1
|
Schirato A, Sanders SK, Proietti Zaccaria R, Nordlander P, Della Valle G, Alabastri A. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. ACS NANO 2024; 18:18933-18947. [PMID: 38990155 DOI: 10.1021/acsnano.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants. Accurate predictions of the plasmon photocatalytic activity can lead to optimized nanophotonic architectures with enhanced selectivity and rates, operating beyond the intrinsic limitations of the steady state. Here, we report on an original modeling approach to quantify, with space, time, and energy resolution, the ultrafast energy exchange from plasmonic hot carriers (HCs) to molecular systems adsorbed on the metal nanoparticle surface while consistently accounting for photothermal bond activation. Our analysis, illustrated for a few typical cases, reveals that the most energetic nonequilibrium carriers (i.e., with energies well far from the Fermi level) may introduce a wavelength-dependence of the reaction rates, and it elucidates on the role of the carriers closer to the Fermi energy and the photothermally heated lattice, suggesting ways to enhance and optimize each contribution. We show that the overall reaction rates can benefit strongly from using pulsed illumination with the optimal pulse width determined by the properties of the system. Taken together, these results contribute to the rational design of nanoreactors for pulsed catalysis, which calls for predictive modeling of the ultrafast HC-hot adsorbate energy transfer.
Collapse
Affiliation(s)
- Andrea Schirato
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stephen Keith Sanders
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Giuseppe Della Valle
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Istituto di Fotonica e Nanotecnologie─Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Swearer DF, Bourgeois BB, Angell DK, Dionne JA. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy. Acc Chem Res 2021; 54:3632-3642. [PMID: 34492177 DOI: 10.1021/acs.accounts.1c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticle photocatalysts are essential to processes ranging from chemical production and water purification to air filtration and surgical instrument sterilization. Photochemical reactions are generally mediated by the illumination of metallic and/or semiconducting nanomaterials, which provide the necessary optical absorption, electronic band structure, and surface faceting to drive molecular reactions. However, with reaction efficiency and selectivity dictated by atomic and molecular interactions, imaging and controlling photochemistry at the atomic scale are necessary to both understand reaction mechanisms and to improve nanomaterials for next-generation catalysts. Here, we describe how advances in plasmonics, combined with advances in electron microscopy, particularly optically coupled transmission electron microscopy (OTEM), can be used to image and control light-induced chemical transformations at the nanoscale. We focus on our group's research investigating the interaction between hydrogen gas and Pd nanoparticles, which presents an important model system for understanding both hydrogenation catalysis and hydrogen storage. The studies described in this Account primarily rely on an environmental transmission electron microscope, a tool capable of circumventing traditional TEM's high-vacuum requirements, outfitted with optical sources and detectors to couple light into and out of the microscope. First, we describe the H2 loading kinetics of individual Pd nanoparticles. When confined to sizes of less than ∼100 nm, single-crystalline Pd nanoparticles exhibit coherent phase transformations between the hydrogen-poor α-phase and hydrogen-rich β-phase, as revealed through monitoring the bulk plasmon resonance with electron energy loss spectroscopy. Next, we describe how contrast imaging techniques, such as phase contrast STEM and displaced-aperture dark field, can be employed as real-time techniques to image phase transformations with 100 ms temporal resolution. Studies of multiply twinned Pd nanoparticles and high aspect ratio Pd nanorods demonstrate that internal strain and grain boundaries can lead to partial hydrogenation within individual nanoparticles. Finally, we describe how OTEM can be used to locally probe nanoparticle dynamics under optical excitation and in reactive chemical environments. Under illumination, multicomponent plasmonic photocatalysts consisting of a gold nanoparticle "antenna" and a Pd "reactor" show clear α-phase nucleation in regions close to electromagnetic "hot spots" when near plasmonic antennas. Importantly, these hot spots need not correspond to the traditionally active, energetically preferred sites of catalytic nanoparticles. Nonthermal effects imparted by plasmonic nanoparticles, including electromagnetic field enhancement and plasmon-derived hot carriers, are crucial to explaining the site selectivity observed in PdHx phase transformations under illumination. This Account demonstrates how light can contribute to selective chemical phenomena in plasmonic heterostructures, en route to sustainable, solar-driven chemical production.
