1
|
Kim C, Lee OC, Kim JY, Sung W, Lee NK. Dynamic Release of Bending Stress in Short dsDNA by Formation of a Kink and Forks. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Kim C, Lee OC, Kim JY, Sung W, Lee NK. Dynamic Release of Bending Stress in Short dsDNA by Formation of a Kink and Forks. Angew Chem Int Ed Engl 2015; 54:8943-7. [PMID: 26046547 PMCID: PMC4744731 DOI: 10.1002/anie.201502055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/21/2022]
Abstract
Bending with high curvature is one of the major mechanical properties of double-stranded DNA (dsDNA) that is essential for its biological functions. The emergence of a kink arising from local melting in the middle of dsDNA has been suggested as a mechanism of releasing the energy cost of bending. Herein, we report that strong bending induces two types of short dsDNA deformations, induced by two types of local melting, namely, a kink in the middle and forks at the ends, which we demonstrate using D-shaped DNA nanostructures. The two types of deformed dsDNA structures dynamically interconvert on a millisecond timescale. The transition from a fork to a kink is dominated by entropic contribution (anti-Arrhenius behavior), while the transition from a kink to a fork is dominated by enthalpic contributions. The presence of mismatches in dsDNA accelerates kink formation, and the transition from a kink to a fork is removed when the mismatch size is three base pairs.
Collapse
Affiliation(s)
- Cheolhee Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
| | - O-chul Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
| | - Jae-Yeol Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
| | - Wokyung Sung
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
- IBS Center for Self-assembly and Complexity, Pohang 790-784 (Republic of Korea)
| | - Nam Ki Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea).
| |
Collapse
|
3
|
Manning GS. Excess counterion condensation on polyelectrolyte kinks and branch points and the interaction of skewed charged lines. SOFT MATTER 2014; 10:3738-3747. [PMID: 24686839 DOI: 10.1039/c4sm00256c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed explicit formulas for the excess number of counterions condensed on kinked and intersecting charged lines caused by the more intense electric field in the neighborhood of the kink or intersection. As expected, the number of additionally bound counterions is greater for more pronounced kinks, and also increases with the number of lines that intersect at a common point. We have also analyzed the electrostatic interaction potential as a function of distance between two charged lines in skewed orientation. Our finding in this case is that in a range of close distances the lines must cross a free energy barrier in order to separate.
Collapse
Affiliation(s)
- Gerald S Manning
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA.
| |
Collapse
|
4
|
Fields AP, Meyer EA, Cohen AE. Euler buckling and nonlinear kinking of double-stranded DNA. Nucleic Acids Res 2013; 41:9881-90. [PMID: 23956222 PMCID: PMC3834817 DOI: 10.1093/nar/gkt739] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a 'molecular vise' in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (<41 base pairs) resisted this force and remained straight; longer strands became bent, a phenomenon called 'Euler buckling'. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any 'kinked' states. Greater concentrations of monovalent salts or 1 mM Mg(2+) induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA.
Collapse
Affiliation(s)
- Alexander P Fields
- Biophysics Program, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
5
|
Salt-dependent folding energy landscape of RNA three-way junction. Biophys J 2010; 98:111-20. [PMID: 20085723 DOI: 10.1016/j.bpj.2009.09.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/26/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
RNAs are highly negatively charged chain molecules. Metal ions play a crucial role in RNA folding stability and conformational changes. In this work, we employ the recently developed tightly bound ion (TBI) model, which accounts for the correlation between ions and the fluctuation of ion distributions, to investigate the ion-dependent free energy landscape for the three-way RNA junction in a 16S rRNA domain. The predicted electrostatic free energy landscape suggests that 1), ion-mediated electrostatic interactions cause an ensemble of unfolded conformations narrowly populated around the maximally extended structure; and 2), Mg(2+) ion-induced correlation effects help bring the helices to the folded state. Nonelectrostatic interactions, such as noncanonical interactions within the junctions and between junctions and helix stems, might further limit the conformational diversity of the unfolded state, resulting in a more ordered unfolded state than the one predicted from the electrostatic effect. Moreover, the folded state is predominantly stabilized by the coaxial stacking force. The TBI-predicted folding stability agrees well with the experimental measurements for the different Na(+) and Mg(2+) ion concentrations. For Mg(2+) solutions, the TBI model, which accounts for the Mg(2+) ion correlation effect, gives more improved predictions than the Poisson-Boltzmann theory, which tends to underestimate the role of Mg(2+) in stabilizing the folded structure. Detailed control tests indicate that the dominant ion correlation effect comes from the charge-charge Coulombic correlation rather than the size (excluded volume) correlation between the ions. Furthermore, the model gives quantitative predictions for the ion size effect in the folding energy landscape and folding cooperativity.
