP, CEP 14800-900 Araraquara, SP, Brazil
| | - Marinônio Lopes Cornélio
- Physics Department, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University - UNESP, São Jose do Rio Preto, SP, Brazil
| | - Bibiana Monson de Souza
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mário Sérgio Palma
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mario de Oliveira Neto
- Bioscience Institute of Universidade Estadual Paulista, Rubião Jr., Botucatu, SP CEP 18618-000, Brazil
| | - Otavio Henrique Thiemann
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Genetics and Evolution, Federal University of São Carlos - UFSCar, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
4
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
5
|
Abstract
About 50 years ago, research on the biological function of the element selenium was initiated by the report of J. Pinsent that generation of formate dehydrogenase activity by Escherichia coli requires the presence of both selenite and molybdate in the growth medium. In nature, selenium is predominantly associated with sulfur minerals, the Se/S ratios of which vary widely depending on the geological formation. Because of the chemical similarity between the two elements, selenium can intrude into the sulfur pathway at high Se/S ratios and can be statistically incorporated into polypeptides. The central macromolecule for the synthesis and incorporation of selenocysteine is a specialized tRNA, designated tRNASec. It is the product of the selC (previously fdhC) gene. tRNASec fulfils a multitude of functions, which are based on its unique structural properties, compared to canonical elongator RNAs. tRNASec possesses the discriminator base G73 and the identity elements of serine-specific tRNA isoacceptors. The conversion of seryl-tRNASec into selenocysteyl-tRNASec is catalyzed by selenocysteine synthase, the product of the selA gene (previously the fdhA locus, which was later shown to harbor two genes, selA and selB). The crucial element for the regulation is a putative secondary structure at the 5' end of the untranslated region of the selAB mRNA. The generation and analysis of transcriptional and translational reporter gene fusions of selA and selB yield an expression pattern identical to that obtained by measuring the actual amounts of SelA and SelB proteins.
Collapse
|
6
|
Kotini SB, Peske F, Rodnina MV. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence. Nucleic Acids Res 2015; 43:6426-38. [PMID: 26040702 PMCID: PMC4513850 DOI: 10.1093/nar/gkv558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/13/2022] Open
Abstract
Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrations in the medium. RF2 is an unexpectedly poor competitor of Sec. We recapitulate the major characteristics of SECIS-dependent UGA recoding in vitro using a fragment of fdhF-mRNA encoding a natural bacterial selenoprotein. Only 40% of actively translating ribosomes that reach the UGA codon insert Sec, even in the absence of RF2, suggesting that the capacity to insert Sec into proteins is inherently limited. RF2 does not compete with the Sec incorporation machinery; rather, it terminates translation on those ribosomes that failed to incorporate Sec. The data suggest a model in which early recruitment of Sec-tRNA(Sec)-SelB-GTP to the SECIS blocks the access of RF2 to the stop codon, thereby prioritizing recoding over termination at Sec-dedicated stop codons.
Collapse
Affiliation(s)
- Suresh Babu Kotini
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
7
|
Shepherd J, Ibba M. Bacterial transfer RNAs. FEMS Microbiol Rev 2015; 39:280-300. [PMID: 25796611 DOI: 10.1093/femsre/fuv004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 11/14/2022] Open
Abstract
Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells.
Collapse
Affiliation(s)
- Jennifer Shepherd
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Paleskava A, Konevega AL, Rodnina MV. Thermodynamics of the GTP-GDP-operated conformational switch of selenocysteine-specific translation factor SelB. J Biol Chem 2012; 287:27906-12. [PMID: 22740700 PMCID: PMC3431659 DOI: 10.1074/jbc.m112.366120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/22/2012] [Indexed: 11/06/2022] Open
Abstract
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNA(Sec)) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNA(Sec) to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5'-O-(γ-thio)triphosphate (GTPγS) and guanosine 5'-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (-621, -467, -235, and -275 cal × mol(-1) × K(-1), with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15-19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form.
