1
|
Charoonnart P, Taunt HN, Yang L, Webb C, Robinson C, Saksmerprome V, Purton S. Transgenic Microalgae Expressing Double-Stranded RNA as Potential Feed Supplements for Controlling White Spot Syndrome in Shrimp Aquaculture. Microorganisms 2023; 11:1893. [PMID: 37630453 PMCID: PMC10459155 DOI: 10.3390/microorganisms11081893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Viral infection of farmed fish and shellfish represents a major issue within the aquaculture industry. One potential control strategy involves RNA interference of viral gene expression through the oral delivery of specific double-stranded RNA (dsRNA). In previous work, we have shown that recombinant dsRNA can be produced in the chloroplast of the edible microalga Chlamydomonas reinhardtii and used to control disease in shrimp. Here, we report a significant improvement in antiviral dsRNA production and its use to protect shrimp against white spot syndrome virus (WSSV). A new strategy for dsRNA synthesis was developed that uses two convergent copies of the endogenous rrnS promoter to drive high-level transcription of both strands of the WSSV gene element in the chloroplast. Quantitative RT-PCR indicated that ~119 ng dsRNA was produced per liter of culture of the transgenic microalga. This represents an ~10-fold increase in dsRNA relative to our previous report. The engineered alga was assessed for its ability to prevent WSSV infection when fed to shrimp larvae prior to a challenge with the virus. The survival of shrimp given feed supplemented with dried alga containing the dsRNA was significantly enhanced (~69% survival) relative to a negative control (<10% survival). The findings suggest that this new dsRNA production platform could be employed as a low-cost, low-tech control method for aquaculture.
Collapse
Affiliation(s)
- Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Henry Nicholas Taunt
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Conner Webb
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Spetea C, Pfeil BE, Schoefs B. Phylogenetic Analysis of the Thylakoid ATP/ADP Carrier Reveals New Insights into Its Function Restricted to Green Plants. FRONTIERS IN PLANT SCIENCE 2012; 2:110. [PMID: 22629269 PMCID: PMC3355511 DOI: 10.3389/fpls.2011.00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/17/2011] [Indexed: 06/01/2023]
Abstract
ATP is the common energy currency of cellular metabolism in all living organisms. Most of them synthesize ATP in the cytosol or on the mitochondrial inner membrane, whereas land plants, algae, and cyanobacteria also produce it on the thylakoid membrane during the light-dependent reactions of photosynthesis. From the site of synthesis, ATP is transported to the site of utilization via intracellular membrane transporters. One major type of ATP transporters is represented by the mitochondrial ADP/ATP carrier family. Here we review a recently characterized member, namely the thylakoid ATP/ADP carrier from Arabidopsis thaliana (AtTAAC). Thus far, no orthologs of this carrier have been characterized in other organisms, although similar sequences can be recognized in many sequenced genomes. Protein Sequence database searches and phylogenetic analyses indicate the absence of TAAC in cyanobacteria and its appearance early in the evolution of photosynthetic eukaryotes. The TAAC clade is composed of carriers found in land plants and some green algae, but no proteins from other photosynthetic taxa, such as red algae, brown algae, and diatoms. This implies that TAAC-like sequences arose only once before the divergence of green algae and land plants. Based on these findings, it is proposed that TAAC may have evolved in response to the need of a new activity in higher photosynthetic eukaryotes. This activity may provide the energy to drive reactions during biogenesis and turnover of photosynthetic complexes, which are heterogeneously distributed in a thylakoid membrane system composed of appressed and non-appressed regions.