Collapse
|
6
|
Abstract
The poyion-ion preferential interaction coefficient Gamma describes the exclusion of coions and accumulations of counterions in the vicinity of a polyion in an aqueous solution. We give tight upper and lower bounds for Gamma when the polyion can be modeled by a cylinder of infinite length but of arbitrary charge density. This case can be used as a model for long strands of DNA or RNA in an aqueous solution containing univalent cations. The salt dependence of Gamma is predicted from low to intermediate and high salt concentrations. We also indicate how the bounds for the infinite polyion can be exploited to place bounds for polyions of length greater than a constant on the order of the inverse Debye screening length.
Collapse
Affiliation(s)
- Clifford H Taubes
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
7
|
Mohanty U, Spasic A, Kim HD, Chu S. Ion atmosphere of three-way junction nucleic acid. J Phys Chem B 2007; 109:21369-74. [PMID: 16853772 DOI: 10.1021/jp050005o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ion atmosphere of three-armed symmetric Y-shaped and asymmetric y-shaped A-RNA junctions in aqueous solution containing multivalent ions is described within the framework of a polyelectrolyte model. The fraction of "screening counterions" per polyion charge that shield the residual unneutralized charges from interacting with one another and the condensed counterions per polyion charge as a function of sodium and magnesium ion concentrations are determined. The predictions for the slope of log(k(o)/k(f)) as a function of Na+ and Mg2+ concentration, where k(o) and k(f) are the opening and folding rates of the three-helix junction molecule, respectively, are compared with experimental data (Kim et al. Proc. Nat. Acad. Sci. U.S.A. 2002, 96, 9077-9082).
Collapse
Affiliation(s)
- Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | |
Collapse
|
8
|
Liu J, Déclais AC, Lilley DMJ. Electrostatic Interactions and the Folding of the Four-way DNA Junction: Analysis by Selective Methyl Phosphonate Substitution. J Mol Biol 2004; 343:851-64. [PMID: 15476805 DOI: 10.1016/j.jmb.2004.08.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 08/24/2004] [Accepted: 08/25/2004] [Indexed: 11/16/2022]
Abstract
The structure and dynamics of the four-way (Holliday) junction are strongly dependent on the presence of metal ions. In this study, the importance of phosphate charge in and around the point of strand exchange has been explored by selective replacement with electrically neutral methyl phosphonate groups, guided by crystal structures of the junction in the folded, stacked X conformation. Junction conformation has been analysed by comparative gel electrophoresis and fluorescence resonance energy transfer (FRET). Three of sets of phosphate groups on the exchanging strands have been analysed; those at the point of strand exchange and those to their 3' and 5' sides. The exchanging and 3' phosphate groups form a box of negatively charged groups on the minor groove face of the junction, while the 5' phosphate groups face each other on the major groove side, with their proR oxygen atoms directed at one another. The largest effects are observed on substitution of the exchanging phosphate groups; replacement of both groups leads to the loss of the requirement for addition of metal ions to allow junction folding. When the equivalent phosphate groups on the continuous strands were substituted, a proportion of the junction folded into the alternative conformer so as to bring these phosphate groups onto the exchanging strands. These species did not interconvert, and thus this is likely to result from the alternative diasteromeric forms of the methyl phosphonate group. This shows that some of the conformational effects result from more than purely electrostatic interactions. Smaller but significant effects were observed on substitution of the flanking phosphate groups. All methyl phosphonate substitutions at these positions allowed folding to proceed at a reduced concentration of magnesium ions, with double substitutions more effective than single substitutions. Substitution of 5' phosphates resulted in a greater degree of folding at a given ionic concentration compared to the corresponding 3' phosphate substitutions. These results show that the phosphate groups at the point of strand exchange exert the largest electrostatic effect on junction folding, but a number of phosphate groups in the vicinity of the exchange region contribute to the overall effects.