Collapse
Affiliation(s)
- Alena Paleskava
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey L. Konevega
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marina V. Rodnina
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Paleskava A, Konevega AL, Rodnina MV. Thermodynamic and kinetic framework of selenocysteyl-tRNASec recognition by elongation factor SelB. J Biol Chem 2009; 285:3014-20. [PMID: 19940162 DOI: 10.1074/jbc.m109.081380] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SelB is a specialized translation elongation factor that delivers selenocysteyl-tRNA(Sec) (Sec-tRNA(Sec)) to the ribosome. Here we show that Sec-tRNA(Sec) binds to SelB.GTP with an extraordinary high affinity (K(d) = 0.2 pm). The tight binding is driven enthalpically and involves the net formation of four ion pairs, three of which may involve the Sec residue. The dissociation of tRNA from the ternary complex SelB.GTP.Sec-tRNA(Sec) is very slow (0.3 h(-1)), and GTP hydrolysis accelerates the release of Sec-tRNA(Sec) by more than a million-fold (to 240 s(-1)). The affinities of Sec-tRNA(Sec) to SelB in the GDP or apoforms, or Ser-tRNA(Sec) and tRNA(Sec) to SelB in any form, are similar (K(d) = 0.5 microm). Thermodynamic coupling in binding of Sec-tRNA(Sec) and GTP to SelB ensures at the same time the specificity of Sec- versus Ser-tRNA(Sec) selection and rapid release of Sec-tRNA(Sec) from SelB after GTP cleavage on the ribosome. SelB provides an example for the evolution of a highly specialized protein-RNA complex toward recognition of unique set of identity elements. The mode of tRNA recognition by SelB is reminiscent of another specialized factor, eIF2, rather than of EF-Tu, the common delivery factor for all other aminoacyl-tRNAs, in line with a common evolutionary ancestry of SelB and eIF2.
Collapse
Affiliation(s)
- Alena Paleskava
- Department of Physical Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
10
|
Berry MJ, Howard MT. Reprogramming the Ribosome for Selenoprotein Expression: RNA Elements and Protein Factors. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-0-387-89382-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
11
|
Fischer N, Paleskava A, Gromadski KB, Konevega AL, Wahl MC, Stark H, Rodnina MV. Towards understanding selenocysteine incorporation into bacterial proteins. Biol Chem 2008; 388:1061-7. [PMID: 17937620 DOI: 10.1515/bc.2007.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In bacteria, UGA stop codons can be recoded to direct the incorporation of selenocysteine into proteins on the ribosome. Recoding requires a selenocysteine incorporation sequence (SECIS) downstream of the UGA codon, a specialized translation factor SelB, and the non-canonical Sec-tRNASec, which is formed from Ser-tRNASec by selenocysteine synthase, SelA, using selenophosphate as selenium donor. Here we describe a rapid-kinetics approach to study the mechanism of selenocysteine insertion into proteins on the ribosome. Labeling of SelB, Sec-tRNASec and other components of the translational machinery allows direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer between two fluorophores. Furthermore, the structure of SelA was studied by electron cryomicroscopy (cryo-EM). We report that intact SelA from the thermophilic bacterium Moorella thermoacetica (mthSelA) can be vitrified for cryo-EM using a controlled-environment vitrification system. Two-dimensional image analysis of vitrified mthSelA images shows that SelA can adopt the wide range of orientations required for high-resolution structure determination by cryo-EM. The results indicate that mthSelA forms a homodecamer that has a ring-like structure with five bilobed wings, similar to the structure of the E. coli complex determined previously.
