1
|
Coperchini F, Greco A, Croce L, Denegri M, Magri F, Rotondi M, Chiovato L. In vitro study of glyphosate effects on thyroid cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120801. [PMID: 36462676 DOI: 10.1016/j.envpol.2022.120801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is a pesticide, which contaminates the environment and exposes workers and general population to its residues present in foods and waters. In soil, Glyphosate is degraded in metabolites, amino-methyl-phosphonic acid (AMPA) being the main one. Glyphosate is considered a potential cancerogenic and endocrine-disruptor agent, however its adverse effects on the thyroid were evaluated only in animal models and in vitro data are still lacking. Aim of this study was to investigate whether exposure to Glyphosate could exert adverse effects on thyroid cells in vitro. Two models (adherent-2D and spheroid-3D) derived from the same cell strain Fisher-rat-thyroid-cell line-5 (FRTL-5) were employed. After exposure to Glyphosate at increasing concentrations (0.0, 0.1-0.25- 0.5-1.0-2.0-10.0 mM) we evaluated cell viability by WST-1 (adherent and spheroids), results being confirmed by propidium-iodide staining (only for spheroids). Proliferation of adherent cells was assessed by crystal violet and trypan-blue assays, the increasing volume of spheroids was taken as a measure of proliferation. We also evaluated the ability of cells to form spheroids after Glyphosate exposure. We assessed changes of reactive-oxygen-species (ROS) by the cell-permeant H2DCFDA. Glyphosate-induced changes of mRNAs encoding for thyroid-related genes (TSHR, TPO, TG, NIS, TTF-1 and PAX8) were evaluated by RT-PCR. Glyphosate reduced cell viability and proliferation in both models, even if at different concentrations. Glyphosate at the highest concentration reduced the ability of FRTL-5 to form spheroids. An increased ROS production was found in both models after exposure to Glyphosate. Finally, Glyphosate increased the mRNA levels of some thyroid related genes (TSHR, TPO, TG and TTF-1) in both models, while it increased the mRNAs of PAX8 and NIS only in the adherent model. The present study supports an adverse effect of Glyphosate on cultured thyroid cells. Glyphosate reduced cell viability and proliferation and increased ROS production in thyroid cells.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marco Denegri
- Unit of Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy.
| |
Collapse
|
2
|
Albi E, Krüger M, Hemmersbach R, Lazzarini A, Cataldi S, Codini M, Beccari T, Ambesi-Impiombato FS, Curcio F. Impact of Gravity on Thyroid Cells. Int J Mol Sci 2017; 18:E972. [PMID: 28471415 PMCID: PMC5454885 DOI: 10.3390/ijms18050972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Physical and mental health requires a correct functioning of the thyroid gland, which controls cardiovascular, musculoskeletal, nervous, and immune systems, and affects behavior and cognitive functions. Microgravity, as occurs during space missions, induces morphological and functional changes within the thyroid gland. Here, we review relevant experiments exposing cell cultures (normal and cancer thyroid cells) to simulated and real microgravity, as well as wild-type and transgenic mice to hypergravity and spaceflight conditions. Well-known mechanisms of damage are presented and new ones, such as changes of gene expression for extracellular matrix and cytoskeleton proteins, thyrocyte phenotype, sensitivity of thyrocytes to thyrotropin due to thyrotropin receptor modification, parafollicular cells and calcitonin production, sphingomyelin metabolism, and the expression and movement of cancer molecules from thyrocytes to colloids are highlighted. The identification of new mechanisms of thyroid injury is essential for the development of countermeasures, both on the ground and in space, against thyroid cancer. We also address the question whether normal and cancer cells show a different sensitivity concerning changes of environmental conditions.
Collapse
Affiliation(s)
- Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | - Marcus Krüger
- Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Ruth Hemmersbach
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Gravitational Biology, Linder Höhe, 51147 Cologne, Germany.
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, Perugia, via Ponchielli 4, 06073 Perugia, Italy.