Collapse
Affiliation(s)
- Cornelia Spetea
- Department of Plant and Environmental Sciences, University of GothenburgGothenburg, Sweden
| | - Bernard E. Pfeil
- Department of Plant and Environmental Sciences, University of GothenburgGothenburg, Sweden
| | - Benoît Schoefs
- Mer, Molécules, Santé, Faculté des Sciences et Techniques, Université du Maine à Le MansLe Mans, France
| |
Collapse
|
3
|
Voß B, Meinecke L, Kurz T, Al-Babili S, Beck CF, Hess WR. Hemin and magnesium-protoporphyrin IX induce global changes in gene expression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2011; 155:892-905. [PMID: 21148414 PMCID: PMC3032474 DOI: 10.1104/pp.110.158683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/29/2010] [Indexed: 05/19/2023]
Abstract
Retrograde signaling is a pathway of communication from mitochondria and plastids to the nucleus in the context of cell differentiation, development, and stress response. In Chlamydomonas reinhardtii, the tetrapyrroles magnesium-protoporphyrin IX and heme are only synthesized within the chloroplast, and they have been implicated in the retrograde control of nuclear gene expression in this unicellular green alga. Feeding the two tetrapyrroles to Chlamydomonas cultures was previously shown to transiently induce five nuclear genes, three of which encode the heat shock proteins HSP70A, HSP70B, and HSP70E. In contrast, controversial results exist on the possible role of magnesium-protoporphyrin IX in the repression of genes for light-harvesting proteins in higher plants, raising the question of how important this mode of regulation is. Here, we used genome-wide transcriptional profiling to measure the global impact of these tetrapyrroles on gene regulation and the scope of the response. We identified almost 1,000 genes whose expression level changed transiently but significantly. Among them were only a few genes for photosynthetic proteins but several encoding enzymes of the tricarboxylic acid cycle, heme-binding proteins, stress-response proteins, as well as proteins involved in protein folding and degradation. More than 50% of the latter class of genes was also regulated by heat shock. The observed drastic fold changes at the RNA level did not correlate with similar changes in protein concentrations under the tested experimental conditions. Phylogenetic profiling revealed that genes of putative endosymbiontic origin are not overrepresented among the responding genes. This and the transient nature of changes in gene expression suggest a signaling role of both tetrapyrroles as secondary messengers for adaptive responses affecting the entire cell and not only organellar proteins.
Collapse
|
4
|
Pigolev AV, Zharmukhamedov SK, Klimov VV. The psbO mutant of Chlamydomonas reinhardtii is capable of assembling stable, photochemically active reaction center of photosystem II. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2009. [DOI: 10.1134/s199074780901005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Inwood W, Yoshihara C, Zalpuri R, Kim KS, Kustu S. The ultrastructure of a Chlamydomonas reinhardtii mutant strain lacking phytoene synthase resembles that of a colorless alga. MOLECULAR PLANT 2008; 1:925-37. [PMID: 19825593 PMCID: PMC2902904 DOI: 10.1093/mp/ssn046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/10/2008] [Indexed: 05/04/2023]
Abstract
Chlamydomonas reinhardtii strains lacking phytoene synthase, the first enzyme of carotenoid biosynthesis, are white. They lack carotenoid pigments, have very low levels of chlorophyll, and can grow only heterotrophically in the dark. Our electron and fluorescence microscopic studies showed that such a mutant strain (lts1-204) had a proliferated plastid envelope membrane but no stacks of thylakoid membranes within the plastid. It accumulated cytoplasmic compartments that appeared to be autophagous vacuoles filled with membranous material. The lts1 mutants apparently lacked pyrenoid bodies, which normally house ribulose bisphosphate carboxylase-oxygenase (Rubisco), and accumulated many starch granules. Although these mutant strains cannot synthesize the carotenoid and carotenoid-derived pigments present in the phototactic organelle (eyespot), the mutant we examined made a vestigial eyespot that was disorganized and often mislocalized to the posterior end of the cell. The absence of a pyrenoid body, the accumulation of starch, and the disorganization of the eyespot may all result from the absence of thylakoids. The ultrastructure of lts1 mutant strains is similar to but distinct from that of previously described white and yellow mutant strains of C. reinhardtii and is similar to that of naturally colorless algae of the Polytoma group.
Collapse
Affiliation(s)
- William Inwood
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720–3102, USA
| | - Corinne Yoshihara
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720–3102, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, 26 Giannini Hall, University of California, Berkeley, CA 94720–3330, USA
| | - Kwang-Seo Kim
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720–3102, USA
| | - Sydney Kustu
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720–3102, USA
| |
Collapse
|
6
|
Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:425-32. [PMID: 18331820 DOI: 10.1016/j.bbabio.2008.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 11/20/2022]
Abstract
Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.
