1
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
2
|
Ferreira APO, Rodrigues FS, Della-Pace ID, Mota BC, Oliveira SM, de Campos Velho Gewehr C, Bobinski F, de Oliveira CV, Brum JS, Oliveira MS, Furian AF, de Barros CSL, dos Santos ARS, Ferreira J, Fighera MR, Royes LFF. HOE-140, an antagonist of B2 receptor, protects against memory deficits and brain damage induced by moderate lateral fluid percussion injury in mice. Psychopharmacology (Berl) 2014; 231:1935-48. [PMID: 24202114 DOI: 10.1007/s00213-013-3336-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE There are evidences indicating the role of kinins in pathophysiology of traumatic brain injury, but little is known about their action on memory deficits. OBJECTIVES Our aim was to establish the role of bradykinin receptors B₁ (B₁R) and B₂ (B₂R) on the behavioral, biochemical, and histologic features elicited by moderate lateral fluid percussion injury (mLFPI) in mice. METHODS The role of kinin B₁ and B₂ receptors in brain damage, neuromotor, and cognitive deficits induced by mLFPI, was evaluated by means of subcutaneous injection of B₂R antagonist (HOE-140; 1 or 10 nmol/kg) or B₁R antagonist (des-Arg9-[Leu8]-bradykinin (DAL-Bk; 1 or 10 nmol/kg) 30 min and 24 h after brain injury. Brain damage was evaluated in the cortex, being considered as lesion volume, inflammatory, and oxidative damage. The open field and elevated plus maze tests were performed to exclude the nonspecific effects on object recognition memory test. RESULTS Our data revealed that HOE-140 (10 nmol/kg) protected against memory impairment. This treatment attenuated the brain edema, interleukin-1β, tumor necrosis factor-α, and nitric oxide metabolites content elicited by mLFPI. Accordingly, HOE-140 administration protected against the increase of nicotinamide adenine dinucleotide phosphate oxidase activity, thiobarbituric-acid-reactive species, protein carbonylation generation, and Na⁺ K⁺ ATPase inhibition induced by trauma. Histologic analysis showed that HOE-140 reduced lesion volume when analyzed 7 days after brain injury. CONCLUSIONS This study suggests the involvement of the B₂ receptor in memory deficits and brain damage caused by mLFPI in mice.
Collapse
Affiliation(s)
- Ana Paula Oliveira Ferreira
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Vink R, van den Heuvel C. Substance P antagonists as a therapeutic approach to improving outcome following traumatic brain injury. Neurotherapeutics 2010; 7:74-80. [PMID: 20129499 PMCID: PMC5084114 DOI: 10.1016/j.nurt.2009.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/29/2009] [Indexed: 11/17/2022] Open
Abstract
Although a number of secondary injury factors are known to contribute to the development of morphological injury and functional deficits following traumatic brain injury, accumulating evidence has suggested that neuropeptides, and in particular substance P, may play a critical role. Substance P is released early following acute injury to the CNS as part of a neurogenic inflammatory response. In so doing, it facilitates an increase in the permeability of the blood-brain barrier and the development of vasogenic edema. At the cellular level, substance P has been shown to directly result in neuronal cell death; functionally, substance P has been implicated in learning and memory, mood and anxiety, stress mechanisms, emotion-processing, migraine, emesis, pain, and seizures, all of which may be adversely affected after brain injury. Inhibition of post-traumatic substance P activity, either by preventing release or by antagonism of the neurokinin-1 receptor, has consistently resulted in a profound decrease in development of edema and marked improvements in functional outcome. This review summarizes the current evidence supporting a role for substance P in acute brain injury.
Collapse
Affiliation(s)
- Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
4
|
Yurdakoc A, Gunday I, Memiş D. Effects of halothane, isoflurane, and sevoflurane on lipid peroxidation following experimental closed head trauma in rats. Acta Anaesthesiol Scand 2008; 52:658-63. [PMID: 18419720 DOI: 10.1111/j.1399-6576.2008.01635.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In a rat closed head trauma model we examined both the time course of lipid peroxidation and the effects of halothane, isoflurane, and sevoflurane on it by analysis of malondialdehyde (MDA) formation. METHODS Animals were divided randomly into five groups: sham-operated (SO), n=18; control-closed head trauma to left frontal pole, n=18; closed head trauma model+halothane, n=18; closed head trauma model+isoflurane, n=18; and closed head trauma model+sevoflurane, n=18. Halothane, isoflurane, or sevoflurane were applied 15 min after trauma for 30 min. Rats were euthanized 1,3, and 5 h after the inhalation agents. Brain tissue samples were taken 5 mm from the left and right frontal poles. MDA was considered to reflect the degree of lipid peroxidation. RESULTS MDA concentrations were greater in the control, halothane, sevoflurane, and isoflurane groups than in SO animals (P<0.001). No statistical difference between the hemispheres was found between the halothane, isoflurane, or sevoflurane groups, but MDA levels were lower with isoflurane than in the halothane, sevoflurane, and control groups at 1, 3, and 5 h (P<0.001). MDA levels were higher as compared with the halothane and sevoflurane groups at 1 h but not at 3 or 5 h (P<0.001). CONCLUSION MDA levels with the isoflurane group were lower than in the other trauma groups, which suggest that isoflurane, given after closed head trauma, might be protective against lipid peroxidation of cerebral injury.