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | | | - Francesco Curcio
- Dipartimento di Area Medica (DAME), University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
3
|
Riwaldt S, Bauer J, Wehland M, Slumstrup L, Kopp S, Warnke E, Dittrich A, Magnusson NE, Pietsch J, Corydon TJ, Infanger M, Grimm D. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach. Int J Mol Sci 2016; 17:528. [PMID: 27070589 PMCID: PMC4848984 DOI: 10.3390/ijms17040528] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 01/23/2023] Open
Abstract
Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line) after a 24 h-exposure on the Random Positioning Machine (RPM) and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis) and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.
Collapse
Affiliation(s)
- Stefan Riwaldt
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Johann Bauer
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Markus Wehland
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Lasse Slumstrup
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark.
| | - Sascha Kopp
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Elisabeth Warnke
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Anita Dittrich
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark.
| | - Nils E Magnusson
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jessica Pietsch
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Thomas J Corydon
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark.
| | - Manfred Infanger
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Daniela Grimm
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany.
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Baldini E, D'Armiento M, Sorrenti S, Del Sordo M, Mocini R, Morrone S, Gnessi L, Curcio F, Ulisse S. Effects of ultraviolet radiation on FRTL-5 cell growth and thyroid-specific gene expression. ASTROBIOLOGY 2013; 13:536-542. [PMID: 23697699 DOI: 10.1089/ast.2013.0972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During space missions, radiation represents a major hazard for human health and involves all body organs and tissues. Regarding thyroid function, it has been shown that ultraviolet radiation (UVC) has dose-dependent apoptotic effects on FRTL-5 cells, a normal strain of rat thyrocytes. We examined the effects of a sublethal dose of UVC on FRTL-5 cell growth and gene expression. Cells exposed to 10 J/m(2) UVC showed no differences in viability compared to control cells after 24 h, but the BrdU incorporation was reduced, indicating a cytostatic effect. Quantitative RT-PCR carried out at 24 and 48 h after irradiation demonstrated that the mRNA levels of thyroglobulin (Tg), thyroperoxidase (Tpo), and sodium/iodide symporter (Nis) were transiently decreased at 24 h in treated cells, while the mRNAs of the thyroid transcription factors TTF1, Foxe1, and Pax8 were not affected. In cells cultured with TSH-free medium, the basal transcription of Tg, Tpo, and Nis genes was equally impaired by radiation and no longer stimulated by TSH. Overall, the results demonstrate that a sub-apoptotic dose of UVC compromises not only thyrocyte proliferation but also the expression of genes involved in thyroid hormone production. These findings might contribute to explaining the histological, biochemical, and clinical features of hypothyroidism observed in both animals and humans during spaceflight, and suggest that free thyroxine levels of astronauts during prolonged space missions should be monitored.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kossmehl P, Shakibaei M, Cogoli A, Infanger M, Curcio F, Schönberger J, Eilles C, Bauer J, Pickenhahn H, Schulze-Tanzil G, Paul M, Grimm D. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 2003; 144:4172-9. [PMID: 12933692 DOI: 10.1210/en.2002-0171] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apoptosis plays a pivotal role in development, tissue homeostasis, cancer, immune defense, and response to weightlessness. It can be initiated by external signals via death receptors, but may also emerge from mitochondria. We exposed mitochondria-rich thyroid carcinoma cells (ONCO-DG1 cell line) and normal thyroid cells (HTU-5) to conditions of simulated microgravity. After 24 h, 10% of the cancer cells had entered a Fas-dependent apoptotic pathway, but destruction and redistribution of mitochondria, microtubuli disruption, and caspase-3 activation were also detected, demonstrating the activation of extrinsic as well as intrinsic pathways. Furthermore, ONCO-DG1 cells grown on the clinostat showed elevated amounts of Bax, but reduced quantities of bcl-2. In addition, signs of apoptosis became detectable, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick end labeling, 4',6-diamidino-2-phenylindole staining, and 85-kDa apoptosis-related cleavage fragments. These fragments resulted from enhanced 116-kDa poly(ADP-ribose)polymerase activity and apoptosis. Apoptosis was also detected in normal HTU-5 cells, as demonstrated by electron microscopy, activation of caspase-3, increases in Fas and Bax, and elevation of 85-kDa apoptosis-related cleavage fragments resulting from enhanced poly(ADP-ribose) polymerase activity. Gravitational unloading affects the mitochondria and thereby may trigger apoptosis in thyroid cells subjected to weightlessness by clinorotation.