Collapse
|
7
|
Yubuki N, Nakayama T, Inouye I. A UNIQUE LIFE CYCLE AND PERENNATION IN A COLORLESS CHRYSOPHYTE SPUMELLA SP.(1). JOURNAL OF PHYCOLOGY 2008; 44:164-72. [PMID: 27041053 DOI: 10.1111/j.1529-8817.2007.00441.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Life cycle and perennation of a colorless chrysophyte, Spumella sp., isolated from an ephemeral ditch were investigated. From a single resting cyst (statospore), only one nonmotile cell germinated. Shortly after germination, the cell generated flagella, started to swim, and formed a gelatinous sphere. The cell itself retained the ability to swim within the sphere. Cells fed on bacteria inhabiting the sphere and grew by longitudinal binary cell division very rapidly. The gelatinous sphere gradually enlarged as the number of cells increased. When it reached maximum size (∼500 μm in diameter), the gelatinous substance of the sphere weakened, and the sphere gradually broke into several pieces, forming cleavages between them. Cells swam away through the cleavages. Five to ∼40 swimming cells soon gathered and formed a swarm. In the swarm, some cells cannibalized other sibling cells and enlarged, resulting in giant cells that were two to three times larger in diameter than ordinary cells. The giant cells soon started statospore formation. Statospore formation was independent of any changes of environmental factors, such as increase or decrease in temperature or changes in nutrient or light levels, which are known to induce resting-cyst formation in other groups of algae and protists. Statospore formation started when cells divided 15 to 16 times after germination. This is congruent with the idea that statospore formation in planktonic chrysophytes directly depends on cell density. An extraordinarily high growth rate and cannibalism involved in the initiation of statospore formation are interpreted as adaptations to achieve the perennation in ephemeral aquatic environments.
Collapse
Affiliation(s)
- Naoji Yubuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takeshi Nakayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Isao Inouye
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
8
|
van Lis R, Atteia A, Mendoza-Hernández G, González-Halphen D. Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. PLANT PHYSIOLOGY 2003; 132:318-30. [PMID: 12746537 PMCID: PMC166977 DOI: 10.1104/pp.102.018325] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Revised: 12/18/2002] [Accepted: 01/30/2003] [Indexed: 05/20/2023]
Abstract
Pure mitochondria of the photosynthetic alga Chlamydomonas reinhardtii were analyzed using blue native-polyacrylamide gel electrophoresis (BN-PAGE). The major oxidative phosphorylation complexes were resolved: F(1)F(0)-ATP synthase, NADH-ubiquinone oxidoreductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase. The oligomeric states of these complexes were determined. The F(1)F(0)-ATP synthase runs exclusively as a dimer, in contrast to the C. reinhardtii chloroplast enzyme, which is present as a monomer and subcomplexes. The sequence of a 60-kD protein, associated with the mitochondrial ATP synthase and with no known counterpart in any other organism, is reported. This protein may be related to the strong dimeric character of the algal F(1)F(0)-ATP synthase. The oxidative phosphorylation complexes resolved by BN-PAGE were separated into their subunits by second dimension sodium dodecyl sulfate-PAGE. A number of polypeptides were identified mainly on the basis of their N-terminal sequence. Core I and II subunits of complex III were characterized, and their proteolytic activities were predicted. Also, the heterodimeric nature of COXIIA and COXIIB subunits in cytochrome c oxidase was demonstrated. Other mitochondrial proteins like the chaperone HSP60, the alternative oxidase, the aconitase, and the ADP/ATP carrier were identified. BN-PAGE was also used to approach the analysis of the major chloroplast protein complexes of C. reinhardtii.
Collapse
Affiliation(s)
- Robert van Lis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | | | | |
Collapse
|
9
|
Baena-González E, Aro EM. Biogenesis, assembly and turnover of photosystem II units. Philos Trans R Soc Lond B Biol Sci 2002; 357:1451-9; discussion 1459-60. [PMID: 12437884 PMCID: PMC1693054 DOI: 10.1098/rstb.2002.1141] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Assembly of photosystem II, a multiprotein complex embedded in the thylakoid membrane, requires stoichiometric production of over 20 protein subunits. Since part of the protein subunits are encoded in the chloroplast genome and part in the nucleus, a signalling network operates between the two genetic compartments in order to prevent wasteful production of proteins. Coordinated synthesis of proteins also takes place among the chloroplast-encoded subunits, thus establishing a hierarchy in the protein components that allows a stepwise building of the complex. In addition to this dependence on assembly partners, other factors such as the developmental stage of the plastid and various photosynthesis-related parameters exert a strict control on the accumulation, membrane targeting and assembly of the PSII subunits. Here, we briefly review recent results on this field obtained with three major approaches: biogenesis of photosystem II during the development of chloroplasts from etioplasts, use of photosystem II-specific mutants and photosystem II turnover during its repair cycle.
Collapse
Affiliation(s)
- Elena Baena-González
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
10
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|