Collapse
Affiliation(s)
- A Yurdakoc
- Department of Anaesthesiology, Kirklareli Hospital, Edirne, Turkey
| | | | | |
Collapse
|
5
|
Ivashkova Y, Svetnitsky A, Mayzler O, Pruneau D, Benifla M, Fuxman Y, Cohen A, Artru AA, Shapira Y. Bradykinin B2 Receptor Antagonism With LF 18-1505T Reduces Brain Edema and Improves Neurological Outcome After Closed Head Trauma in Rats. ACTA ACUST UNITED AC 2006; 61:879-85. [PMID: 17033555 DOI: 10.1097/01.ta.0000234722.98537.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND We evaluated the effect of LF 18-1505T, a novel nonpeptide bradykinin type-2 receptor antagonist, on brain edema and neurologic severity score (NSS) after closed head trauma (CHT). METHODS There were 132 rats anesthetized and assigned for sham or CHT; infusion of saline or LF 18-1505T (0.3, 1, 3, 10, or 30 microg x kg x min); and determination of neurologic outcome (brain water content and NSS) or physiologic variables (blood pressure, glucose concentration, etc.). RESULTS Post-CHT brain water content was less with LF 18-1505T doses of 3 and 10 microg x kg x min (80.1 +/- 3.8 through 81.6 +/- 2.6%, mean +/- SD) than in the untreated group (84.6 +/- 1.9%, p < 0.01). Post-CHT NSS improved with doses of 3, 10, and 30 microg x kg x min (median, 7; range, 0-12 through median, 10; range, 8-18) as compared with that in the untreated group (median, 17; range, 14-23; p < 0.05). LF 18-1505T with or without CHT did not significantly alter physiologic variables. CONCLUSIONS LF 18-1505T decreased brain edema and improved neurologic status after CTH in rats without significantly altering physiologic values.
Collapse
Affiliation(s)
- Yulia Ivashkova
- Division of Anesthesiology, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kläsner B, Lumenta DB, Pruneau D, Zausinger S, Plesnila N. Therapeutic window of bradykinin B2 receptor inhibition after focal cerebral ischemia in rats. Neurochem Int 2006; 49:442-7. [PMID: 16624448 DOI: 10.1016/j.neuint.2006.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 11/15/2022]
Abstract
Following cerebral ischemia bradykinin/kinin B(2) receptors mediate inflammatory responses resulting in edema formation and secondary brain damage. However, the therapeutic window for B(2) receptor inhibition determining its potential clinical use has not been investigated so far. The aim of the current study was therefore to investigate the effect of delayed B(2) receptor inhibition on morphological and functional outcome following experimental stroke. Rats were subjected to 90 min of middle cerebral artery occlusion (MCAo) by an intraluminal filament. Animals received 0.9% NaCl or 1.0mg/kg/day Anatibant (LF 16-0687 Ms), a selective bradykinin B(2) receptor antagonist, for 3 days beginning at different time points after MCAo: 1, 2.5, 4.5, or 6.5h (n=10 per group). Neurological recovery was examined daily, infarct volume on day 7 after MCAo. Animal physiology was not influenced by B(2) receptor inhibition. Significant improvement of functional outcome was observed when treatment was delayed up to 4.5h after ischemia (p<0.05 versus vehicle). Inhibition of B(2) receptors during ischemia, i.e. when the inhibitor was given 1h after MCAo, reduced infarct volume in the basal ganglia and in the cortex by 49% (p<0.05) and 26% (p<0.05), respectively. Inhibition of B(2) receptors at later time points (2.5, 4.5, or 6.5 after MCAo) reduced penumbral damage, i.e. cortical infarction, by 19-26% (p<0.05). In conclusion, the current study shows that the therapeutic window of B(2) receptor inhibition extends for up to 6.5h after MCAo. Our data therefore suggest that inhibition of kinin B(2) receptors represents a treatment strategy for ischemic stroke which may warrant clinical validation.
Collapse
Affiliation(s)
- Benjamin Kläsner
- Institute for Surgical Research, University of Munich Medical Center, Grosshadern, Germany
| | | | | | | | | |
Collapse
|
7
|
Ozsüer H, Görgülü A, Kiriş T, Cobanoğlu S. The effects of memantine on lipid peroxidation following closed-head trauma in rats. Neurosurg Rev 2005; 28:143-7. [PMID: 15789251 DOI: 10.1007/s10143-004-0374-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/14/2004] [Indexed: 12/24/2022]
Abstract
Memantine is an uncompetitive N-methyl-D: -aspartate (NMDA) receptor antagonist. Unlike other NMDA antagonists, it has been used clinically for years for the treatment of Parkinson's disease, spasticity, and dementia without serious side effects. We aimed to investigate the therapeutic efficacy of memantine on a closed head trauma model. A total of 132 adult male Sprague-Dawley rats were randomly divided into four groups: sham-operated, control (closed head trauma), sham-vehicle (closed head trauma + saline), treatment (closed head trauma + memantine, 10 mg/kg, i.p.). A cranial impact was delivered to the skull, just in front of the coronal suture, over the left hemisphere, from the height of 7 cm. Saline or memantine were applied 15 min after trauma. Rats were euthanased 0.5, 1, 2, 6, 24, 48 h after trauma. Brain tissue samples were taken 5 mm away from the left frontal pole and also from the corresponding point of the contralateral hemispheres. Malondialdehyde activity (MDA) was considered to reflect the degree of lipid peroxidation. The MDA levels continued to increase for the first 2 h after the injury, then started to decrease gradually. Memantine treatment significantly reduced lipid peroxidation levels in the treatment group compared with other groups (P<0.01). The findings of the present study indicate that memantine provides beneficial effects after closed head trauma in rats.
Collapse
Affiliation(s)
- Hakan Ozsüer
- Department of Neurosurgery, Ataturk State Hospital, Izmir, Turkey
| | | | | | | |
Collapse
|