1
|
Nikaido M, Mizuse K, Ohshima Y. Torsional Wave-Packet Dynamics in 2-Fluorobiphenyl Investigated by State-Selective Ionization-Detected Impulsive Stimulated Raman Spectroscopy. J Phys Chem A 2023. [PMID: 37257002 DOI: 10.1021/acs.jpca.3c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the creation and observation of vibrational wave packets pertinent to torsional motion in a biphenyl derivative in its electronic ground-state manifold. Adiabatically cooled molecular samples of 2-fluorobiphenyl were irradiated by intense nonresonant ultrashort laser pulses to drive impulsive stimulated Raman excitation of torsional motion. Spectral change due to the nonadiabatic vibrational excitation is probed in a state-selective manner using resonance-enhanced two-photon ionization through the S1 ← S0 electronic transition. The coherent nature of the excitation was exemplified by adopting irradiation with a pair of pump pulses: observed signals for excited torsional levels exhibit oscillatory variations against the mutual delay between the pump pulses due to wave-packet interference. By taking the Fourier transform of the time course of the signals, energy intervals among torsional levels with v = 0-3 were determined and utilized to calibrate a density functional theory (DFT)-calculated torsional potential-energy function. Time variation of populations in the excited torsional levels was assessed experimentally by measuring integrated intensities of the corresponding transitions while scanning the delay. Early time enhancement of the population (up to ∼2 ps) and gradual degradation of coherence (within ∼20 ps) appears. To explain the observed distinctive features, we developed a four-dimensional (4D) dynamical calculation in which one-dimensional (1D) quantum-mechanical propagation of the torsional motion was followed by solving the time-dependent Schrödinger equation, whereas three-dimensional (3D) molecular rotation was tracked by classical trajectory calculations. This hybrid approach enabled us to reproduce experimental results at a reasonable computational cost and provided a deeper insight into rotational effects on vibrational wave-packet dynamics.
Collapse
Affiliation(s)
- Makoto Nikaido
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro 152-8550, Japan
| | - Kenta Mizuse
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro 152-8550, Japan
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Yasuhiro Ohshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro 152-8550, Japan
| |
Collapse
|
2
|
Qi H, Lian Z, Fei D, Chen Z, Hu Z. Manipulation of matter with shaped-pulse light field and its applications. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1949390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hongxia Qi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
- Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun, China
| | - Zhenzhong Lian
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Dehou Fei
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Zhou Chen
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
- Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun, China
| | - Zhan Hu
- Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun, China
| |
Collapse
|
3
|
Kang YH, Shi ZC, Song J, Xia Y. Effective discrimination of chiral molecules in a cavity. OPTICS LETTERS 2020; 45:4952-4955. [PMID: 32870900 DOI: 10.1364/ol.398859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
We present a scheme to realize precise discrimination of chiral molecules in a cavity. Assisted by additional laser pulses, cavity fields can evolve into different coherence states with contrary-sign displacements according to the handedness of molecules. Consequently, the handedness of molecules can be read out with homodyne measurement on the cavity, and the successful probability is nearly unity without very strong cavity fields. Numerical results show that the scheme is insensitive to errors, noise, and decoherence. Therefore, the scheme may provide helpful perspectives for accurate discrimination of chiral molecules.
Collapse
|
4
|
Leibscher M, Giesen TF, Koch CP. Principles of enantio-selective excitation in three-wave mixing spectroscopy of chiral molecules. J Chem Phys 2019; 151:014302. [DOI: 10.1063/1.5097406] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Monika Leibscher
- Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Thomas F. Giesen
- Experimentalphysik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Christiane P. Koch
- Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
5
|
Vitanov NV, Drewsen M. Highly Efficient Detection and Separation of Chiral Molecules through Shortcuts to Adiabaticity. PHYSICAL REVIEW LETTERS 2019; 122:173202. [PMID: 31107075 DOI: 10.1103/physrevlett.122.173202] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A highly efficient method for optical or microwave detection and separation of left- and right-handed chiral molecules is proposed. The method utilizes a closed-loop three-state system in which the population dynamics depends on the phases of the three couplings. Because of the different signs of the coupling between two of the states for the opposite chiralities the population dynamics is chirality dependent. By using the "shortcuts to adiabaticity" concept applied to the stimulated Raman adiabatic passage technique, one can achieve 100% contrast between the two enantiomers in the population of a particular state. It can be probed by light-induced fluorescence for large ensembles or through resonantly enhanced multiphoton ionization for single molecules.