Collapse
Affiliation(s)
- Dayne F. Swearer
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Briley B. Bourgeois
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Daniel K. Angell
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
3
|
Vyshnepolsky M, Ding ZB, Srivastava P, Tesarik P, Mazhar H, Maestri M, Morgenstern K. The Influence of a Changing Local Environment during Photoinduced CO 2 Dissociation. Angew Chem Int Ed Engl 2021; 60:18217-18222. [PMID: 33999493 PMCID: PMC8456919 DOI: 10.1002/anie.202105468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Though largely influencing the efficiency of a reaction, the molecular-scale details of the local environment of the reactants are experimentally inaccessible hindering an in-depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate-limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single-molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano-like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.
Collapse
Affiliation(s)
- Michael Vyshnepolsky
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Zhao-Bin Ding
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy
| | - Prashant Srivastava
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Patrik Tesarik
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Hussain Mazhar
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy
| | - Karina Morgenstern
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
4
|
Vyshnepolsky M, Ding Z, Srivastava P, Tesarik P, Mazhar H, Maestri M, Morgenstern K. The Influence of a Changing Local Environment during Photoinduced CO
2
Dissociation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Vyshnepolsky
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Zhao‐Bin Ding
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia, Politecnico di Milano via La Masa 34 20156 Milano Italy
| | - Prashant Srivastava
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Patrik Tesarik
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Hussain Mazhar
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia, Politecnico di Milano via La Masa 34 20156 Milano Italy
| | - Karina Morgenstern
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
5
|
Potapov A, McCoustra M. Physics and chemistry on the surface of cosmic dust grains: a laboratory view. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1918498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexey Potapov
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Jena, Germany
| | - Martin McCoustra
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
6
|
Baffou G, Bordacchini I, Baldi A, Quidant R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. LIGHT, SCIENCE & APPLICATIONS 2020; 9:108. [PMID: 32612818 PMCID: PMC7321931 DOI: 10.1038/s41377-020-00345-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 05/11/2023]
Abstract
Light absorption and scattering of plasmonic metal nanoparticles can lead to non-equilibrium charge carriers, intense electromagnetic near-fields, and heat generation, with promising applications in a vast range of fields, from chemical and physical sensing to nanomedicine and photocatalysis for the sustainable production of fuels and chemicals. Disentangling the relative contribution of thermal and non-thermal contributions in plasmon-driven processes is, however, difficult. Nanoscale temperature measurements are technically challenging, and macroscale experiments are often characterized by collective heating effects, which tend to make the actual temperature increase unpredictable. This work is intended to help the reader experimentally detect and quantify photothermal effects in plasmon-driven chemical reactions, to discriminate their contribution from that due to photochemical processes and to cast a critical eye on the current literature. To this aim, we review, and in some cases propose, seven simple experimental procedures that do not require the use of complex or expensive thermal microscopy techniques. These proposed procedures are adaptable to a wide range of experiments and fields of research where photothermal effects need to be assessed, such as plasmonic-assisted chemistry, heterogeneous catalysis, photovoltaics, biosensing, and enhanced molecular spectroscopy.