Collapse
Affiliation(s)
- Niels Fischer
- 3D Electron Cryomicroscopy Group, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Leibundgut M, Frick C, Thanbichler M, Böck A, Ban N. Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors. EMBO J 2004; 24:11-22. [PMID: 15616587 PMCID: PMC544917 DOI: 10.1038/sj.emboj.7600505] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/12/2004] [Indexed: 11/08/2022] Open
Abstract
In all three kingdoms of life, SelB is a specialized translation elongation factor responsible for the cotranslational incorporation of selenocysteine into proteins by recoding of a UGA stop codon in the presence of a downstream mRNA hairpin loop. Here, we present the X-ray structures of SelB from the archaeon Methanococcus maripaludis in the apo-, GDP- and GppNHp-bound form and use mutational analysis to investigate the role of individual amino acids in its aminoacyl-binding pocket. All three SelB structures reveal an EF-Tu:GTP-like domain arrangement. Upon binding of the GTP analogue GppNHp, a conformational change of the Switch 2 region in the GTPase domain leads to the exposure of SelB residues involved in clamping the 5' phosphate of the tRNA. A conserved extended loop in domain III of SelB may be responsible for specific interactions with tRNA(Sec) and act as a ruler for measuring the extra long acceptor arm. Domain IV of SelB adopts a beta barrel fold and is flexibly tethered to domain III. The overall domain arrangement of SelB resembles a 'chalice' observed so far only for initiation factor IF2/eIF5B. In our model of SelB bound to the ribosome, domain IV points towards the 3' mRNA entrance cleft ready to interact with the downstream secondary structure element.
Collapse
Affiliation(s)
- Marc Leibundgut
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Christian Frick
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | - August Böck
- Departement Biologie I der Universität München, München, Germany
| | - Nenad Ban
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
- Institute for Molecular Biology and Biophyiscs, Swiss Federal Institute of Technology, ETH Hönggerberg, HPK Building, Zurich, Switzerland. Tel.: +41 1 633 2785; Fax: +41 1 633 1246; E-mail:
| |
Collapse
|
13
|
Thanbichler M, Böck A. Purification and characterization of hexahistidine-tagged elongation factor SelB. Protein Expr Purif 2004; 31:265-70. [PMID: 14550646 DOI: 10.1016/s1046-5928(03)00167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cotranslational incorporation of selenocysteine into proteins is mediated by a specialized elongation factor, named SelB. Its amino-terminal three domains show homology to elongation factor EF-Tu and accordingly bind GTP and selenocysteyl-tRNASec. In addition, SelB exhibits a long carboxy-terminal extension that interacts with a secondary structure of selenoprotein mRNAs (SECIS element) positioned immediately downstream of the in-frame UGA codons specifying the sites of selenocysteine insertion. In this report, a fast and efficient method for the purification of large amounts of hexahistidine-tagged SelB is presented. After two chromatographic steps, 10 mg pure protein was isolated from 12 g wet cell pellet. Biochemical analysis of the purified protein showed that the tag does not influence the interaction of SelB with guanine nucleotides, SECIS elements, and selenocysteyl-tRNASec. In addition, the fusion protein is fully functional in mediating UGA read-through in vivo. It therefore represents an excellent model for studying the function of SelB and the mechanisms of selenocysteine incorporation.
Collapse
Affiliation(s)
- Martin Thanbichler
- Department of Biology I, University of Munich, Maria-Ward-Str 1a, 80638 Munich, Germany.
| | | |
Collapse
|
14
|
Rother M, Resch A, Gardner WL, Whitman WB, Böck A. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Mol Microbiol 2001; 40:900-8. [PMID: 11401697 DOI: 10.1046/j.1365-2958.2001.02433.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous in silico analysis of selenoprotein genes in Archaea revealed that the selenocysteine insertion (SECIS) motif necessary to recode UGA with selenocysteine was not adjacent to the UGA codon as is found in Bacteria. Rather, paralogous stem-loop structures are located in the 3' untranslated region (3' UTR), reminiscent of the situation in Eukarya. To assess the function of such putative SECIS elements, the Methanococcus jannaschii MJ0029 (fruA, which encodes the A subunit of the coenzyme F420-reducing hydrogenase) mRNA was mapped in vivo and probed enzymatically in vitro. It was shown that the SECIS element is indeed transcribed as part of the respective mRNA and that its secondary structure corresponds to that predicted by RNA folding programs. Its ability to direct selenocysteine insertion in vivo was demonstrated by the heterologous expression of MJ0029 in Methanococcus maripaludis, resulting in the synthesis of an additional selenoprotein, as analysed by 75Se labelling. The selective advantage of moving the SECIS element in the untranslated region may confer the ability to insert more than one selenocysteine into a single polypeptide. Evidence for this assumption was provided by the finding that the M. maripaludis genome contains an open reading frame with two in frame TGA codons, followed by a stem-loop structure in the 3' UTR of the mRNA that corresponds to the archaeal SECIS element.