Collapse
Affiliation(s)
- Nikolay V Vitanov
- Department of Physics, St. Kliment Ohridski University of Sofia, James Bourchier 5 blvd, BG-1164 Sofia, Bulgaria
| | - Michael Drewsen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Thomas EF, Henriksen NE. Breaking dynamic inversion symmetry in a racemic mixture using simple trains of laser pulses. J Chem Phys 2019; 150:024301. [PMID: 30646704 DOI: 10.1063/1.5063536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in ultrafast laser technology hint at the possibility of using shaped pulses to generate deracemization via selective enantiomeric conversion; however, experimental implementation remains a challenge and has not yet been achieved. Here, we describe an experiment that can be considered an accessible intermediate step on the road towards achieving laser induced deracemization in a laboratory. Our approach consists of driving a racemic mixture of 3D oriented 3,5-difluoro-3', 5'-dibromobiphenyl (F2H3C6-C6H3Br2) molecules with a simple train of Gaussian pulses with alternating polarization axes. We use arguments related to the geometry of the field/molecule interaction to illustrate why this will increase the amplitude of the torsional oscillations between the phenyl rings while simultaneously breaking the inversion symmetry of the dynamics between the left- and right-handed enantiomeric forms, two crucial requirements for achieving deracemization. We verify our approach using numerical simulations and show that it leads to significant and experimentally measurable differences in the internal enantiomeric structures when detected by Coulomb explosion imaging.
Collapse
Affiliation(s)
- Esben F Thomas
- Department of Chemistry, Technical University of Denmark, Building 206, DK-2800 Kongens Lyngby, Denmark
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Building 206, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Grohmann T, Seideman T, Leibscher M. Theory of torsional control for G16-type molecules. J Chem Phys 2018. [DOI: 10.1063/1.4997462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Grohmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| | - Monika Leibscher
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|
8
|
Thomas EF, Henriksen NE. Phase-Modulated Nonresonant Laser Pulses Can Selectively Convert Enantiomers in a Racemic Mixture. J Phys Chem Lett 2017; 8:2212-2219. [PMID: 28467085 DOI: 10.1021/acs.jpclett.7b00662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Deracemization occurs when a racemic molecular mixture is transformed into a mixture containing an excess of a single enantiomer. Recent advances in ultrafast laser technology hint at the possibility of using shaped pulses to generate deracemization via selective enantiomeric conversion; however, experimental implementation remains a challenge and has not yet been achieved. Here we suggest a simple, yet novel approach to laser-induced enantiomeric conversion based on dynamic Stark control. We demonstrate theoretically that current laser and optical technology can be used to generate a pair of phase-modulated, nonresonant, linearly polarized Gaussian laser pulses that can selectively deracemize a racemic mixture of 3D-oriented, 3,5-difluoro-3',5'-dibromobiphenyl (F2H3C6-C6H3Br2) molecules, the laser-induced dynamics of which are well studied experimentally. These results strongly suggest that designing a closed-loop coherent control scheme based on this methodology may lead to the first-ever achievement of enantiomeric conversion via coherent laser light in a laboratory setting.