Collapse
Affiliation(s)
- Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Ivan Bordacchini
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Andrea Baldi
- DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Romain Quidant
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
7
|
Zwaschka G, Tong Y, Wolf M, Kramer Campen R. Probing the Hydrogen Evolution Reaction and Charge Transfer on Platinum Electrodes on Femtosecond Timescales. ChemElectroChem 2019. [DOI: 10.1002/celc.201900336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- G. Zwaschka
- Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - Y. Tong
- Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - M. Wolf
- Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - R. Kramer Campen
- Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| |
Collapse
|
8
|
Chang MH, Kim NY, Chang YH, Lee Y, Jeon US, Kim H, Kim YH, Kahng SJ. O 2, NO 2 and NH 3 coordination to Co-porphyrin studied with scanning tunneling microscopy on Au(111). NANOSCALE 2019; 11:8510-8517. [PMID: 30990501 DOI: 10.1039/c9nr00843h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The coordination structure between small molecules and metalloporphyrins plays a crucial role in functional reactions such as bio-oxidation and catalytic activation. Their vertical, tilting, and dynamic structures have been actively studied with diffraction and resonance spectroscopy for the past four decades. Contrastingly, real-space visualization beyond simple protrusion and depression is relatively rare. In this paper, high-resolution scanning tunnelling microscopy (STM) images are presented of di-, tri-, and tetra-atomic small molecules (O2, NO2, and NH3, respectively) coordinated to Co-porphyrin on Au(111). A square ring structure was observed for O2, a rectangular ring structure for NO2, and a bright-center structure for NH3 at 80 K. The symmetries of experimental STM images were reproduced in density functional theory (DFT) calculations, considering the precession motion of the small molecules. Thus, this study shows that the structure of small molecules coordinated to metalloporphyrins can be visualized using high-resolution STM and DFT calculations.
Collapse
Affiliation(s)
- Min Hui Chang
- Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Arieli U, Mrejen M, Suchowski H. Broadband coherent hyperspectral near-field imaging of plasmonic nanostructures. OPTICS EXPRESS 2019; 27:9815-9820. [PMID: 31045130 DOI: 10.1364/oe.27.009815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
We develop a coherent hyperspectral near-field microscope using a combined nano-Fourier Transform Infra-Red (FTIR) spectroscope and a scattering Scanning Near-field Optical Microscope (s-SNOM) illuminated by an ultra-broadband few-cycle femtosecond source, spanning a spectrum from 660 to 1050 nm. Using this spatio-spectral approach, we resolve hyperspectral near-field response of a single plasmonic nano-antennas over 450 nm bandwidth with a spatial resolution of 40 nm and a spectral resolution of 50 cm-1. In particular, we identify the electric near-field spatial distribution of the dipole resonant mode of various nano-antennas and observe, in accordance with previous theoretical reports, that those are spectrally red-shifted from their far-field response. Moreover, we are able to spectrally and spatially differentiate the near-field distribution of the dipole and quadrupole modes at the single nanoparticle level. Being coherent and short-pulsed, our technique opens the path for optical ultrafast characterization and control of light-matter interaction at the nanoscale.
Collapse
|
10
|
Edward S, Antoncecchi A, Zhang H, Sielcken H, Witte S, Planken PCM. Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics. OPTICS EXPRESS 2018; 26:23380-23396. [PMID: 30184840 DOI: 10.1364/oe.26.023380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
We report on femtosecond optical pump-probe measurements of ultrafast electron dynamics to detect the presence of gratings buried underneath optically opaque gold layers. Electron energy diffusion and cooling are found to be strongly affected by the presence and type of metal buried below the gold layer. As a result, the spatially periodic buried grating is encoded on the electron temperature near the top surface, leading to a spatially periodic modulation of the optical properties near the gold surface from which a delayed probe pulse can be diffracted. Our measurements show that these effects may be useful for optical detection and alignment applications in semiconductor device manufacturing.