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
15
|
Fagegaltier D, Carbon P, Krol A. Distinctive features in the SelB family of elongation factors for selenoprotein synthesis. A glimpse of an evolutionary complexified translation apparatus. Biofactors 2001; 14:5-10. [PMID: 11568434 DOI: 10.1002/biof.5520140102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The last ten years have seen a dramatic increase in our understanding of the molecular mechanism allowing specific incorporation of selenocysteine into selenoproteins. Whether in prokaryotes or eukaryotes, this incorporation requires several gene products, among which the specialized elongation factor SelB and the tRNA(Sec) play a pivotal role. While the molecular actors have been discovered and their role elucidated in the eubacterial machinery, recent data from our and other laboratories pointed to a higher degree of complexity in archaea and eukaryotes. These findings also revealed that more needs to be discovered in this area. This review will focus on phylogenetic aspects of the SelB proteins. In particular, we will discuss the concerted evolution that occurred within the SelB/tRNA(Sec) couples, and also the distinctive roles carried out by the SelB C-terminal domains in eubacteria on the one side, and archaea and eukaryotes, on the other.
Collapse
Affiliation(s)
- D Fagegaltier
- Unité Propre de Recherche 9002 du CNRS, Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire, 15, Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
16
|
Abstract
Since the discovery of selenocysteine as the 21st amino acid considerable progress has been made in elucidating the system responsible for its insertion into proteins. Elongation factor SELB, whose amino-terminal part shows homology to EF-Tu, was found to be the key component mediating delivery of selenocysteyl-tRNA(Sec) to the ribosomal A site. It exhibits a distinct tertiary structure comprising binding sites for guanosine nucleotides, the cognate tRNA, an mRNA secondary structure (SECIS element) and presumably ribosomal components. The kinetics of interaction of SELB with its ligands have been studied in detail. GDP was found to bind with about 20-fold lower affinity than GTP and to be in rapid exchange, which obviates the need for a guanosine nucleotide exchange factor. The affinity of SELB for the SECIS element is in the range of 1 nM and further increases upon binding of selenocysteyl-tRNA(Sec) to the protein. This supports the model that SELB forms a tight quaternary complex on the SECIS element which is loosened after insertion of the tRNA into the ribosomal A site and the concomitant hydrolysis of GTP.
Collapse
Affiliation(s)
- M Thanbichler
- Institute of Genetics and Microbiology, University of Munich, Maria-Ward-Str. 1a, 80638 Munich, Germany.
| | | |
Collapse
|
17
|
Abstract
The availability of the genome sequences from several archaea has facilitated the identification of the encoded selenoproteins and also of most of the components of the machinery for selenocysteine biosynthesis and insertion. Until now, selenoproteins have been identified solely in species of the genera Methanococcus (M.) and Methanopyrus. Apart from selenophosphate synthetase, they include only enzymes with a function in energy metabolism. Like in bacteria and eukarya, selenocysteine insertion is directed by a UGA codon in the mRNA and involves the action of a specific tRNA and of selenophosphate as the selenium donor. Major differences to the bacterial system, however, are that no homolog for the bacterial selenocysteine synthase was found and, especially, that the SECIS element of the mRNA is positioned in the 3' nontranslated region. The characterisation of a homolog for the bacterial SelB protein showed that it does not bind to the SECIS element necessitating the activity of at least a second protein. The use of the genetic system of M. maripaludis allowed the heterologous expression of a selenoprotein gene from M. jannaschii and will facilitate the elucidation of the mechanism of the selenocysteine insertion process in the future.