Collapse
Affiliation(s)
- Esben F Thomas
- Department of Chemistry, Technical University of Denmark , Building 206, DK-2800 Kongens Lyngby, Denmark
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark , Building 206, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Takatsuka K. Lorentz-like force emerging from kinematic interactions between electrons and nuclei in molecules: A quantum mechanical origin of symmetry breaking that can trigger molecular chirality. J Chem Phys 2017; 146:084312. [DOI: 10.1063/1.4976976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishikiraki-cho Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
10
|
Zhu X, Liu X, Lan P, Wang D, Zhang Q, Li W, Lu P. Anomalous circular dichroism in high harmonic generation of stereoisomers with two chiral centers. OPTICS EXPRESS 2016; 24:24824-24835. [PMID: 27828424 DOI: 10.1364/oe.24.024824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When a molecule has more than one chiral center, it can be either a chiral molecule or a meso isomer. High harmonic generation (HHG) of stereoisomers with two chiral centers driven by circularly polarized (CP) laser pulses is investigated. Counterintuitively, it is found that the HHG exhibits prominent circular dichroism for the meso isomer, while the harmonic spectra with left and right CP laser pulses are nearly the same for the chiral isomers. We show that the anomalous circular dichroism is attributed to the characteristic recollision dynamics of HHG. This feature makes the HHG a promising tool to discriminate the meso isomer and racemic mixture, where no optical activity can be found in both cases. Similar dichroism responses are also found by applying the counter-rotating bicircular laser pulses.
Collapse
|
11
|
|
12
|
Obaid R, Kinzel D, Oppel M, González L. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative. J Chem Phys 2014; 141:164323. [PMID: 25362315 DOI: 10.1063/1.4899178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.
Collapse
Affiliation(s)
- Rana Obaid
- Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien, Austria
| | - Daniel Kinzel
- Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien, Austria
| | - Markus Oppel
- Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien, Austria
| | - Leticia González
- Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien, Austria
| |
Collapse
|
13
|
Hader K, Engel V. Coherent and incoherent contributions to the carrier-envelope phase control of wave packet localization in quantum double wells. J Chem Phys 2014; 140:184316. [DOI: 10.1063/1.4874876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Parker SM, Ratner MA, Seideman T. Simulating strong field control of axial chirality using optimal control theory. Mol Phys 2012. [DOI: 10.1080/00268976.2012.695808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Floß J, Grohmann T, Leibscher M, Seideman T. Nuclear spin selective laser control of rotational and torsional dynamics. J Chem Phys 2012; 136:084309. [DOI: 10.1063/1.3687343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
16
|
Quantum Switching of Magnetic Fields by Circularly Polarized Re-Optimized π Laser Pulses: From One-Electron Atomic Ions to Molecules. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-15054-8_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Li X, Shapiro M. Theory of the optical spatial separation of racemic mixtures of chiral molecules. J Chem Phys 2010; 132:194315. [DOI: 10.1063/1.3429884] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Madsen CB, Madsen LB, Viftrup SS, Johansson MP, Poulsen TB, Holmegaard L, Kumarappan V, Jørgensen KA, Stapelfeldt H. A combined experimental and theoretical study on realizing and using laser controlled torsion of molecules. J Chem Phys 2009; 130:234310. [DOI: 10.1063/1.3149789] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
Breunig HG, Urbasch G, Horsch P, Cordes J, Koert U, Weitzel KM. Circular Dichroism in Ion Yields of Femtosecond-Laser Mass Spectrometry. Chemphyschem 2009; 10:1199-202. [DOI: 10.1002/cphc.200900103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Alfalah S, Belz S, Deeb O, Leibscher M, Manz J, Zilberg S. Photoinduced quantum dynamics ofortho- andpara-fulvene: Hindered photoisomerization due to mode selective fast radiationless decay via a conical intersection. J Chem Phys 2009; 130:124318. [DOI: 10.1063/1.3089546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
21
|
Klamroth T, Kröner D. Stereoselective isomerization of an ensemble of adsorbed molecules with multiple orientations: stochastic laser pulse optimization for selective switching between achiral and chiral atropisomers. J Chem Phys 2008; 129:234701. [PMID: 19102546 DOI: 10.1063/1.3036927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present quantum dynamical simulations for the laser driven isomerization of an ensemble of surface mounted stereoisomers with multiple orientations. The model system 1-(2-cis-fluoroethenyl)-2-fluorobenzene supports two chiral and one achiral atropisomers upon torsion around the C-C single bond connecting phenyl ring and ethylene group. An infrared picosecond pulse is used to excite the internal rotation around the chiral axis, thereby controlling the chirality of the molecule. In order to selectively switch the molecules--independent of their orientation on a surface--from their achiral to either their left- or right-handed form, a stochastic pulse optimization algorithm is applied. The stochastic pulse optimization is performed for different sets of defined orientations of adsorbates corresponding to the rotational symmetry of the surface. The obtained nonlinearly polarized laser pulses are highly enantioselective for each orientation.