Collapse
|
11
|
Christopher P, Moskovits M. Hot Charge Carrier Transmission from Plasmonic Nanostructures. Annu Rev Phys Chem 2017; 68:379-398. [DOI: 10.1146/annurev-physchem-052516-044948] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Phillip Christopher
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521
| | - Martin Moskovits
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| |
Collapse
|
12
|
Affiliation(s)
- Matthew J. Kale
- Department of Chemical & Environmental Engineering and ‡Program in Materials Science & Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Talin Avanesian
- Department of Chemical & Environmental Engineering and ‡Program in Materials Science & Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Phillip Christopher
- Department of Chemical & Environmental Engineering and ‡Program in Materials Science & Engineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
13
|
Linic S, Christopher P, Xin H, Marimuthu A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc Chem Res 2013; 46:1890-9. [PMID: 23750539 DOI: 10.1021/ar3002393] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heterogeneous catalysis by metals was among the first enabling technologies that extensively relied on nanoscience. The early intersections of catalysis and nanoscience focused on the synthesis of catalytic materials with high surface to volume ratio. These synthesis strategies mainly involved the impregnation of metal salts on high surface area supports. This would usually yield quasi-spherical nanoparticles capped by low-energy surface facets, typically with closely packed metal atoms. These high density areas often function as the catalytically active surface sites. Unfortunately, strategies to control the functioning surface facet (i.e., the geometry of active sites that performs catalytic turnover) are rare and represent a significant challenge in our ability to fine-tune and optimize the reactive surfaces. Through recent developments in colloidal chemistry, chemists have been able to synthesize metallic nanoparticles of both targeted size and desired shape. This has opened new possibilities for the design of heterogeneous catalytic materials, since metal nanoparticles of different shapes are terminated with different surface facets. By controlling the surface facet exposed to reactants, we can start affecting the chemical transformations taking place on the metal particles and changing the outcome of catalytic processes. Controlling the size and shape of metal nanoparticles also allows us to control the optical properties of these materials. For example, noble metals nanoparticles (Au, Ag, Cu) interact with UV-vis light through an excitation of localized surface plasmon resonance (LSPR), which is highly sensitive to the size and shape of the nanostructures. This excitation is accompanied by the creation of short-lived energetic electrons on the surface of the nanostructure. We showed recently that these energetic electrons could drive photocatalytic transformations on these nanostructures. The photocatalytic, electron-driven processes on metal nanoparticles represent a new family of chemical transformations exhibiting fundamentally different behavior compared with phonon-driven thermal processes, potentially allowing selective bond activation. In this Account, we discuss both the impact of the shape of metal nanoparticles on the outcome of heterogeneous catalytic reactions and the direct, electron-driven photocatalysis on plasmonic metal nanostructures of noble metals. These two phenomena are important examples of taking advantage of physical properties of metal materials that are controlled at nanoscales to affect chemical transformations.
Collapse
Affiliation(s)
- Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California, 92521, United States
- Program in Materials Science and Engineering, University of California, Riverside, Riverside, California, 92521, United States
| | - Hongliang Xin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Andiappan Marimuthu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
14
|
Füchsel G, Tremblay JC, Klamroth T, Saalfrank P. Quantum Dynamical Simulations of the Femtosecond-Laser-Induced Ultrafast Desorption of H2and D2from Ru(0001). Chemphyschem 2013; 14:1471-8. [DOI: 10.1002/cphc.201200940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 11/12/2022]
|
15
|
Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. NANO LETTERS 2013; 13:240-247. [PMID: 23194158 DOI: 10.1021/nl303940z] [Citation(s) in RCA: 809] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heterogeneous catalysis is of paramount importance in chemistry and energy applications. Catalysts that couple light energy into chemical reactions in a directed, orbital-specific manner would greatly reduce the energy input requirements of chemical transformations, revolutionizing catalysis-driven chemistry. Here we report the room temperature dissociation of H(2) on gold nanoparticles using visible light. Surface plasmons excited in the Au nanoparticle decay into hot electrons with energies between the vacuum level and the work function of the metal. In this transient state, hot electrons can transfer into a Feshbach resonance of an H(2) molecule adsorbed on the Au nanoparticle surface, triggering dissociation. We probe this process by detecting the formation of HD molecules from the dissociations of H(2) and D(2) and investigate the effect of Au nanoparticle size and wavelength of incident light on the rate of HD formation. This work opens a new pathway for controlling chemical reactions on metallic catalysts.
Collapse
Affiliation(s)
- Shaunak Mukherjee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Christopher P, Xin H, Marimuthu A, Linic S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. NATURE MATERIALS 2012. [PMID: 23178296 DOI: 10.1038/nmat3454] [Citation(s) in RCA: 429] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate ∝ intensity(n), with n > 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.