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Institut für Genetik und Mikrobiologie, Maria Ward Stra section signe 1a, D-80638 Munich, Germany
| | | | | | | |
Collapse
|
18
|
Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 2000; 19:4796-805. [PMID: 10970870 PMCID: PMC302067 DOI: 10.1093/emboj/19.17.4796] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Decoding of UGA selenocysteine codons in eubacteria is mediated by the specialized elongation factor SelB, which conveys the charged tRNA(Sec) to the A site of the ribosome, through binding to the SECIS mRNA hairpin. In an attempt to isolate the eukaryotic homolog of SelB, a database search in this work identified a mouse expressed sequence tag containing the complete cDNA encoding a novel protein of 583 amino acids, which we called mSelB. Several lines of evidence enabled us to establish that mSelB is the bona fide mammalian elongation factor for selenoprotein translation: it binds GTP, recognizes the Sec-tRNA(Sec) in vitro and in vivo, and is required for efficient selenoprotein translation in vivo. In contrast to the eubacterial SelB, the recombinant mSelB alone is unable to bind specifically the eukaryotic SECIS RNA hairpin. However, complementation with HeLa cell extracts led to the formation of a SECIS-dependent complex containing mSelB and at least another factor. Therefore, the role carried out by a single elongation factor in eubacterial selenoprotein translation is devoted to two or more specialized proteins in eukaryotes.
Collapse
Affiliation(s)
- D Fagegaltier
- UPR du CNRS Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire, 15, Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep 2000; 1:158-63. [PMID: 11265756 PMCID: PMC1084265 DOI: 10.1093/embo-reports/kvd033] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Revised: 06/15/2000] [Accepted: 06/28/2000] [Indexed: 11/13/2022] Open
Abstract
Decoding UGA as selenocysteine requires a unique tRNA, a specialized elongation factor, and specific secondary structures in the mRNA, termed SECIS elements. Eukaryotic SECIS elements are found in the 3' untranslated region of selenoprotein mRNAs while those in prokaryotes occur immediately downstream of UGA. Consequently, a single eukaryotic SECIS element can serve multiple UGA codons, whereas prokaryotic SECIS elements only function for the adjacent UGA, suggesting distinct mechanisms for recoding in the two kingdoms. We have identified and characterized the first eukaryotic selenocysteyl-tRNA-specific elongation factor. This factor forms a complex with mammalian SECIS binding protein 2, and these two components function together in selenocysteine incorporation in mammalian cells. Expression of the two functional domains of the bacterial elongation factor-SECIS binding protein as two separate proteins in eukaryotes suggests a mechanism for rapid exchange of charged for uncharged selenocysteyl-tRNA-elongation factor complex, allowing a single SECIS element to serve multiple UGA codons.
Collapse
Affiliation(s)
- R M Tujebajeva
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rother M, Wilting R, Commans S, Böck A. Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii. J Mol Biol 2000; 299:351-8. [PMID: 10860743 DOI: 10.1006/jmbi.2000.3756] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selenocysteine insertion into archaeal selenopolypeptides is directed through an mRNA structure (the SECIS element) situated in the 3' non-translated region like in eukaryotes. To elucidate the mechanism how this element affects decoding of an in-frame UGA with selenocysteine the open reading frames of the genome of Methanococcus jannaschii were searched for the existence of a homolog to the bacterial specialized translation factor SelB. The product of the open reading frame MJ0495 was identified as the archaeal SelB homolog on the basis of the following characteristics: (1) MJ0495 possesses sequence features characteristic of bacterial SelB; (2) purified MJ0495 displays guanine nucleotide binding properties like SelB; and (3) it preferentially binds selenocysteyl-tRNA(Sec). In contrast to bacterial SelB, however, no binding of MJ0495 protein to the SECIS element of the mRNA was found under the experimental conditions employed which correlates with the fact that MJ0495 lacks the C-terminal domain of the bacterial SelB protein known to bind the SECIS element. It is speculated that in Archaea the functions of bacterial SelB are distributed over at least two proteins, one, serving as the specific translation factor, like MJ0495, and another one, binding to the SECIS which interacts with the ribosome and primes it to decode UGA.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/isolation & purification
- Archaeal Proteins/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Cloning, Molecular
- Genes, Archaeal/genetics
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/metabolism
- Methanococcus/genetics
- Models, Biological
- Molecular Sequence Data
- Open Reading Frames/genetics
- Protein Binding
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Homology
- Thermodynamics
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, München, D-80638, Germany
| | | | | | | |
Collapse
|
21
|
Abstract
Prokaryotic and eukaryotic cells cotranslationally incorporate the unusual amino acid selenocysteine at a UGA codon, which conventionally serves as a termination signal. Translation of selenoprotein gene transcripts in eukaryotes depends upon a "selenocysteine insertion sequence" in the 3'-untranslated region. We have previously shown that DNA-binding protein B specifically binds this sequence element. We now report the identification of nucleolin as a partner in the selenoprotein translation complex. In RNA electromobility shift assays, nucleolin binds the selenocysteine insertion sequence from the human cellular glutathione peroxidase gene, competes with binding activity from COS cells, and shows diminished affinity for probes with mutations in functionally important, conserved sequence elements. Antibody to nucleolin interferes with the gel shift activity of COS cell extract. Antibody to DNA-binding protein B co-extracts nucleolin from HeLa cell cytosol, and the two proteins co-sediment in glycerol gradient fractions of ribosomal high salt extracts. Thus, nucleolin appears to join DNA-binding protein B and possibly other partners to form a large complex that links the selenocysteine insertion sequence in the 3'-untranslated region to other elements in the coding region and ribosome to translate the UGA "stop" codon as selenocysteine.