Collapse
Affiliation(s)
- Tillmann Klamroth
- Institut für Chemie, Theoretische Chemie, Universität Potsdam, D-14476 Potsdam, Germany.
| | | |
Collapse
|
22
|
Kröner D, Klaumünzer B, Klamroth T. From stochastic pulse optimization to a stereoselective laser pulse sequence: simulation of a chiroptical molecular switch mounted on adamantane. J Phys Chem A 2008; 112:9924-35. [PMID: 18800773 DOI: 10.1021/jp804352q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum dynamical simulations for the laser-controlled isomerization of 1-(2-cis-fluoroethenyl)-2-fluorobenzene mounted on adamantane are reported based on a one-dimensional electronic ground-state potential and dipole moment calculated by density functional theory. The model system 1-(2-cis-fluoroethenyl)-2-fluorobenzene supports two chiral and one achiral atropisomers upon torsion around the C-C single bond connecting the phenyl ring and ethylene group. The molecule itself is bound to an adamantyl frame which serves as a model for a linker or a surface. Due to the C3 symmetry of the adamantane molecule, the molecular switch can have three equivalent orientations. An infrared picosecond pulse is used to excite the internal rotation around the chiral axis, thereby controlling the chirality of the molecule. In order to selectively switch the molecules--independent of their orientations-- from their achiral to either their left- or right-handed form, a stochastic pulse optimization algorithm is applied. A subsequent detailed analysis of the optimal pulse allows for the design of a stereoselective laser pulse sequence of analytical form. The developed control scheme of elliptically polarized laser pulses is enantioselective and orientation-selective.
Collapse
Affiliation(s)
- Dominik Kröner
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany.
| | | | | |
Collapse
|
23
|
Zhdanov DV, Zadkov VN. Absolute asymmetric synthesis from an isotropic racemic mixture of chiral molecules with the help of their laser orientation-dependent selection. J Chem Phys 2007; 127:244312. [DOI: 10.1063/1.2801640] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
24
|
Kröner D, Klaumünzer B. Laser-operated chiral molecular switch: quantum simulations for the controlled transformation between achiral and chiral atropisomers. Phys Chem Chem Phys 2007; 9:5009-17. [PMID: 17851597 DOI: 10.1039/b705974d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report quantum dynamical simulations for the laser controlled isomerization of 1-(2-cis-fluoroethenyl)-2-fluorobenzene based on one-dimensional electronic ground and excited state potentials obtained from (TD)DFT calculations. 1-(2-cis-fluoroethenyl)-2-fluorobenzene supports two chiral and one achiral atropisomers, the latter being the most stable isomer at room temperature. Using a linearly polarized IR laser pulse the molecule is excited to an internal rotation around its chiral axis, i.e. around the C-C single bond between phenyl ring and ethenyl group, changing the molecular chirality. A second linearly polarized laser pulse stops the torsion to prepare the desired enantiomeric form of the molecule. This laser control allows the selective switching between the achiral and either the left- or right-handed form of the molecule. Once the chirality is "switched on" linearly polarized UV laser pulses allow the selective change of the chirality using the electronic excited state as intermediate state.
Collapse
Affiliation(s)
- Dominik Kröner
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str 24-25, D-14476, Potsdam, Germany.