Collapse
Affiliation(s)
- Peter Kossmehl
- Institute of Clinical Pharmacology and Toxicology, Benjamin Franklin Medical Center, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Longevity with good health and long-term survival in space are two of the many challenges that scientists face in the twenty-first century. Ageing and life in space are both associated with undesirable effects on normal physiological processes. This review will outline how the endocrine, metabolic, immune and musculoskeletal systems are affected by microgravity and ageing, drawing analogies between the observed changes in an attempt to highlight common mechanisms. RECENT FINDINGS Mild hypothyroidism, increased stress hormones (mainly catecholamines), decreased sex steroids, insulin resistance, impaired anabolic response to food intake, anorexia, altered mitochondrial function and systemic inflammatory response are common features of both ageing and microgravity. Both conditions lead to progressive bone and muscle atrophy, compromising mobility and the ability to perform essential daily tasks. In skeletal muscle, both ageing and space flight lead to weakness from whole muscle to single fibre level, accompanied by marked alterations in muscle architecture and in tendon mechanical properties. SUMMARY What makes microgravity an interesting and unique tool for gerontologists is that many space-related physiological changes resemble those observed during ageing, but are more or less quickly restored after re-entry, thus allowing the biology of ageing to be investigated both ways, not only during its development but also during recovery.
Collapse
Affiliation(s)
- Gianni Biolo
- Department of Clinical, Morphological and Technological Sciences, Division of Internal Medicine, University of Trieste, Trieste, Italy.
| | | | | | | |
Collapse
|
7
|
Meli A, Perrella G, Curcio F, Ambesi-Impiombato FS. In vitro cultured cells as probes for space radiation effects on biological systems. Mutat Res 1999; 430:229-34. [PMID: 10631337 DOI: 10.1016/s0027-5107(99)00134-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Near future scenarios of long-term and far-reaching manned space missions, require more extensive knowledge of all possible biological consequences of space radiation, particularly in humans, on both a long-term and a short-term basis. In vitro cultured cells have significantly contributed to the tremendous advancement of biomedical research. It is therefore to be expected that simple biological systems such as cultured cells, will contribute to space biomedical sciences. Space represents a novel environment, to which life has not been previously exposed. Both microgravity and space radiation are the two relevant components of such an environment, but biological adaptive mechanisms and efficient countermeasures can significantly minimize microgravity effects. On the other hand, it is felt that space radiation risks may be more relevant and that defensive strategies can only stem from our deeper knowledge of biological effects and of cellular repair mechanisms. Cultured cells may play a key role in such studies. Particularly, thyroid cells may be relevant because of the exquisite sensitivity of the thyroid gland to radiation. In addition, a clone of differentiated, normal thyroid follicular cells (FRTL5 cells) is available in culture, which is well characterized and particularly fit for space research.
Collapse
Affiliation(s)
- A Meli
- Dipartimento di Patologia e Medicina Sperimentale e Clinica, Università di Udine, P.le S. Maria della Misericordia, 33100, Udine, Italy
| | | | | | | |
Collapse
|
8
|
Abstract
Protozoa are eukaryotic cells and represent suitable model systems to study the mechanisms of gravity perception and signal transduction due to their clear gravity-induced responses (gravitaxis and gravikinesis). Among protists, parallel evolution for graviperception mechanisms have been identified: either sensing by distinct stato-organelles (e.g., the Müller vesicles of the ciliate Loxodes) or by sensing the density difference between the whole cytoplasm and the extracellular medium (as proposed for Paramecium and Euglena). These two models are supported by experiments in density-adjusted media, as the gravitaxis of Loxodes was not affected, whereas the orientation of Paramecium and Euglena was completely disturbed. Both models include the involvement of ion channels in the cell membrane. Diverse experiments gave new information on the mechanism of graviperception in unicellular systems, such as threshold values in the range of 10% of gravity, relaxation of the responses after removal of the stimulus, and no visible adaptation phenomena during exposure to hypergravity or microgravity conditions for up to 12 days.
Collapse
Affiliation(s)
- R Hemmersbach
- Institute of Aerospace Medicine, German Aerospace Research Establishment, 51170 Köln Institute for Botany and Pharmaceutical Biology, University of Erlangen, Germany.
| | | |
Collapse
|