Collapse
Affiliation(s)
- Phillip Christopher
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
17
|
Gadzuk JW. The road to hot electron photochemistry at surfaces: A personal recollection. J Chem Phys 2012; 137:091703. [DOI: 10.1063/1.4746800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Shenvi N, Tully JC. Nonadiabatic dynamics at metal surfaces: Independent electron surface hopping with phonon and electron thermostats. Faraday Discuss 2012; 157:325-35; discussion 375-98. [DOI: 10.1039/c2fd20032e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. NATURE MATERIALS 2011; 10:911-21. [PMID: 22109608 DOI: 10.1038/nmat3151] [Citation(s) in RCA: 2169] [Impact Index Per Article: 154.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.
Collapse
Affiliation(s)
- Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
20
|
Szymanski P, Harris AL, Camillone N. Temperature-dependent femtosecond photoinduced desorption in CO/Pd(111). J Phys Chem A 2007; 111:12524-33. [PMID: 17975899 DOI: 10.1021/jp075923w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The desorption of CO from a Pd(111) surface following absorption of 120 fs pulses of 780 nm light occurs on two distinct and well-separated time scales. Two-pulse correlation measurements show a fast subpicosecond decay followed by a slower, approximately 40 ps decay. Simulations based on the two-temperature model of electron and phonon heat baths within the substrate, and an empirical friction model to treat coupling to the adsorbate, support the assignment of the desorption mechanism as an electron-mediated process. The photodesorption yield and overall width of the temporal response exhibit a marked dependence on the initial surface temperature in the 100-375 K range despite the much higher transient electronic temperatures (approximately 7000 K) achieved. The observed temperature dependences can be attributed directly to variations in the initial temperature within the frictional coupling picture. Simulations of this extended data set imply that the activation barrier to photoinduced desorption is equal in magnitude to that derived from thermal desorption experiments for this system within the limits of a one-dimensional Arrhenius desorption model. The simulations also imply that the slower decay is not the result of phonon-driven desorption. Though we cannot unambiguously determine the strength of the adsorbate-phonon coupling, our results suggest that its role is to moderate the degree of the adsorbate excitation.
Collapse
Affiliation(s)
- Paul Szymanski
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Kazuo Watanabe
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
22
|
Frischkorn C, Wolf M. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem Rev 2007; 106:4207-33. [PMID: 17031984 DOI: 10.1021/cr050161r] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christian Frischkorn
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| | | |
Collapse
|
23
|
Nazmutdinov RR, Manyurov IR, Schmickler W. The effect of ‘hot’ electrons on the heterogeneous adiabatic charge transfer reactions. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.06.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Saalfrank P. Quantum Dynamical Approach to Ultrafast Molecular Desorption from Surfaces. Chem Rev 2006; 106:4116-59. [PMID: 17031982 DOI: 10.1021/cr0501691] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
25
|
Bauer C, Abid JP, Girault HH. Hot Adsorbate-Induced Retardation of the Internal Thermalization of Nonequilibrium Electrons in Adsorbate-Covered Metal Nanoparticles. J Phys Chem B 2006; 110:4519-23. [PMID: 16526676 DOI: 10.1021/jp060179l] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond transient absorption spectroscopy has been used to investigate the electron-electron scattering dynamics in sulfate-covered gold nanoparticles of 2.5 and 9.2 nm in diameter. We observe an unexpected retardation of the absolute internal thermalization time compared to bulk gold, which is attributed to a negative feedback by the vibrationally excited sulfate molecules. These hot adsorbates, acting as a transient energy reservoir, result from the back and forth inelastic scattering of metal nonequilibrium electrons into the pi orbital of the sulfate. The vibrationally excited adsorbates temporarily govern the dynamical behavior of nonequilibrium electrons in the metal by re-emitting hot electrons. In other terms, metal electrons reabsorb the energy deposited in the hot sulfates by a mechanism involving the charge resonance between the sulfate molecules and the gold NPs. The higher surface-to-volume ratio of sulfate-covered gold nanoparticles of 2.5 nm leads to a stronger inhibition of the internal thermalization. Interestingly, we also note an analogy between the mechanism described here for the slow-down of electron-electron scattering in metal nanoparticles by the hot adsorbates and the hot phonon-induced retardation of hot charge carriers cooling in semiconductors.