| | | |
Collapse
|
25
|
Raman excitation of rovibrational coherent and incoherent states via adiabatic passage assisted by dynamic Stark effect. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Kröner D, Klaumünzer B. Stereoselective laser pulse control of an axial chiral molecular model system supporting four stereoisomers. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Korolkov MV, Manz J. Design of UV laser pulses for the preparation of matrix isolated homonuclear diatomic molecules in selective vibrational superposition states. J Chem Phys 2007; 126:174306. [PMID: 17492862 DOI: 10.1063/1.2723724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The preparation of matrix isolated homonuclear diatomic molecules in a vibrational superposition state c0Phie=1,v=0+cjPhie=1,v=j, with large (|c0|2 approximately 1) plus small contributions (|cj|2<<1) of the ground v=0 and specific v=j low excited vibrational eigenstates, respectively, in the electronic ground (e=1) state, and without any net population transfer to electronic excited (e>1) states, is an important challenge; it serves as a prerequisite for coherent spin control. For this purpose, the authors investigate two scenarios of laser pulse control, involving sequential or intrapulse pump- and dump-type transitions via excited vibronic states Phiex,k with a dominant singlet or triplet character. The mechanisms are demonstrated by means of quantum simulations for representative nuclear wave packets on coupled potential energy surfaces, using as an example a one-dimensional model for Cl2 in an Ar matrix. A simple three-state model (including Phi1,0, Phi1,j and Phiex,k) allows illuminating analyses and efficient determinations of the parameters of the laser pulses based on the values of the transition energies and dipole couplings of the transient state which are derived from the absorption spectra.
Collapse
Affiliation(s)
- M V Korolkov
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany.
| | | |
Collapse
|
28
|
Barth I, Manz J, Shigeta Y, Yagi K. Unidirectional Electronic Ring Current Driven by a Few Cycle Circularly Polarized Laser Pulse: Quantum Model Simulations for Mg−Porphyrin. J Am Chem Soc 2006; 128:7043-9. [PMID: 16719485 DOI: 10.1021/ja057197l] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A circularly polarized ultraviolet (UV) laser pulse may excite a unidirectional valence-type electronic ring current in an oriented molecule, within the pulse duration of a few femtoseconds (e.g., tau = 3.5 fs). The mechanism is demonstrated by quantum model simulation for |X = |1(1)A(1g) --> |E(+) = |4 (1)E(u+) population transfer in the model system, Mg-porphyrin. The net ring current generated by the laser pulse (I = 84.5 microA) is at least 100 times stronger than any ring current, which could be induced by means of permanent magnetic fields, with present technology.
Collapse
Affiliation(s)
- Ingo Barth
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Barth I, Manz J. Anregung periodischer Elektronen-Kreisbewegung durch circular polarisierte Laserpulse: quantenmechanische Modell-Simulationen für Mg-Porphyrin. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504147] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Barth I, Manz J. Periodic Electron Circulation Induced by Circularly Polarized Laser Pulses: Quantum Model Simulations for Mg Porphyrin. Angew Chem Int Ed Engl 2006; 45:2962-5. [PMID: 16555355 DOI: 10.1002/anie.200504147] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ingo Barth
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | |
Collapse
|
31
|
Gerbasi D, Shapiro M, Brumer P. Theory of “laser distillation” of enantiomers: Purification of a racemic mixture of randomly oriented dimethylallene in a collisional environment. J Chem Phys 2006; 124:74315. [PMID: 16497044 DOI: 10.1063/1.2171968] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Enantiomeric control of 1,3 dimethylallene in a collisional environment is examined. Specifically, our previous "laser distillation" scenario wherein three perpendicular linearly polarized light fields are applied to excite a set of vib-rotational eigenstates of a randomly oriented sample is considered. The addition of internal conversion, dissociation, decoherence, and collisional relaxation mimics experimental conditions and molecular decay processes. Of greatest relevance is internal conversion which, in the case of dimethylallene, is followed by molecular dissociation. For various rates of internal conversion, enantiomeric control is maintained in this scenario by a delicate balance between collisional relaxation of excited dimethylallene that enhances control and collisional dephasing, which diminishes control.
Collapse
Affiliation(s)
- David Gerbasi
- Center for Quantum Information and Quantum Control, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
González L, Manz J, Schmidt B, Shibl MF. Optical resolution of oriented enantiomers via photodissociation: quantum model simulations for H2POSD. Phys Chem Chem Phys 2005; 7:4096-101. [PMID: 16474874 DOI: 10.1039/b511495k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We demonstrate quantum mechanically how to resolve enantiomers from an oriented racemic mixture taking advantage of photodissociation. Our approach employs a femtosecond ultraviolet (UV) laser pulse with specific linear polarization achieving selective photodissociation of one enantiomer from a mixture of L and R enantiomers. As a result, the selected enantiomer is destroyed in the electronically excited state while the opposite enantiomer is left intact in the ground state. As an example we use H2POSD which presents axial chirality. A UV pulse excites the lowest singlet excited state which has nsigma* character and is, therefore, strongly repulsive along the P-S bond. The model simulations are performed using wavepackets which propagate on two dimensional potential energy surfaces, calculated along the chirality and dissociation reaction coordinates using the CASSCF level of theory.