Collapse
Affiliation(s)
- R Wu
- Department of Pediatrics, University of Massachusetts Medical School, and the University of Massachusetts Cancer Center, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
22
|
Abstract
One of the recent discoveries in protein biosynthesis was the finding that selenocysteine, the 21st amino acid, is cotranslationally inserted into polypeptides under the direction of a UGA codon assisted by a specific structural signal in the mRNA. The key to selenocysteine biosynthesis and insertion is a special tRNA species, tRNA(Sec). The formation of selenocysteine from serine represents an interesting tRNA-mediated amino acid transformation. tRNA(Sec) (or the gene encoding it) has been found over all three domains of life. It displays a number of unique features that designate it a selenocysteine-inserting tRNA and differentiate it from canonical elongator tRNAs. Although there are still some uncertainties concerning the precise secondary and tertiary structures of eukaryal tRNA(Sec), the major identity determinant for selenocysteine biosynthesis and insertion appears to be the 13 bp long extended acceptor arm. In addition the core of the 3D structure of these tRNAs is different from that of class II tRNAs like tRNA(Sec). The biological implications of these structural differences still remain to be fully understood.
Collapse
Affiliation(s)
- S Commans
- Lehrstuhl für Mikrobiologie der Universität München, Germany.
| | | |
Collapse
|
23
|
Suppmann S, Persson BC, Böck A. Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. EMBO J 1999; 18:2284-93. [PMID: 10205181 PMCID: PMC1171311 DOI: 10.1093/emboj/18.8.2284] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The kinetics and efficiency of decoding of the UGA of a bacterial selenoprotein mRNA with selenocysteine has been studied in vivo. A gst-lacZ fusion, with the fdhF SECIS element ligated between the two fusion partners, gave an efficiency of read-through of 4-5%; overproduction of the selenocysteine insertion machinery increased it to 7-10%. This low efficiency is caused by termination at the UGA and not by translational barriers at the SECIS. When the selenocysteine UGA codon was replaced by UCA, and tRNASec with anticodon UGA was allowed to compete with seryl-tRNASer1 for this codon, selenocysteine was found in 7% of the protein produced. When a non-cognate SelB-tRNASec complex competed with EF-Tu for a sense codon, no effects were seen, whereas a non-cognate SelB-tRNASec competing with EF-Tu-mediated Su7-tRNA nonsense suppression of UGA interfered strongly with suppression. The induction kinetics of beta-galactosidase synthesis from fdhF'-'lacZ gene fusions in the absence or presence of SelB and/or the SECIS element, showed that there was a translational pause in the fusion containing the SECIS when SelB was present. The results show that decoding of UGA is an inefficient process and that using the third dimension of the mRNA to accommodate an additional amino acid is accompanied by considerable quantitative and kinetic costs.
Collapse
Affiliation(s)
- S Suppmann
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | |
Collapse
|
24
|
Affiliation(s)
- I M Krab
- Equipe 2 du Groupe de Biophysique, Ecole Polytechnique, F-91128 Palaiseau, France
| | | |
Collapse
|