Collapse
|
26
|
Bauer C, Abid JP, Girault HH. Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2005.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Nakamura H, Yamashita K. Electron tunneling of photochemical reactions on metal surfaces: Nonequilibrium Green’s function–density functional theory approach to photon energy dependence of reaction probability. J Chem Phys 2005; 122:194706. [PMID: 16161605 DOI: 10.1063/1.1902946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have developed a theoretical model of photoinduced reactions on metal surfaces initiated by the substrate/indirect excitation mechanism using the nonequilibrium Green's function approach. We focus on electron transfer, which consists of (1) electron-hole pair creation, (2) transport of created hot electrons, and (3) tunneling of hot electrons to form an anion resonance. We assume that steps (1), (2), and (3) are separable. By this assumption, the electron dynamics might be restated as a tunneling problem of an open system. Combining the Keldysh time-independent formalism with the simple transport theory introduced by Berglund and Spicer, we present a practical scheme for first-principle calculation of the reaction probability as a function of incident photon energy. The method is illustrated by application to the photoinduced desorption/dissociation of O2 on a Ag(110) surface by adopting density functional theory.
Collapse
Affiliation(s)
- Hisao Nakamura
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | | |
Collapse
|
28
|
Jørgensen S, Dubnikova F, Kosloff R, Zeiri Y, Lilach Y, Asscher M. Theoretical Modeling of Steric Effect in Electron-Induced Desorption: CH3Br/O/Ru(001). J Phys Chem B 2004. [DOI: 10.1021/jp0477497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Yehuda Zeiri
- Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| | | | | |
Collapse
|
29
|
Arnolds H, Levis RJ, King DA. Vibrationally assisted DIET through transient temperature rise: the case of benzene on Pt{111}. Chem Phys Lett 2003. [DOI: 10.1016/j.cplett.2003.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Nest M, Saalfrank P. Open-system density matrix description of femtosecond laser desorption of electronically and vibrationally relaxing adsorbates: Single- and two-pulse scenarios. J Chem Phys 2002. [DOI: 10.1063/1.1462608] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Micha DA, Santana A, Salam A. Nonlinear optical response and yield in the femtosecond photodesorption of CO from the Cu(001) surface: A density matrix treatment. J Chem Phys 2002. [DOI: 10.1063/1.1448486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
|
33
|
Petek H, Nagano H, Weida MJ, Ogawa S. Surface Femtochemistry: Frustrated Desorption of Alkali Atoms from Noble Metals. J Phys Chem B 2001. [DOI: 10.1021/jp0045235] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. Petek
- Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - H. Nagano
- Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - M. J. Weida
- Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - S. Ogawa
- Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| |
Collapse
|
34
|
Abstract
Theoretical aspects of dynamical processes at metal surfaces are reviewed. Experimental challenges to theory are presented and progress toward meeting these challenges is appraised. Topics include adsorbate vibrational energy flow, inelastic molecule-surface scattering, adsorption, transient mobility, dissociation, desorption, photochemistry, and electron-induced chemistry at metal surfaces. Experimental examples cited illustrate the richness of dynamical phenomena to be understood and the necessity of developing multidimensional, beyond Born-Oppenheimer, formulations of adsorbate dynamics. Classical mechanical and quantum mechanical treatments of dynamics are contrasted. The importance of including phonon and electron-hole pair dissipation in theories of adsorbate dynamics is emphasized, and strategies for doing this in classical and quantum treatments are presented.
Collapse
Affiliation(s)
- J C Tully
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA.
| |
Collapse
|