Collapse
Affiliation(s)
- Leticia González
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
33
|
|
34
|
Hoki K, González L, Shibl MF, Fujimura Y. Sequential Pump-Dump Control of Photoisomerization Competing with Photodissociation of Optical Isomers. J Phys Chem A 2004. [DOI: 10.1021/jp0495038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kunihito Hoki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan, and Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, D-14195, Germany
| | - Leticia González
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan, and Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, D-14195, Germany
| | - Mohamed F. Shibl
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan, and Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, D-14195, Germany
| | - Yuichi Fujimura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan, and Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, D-14195, Germany
| |
Collapse
|
35
|
Thanopulos I, Paspalakis E, Kis Z. Laser-driven coherent manipulation of molecular chirality. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.03.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Abstract
Active control of chemical reactions on a microscopic (molecular) level, that is, the selective breaking or making of chemical bonds, is an old dream. However, conventional control agents used in chemical synthesis are macroscopic variables such as temperature, pressure or concentration, which gives no direct access to the quantum-mechanical reaction pathway. In quantum control, by contrast, molecular dynamics are guided with specifically designed light fields. Thus it is possible to efficiently and selectively reach user-defined reaction channels. In the last years, experimental techniques were developed by which many breakthroughs in this field were achieved. Femtosecond laser pulses are manipulated in so-called pulse shapers to generate electric field profiles which are specifically adapted to a given quantum system and control objective. The search for optimal fields is guided by an automated learning loop, which employs direct feedback from experimental output. Thereby quantum control over gas-phase as well as liquid-phase femtochemical processes has become possible. In this review, we first discuss the theoretical and experimental background for many of the recent experiments treated in the literature. Examples from our own research are then used to illustrate several fundamental and practical aspects in gas-phase as well as liquid-phase quantum control. Some additional technological applications and developments are also described, such as the automated optimization of the output from commercial femtosecond laser systems, or the control over the polarization state of light on an ultrashort timescale. The increasing number of successful implementations of adaptive learning techniques points at the great versatility of computer-guided optimization methods. The general approach to active control of light-matter interaction has also applications in many other areas of modern physics and related disciplines.
Collapse
Affiliation(s)
- Tobias Brixner
- Physikalisches Institut, Universität Würzburg Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
37
|
Kröner D, González L. Enantioselective separation of axial chiral olefins by laser pulses using coupled torsion and pyramidalization motions. Phys Chem Chem Phys 2003. [DOI: 10.1039/b303891b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Brumer Y, Shapiro M, Brumer P, Baldridge KK. Controlled Alcohol−Ketone Interconversion by Dihydrogen Transfer: An ab Initio Study of the Methanol−Formaldehyde Complex. J Phys Chem A 2002. [DOI: 10.1021/jp020689p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yisroel Brumer
- Chemical Physics Department, The Weizmann Institute of Science, Rehovot, Israel 76100
| | - Moshe Shapiro
- Chemical Physics Department, The Weizmann Institute of Science, Rehovot, Israel 76100
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Canada M5S 3H6
| | - Kim K. Baldridge
- University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0505
| |
Collapse
|
39
|
Hoki K, González L, Fujimura Y. Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields. J Chem Phys 2002. [DOI: 10.1063/1.1472512] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Ohta Y, Hoki K, Fujimura Y. Theory of stimulated Raman adiabatic passage in a degenerated reaction system: Application to control of molecular handedness. J Chem Phys 2002. [DOI: 10.1063/1.1467054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Hoki K, González L, Fujimura Y. Control of molecular handedness using pump-dump laser pulses. J Chem Phys 2002. [DOI: 10.1063/1.1432996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|