Collapse
Affiliation(s)
- Jia Liu
- Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
9
|
Larson G, Pieterse A, Quick G, van der Bijl P, van Zyl J, Hawtrey A. Development of a reproducible procedure for plasmid DNA encapsulation by red blood cell ghosts. BioDrugs 2004; 18:189-98. [PMID: 15161336 DOI: 10.2165/00063030-200418030-00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The binding and encapsulation of [3H] pGL3 luciferase reporter plasmid DNA by red blood cell (RBC) ghosts, intended as a vehicle for transfection and ultimately for gene therapy, were studied using two methods for DNA compaction. METHODS AND RESULTS In the first approach, DNA was compacted through binding electrostatically to poly-L-lysine. Complexes were constructed to have a slight negative charge. Experimentally, it was found that a high percentage of binding was to the outside of the resealed RBC ghosts. An alternative approach using polyethylene glycol6000 at a final concentration of 15% (weight/volume) was used to collapse [3H] pGL3 DNA in the presence of 0.025M MgCl2. Addition of the reagents, premixed with DNA, to a pelleted suspension of RBC ghosts followed by a short incubation and then addition of 1.5 M NaCl to restore tonicity, resulted in resealing of the ghosts. Uptake of [3H] pGL3 DNA by the ghosts was approximately 20% of the input amount of DNA. Further work showed that 60-70% of the DNA was inside the resealed ghosts and largely present in the supercoiled form. At no stage was any freezing and thawing used. CONCLUSION Transfection studies have demonstrated that pGL3 DNA carrying the luciferase gene is successfully transferred from RBC ghosts to recipient HeLa cells in culture under mild fusion conditions.
Collapse
Affiliation(s)
- Gretchen Larson
- Department of Pharmacology, Faculty of Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
| | - Clifford Henry Taubes
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
11
|
Schurr JM, Fujimoto BS. Extensions of counterion condensation theory. I. Alternative geometries and finite salt concentration. Biophys Chem 2002; 101-102:425-45. [PMID: 12488018 DOI: 10.1016/s0301-4622(02)00178-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The counterion condensation theory originally proposed by Manning is extended to take account of both finite counterion concentration (m(C)) and the actual structure of the array of discrete changes. Counterion condensation is treated here as a binding isotherm problem, in which the unknown free volume is replaced by an unknown local binding constant beta', which is expected to vary with m(C) and polyion structure. The relation between the condensed fraction of counterion charge, r, beta' and m(C) is obtained from the relevant grand partition function via the maximum term method. In the case of the single polyion in a large salt reservoir, the result is practically identical to Manning's equation. In order to determine the values of beta' and r at arbitrary m(C), a second relation between r, beta' and m(C) is required. We propose an alternative auxiliary relation that is equivalent to previous assumptions near m(C) = 0, but which yields qualitatively correct and quantitatively useful results at finite m(C). Simple expressions for r vs. m(C) and beta' vs. m(C) are obtained by simultaneously solving the binding isotherm and auxiliary equations. Then r and beta' are evaluated for five different linear arrays of infinite extent with different geometries: (1) a straight line of charges with uniform axial spacing; (2) two parallel lines of in-phase uniformly spaced charges; (3) a single-helix of discrete charges with uniform axial spacing; (4) a double-helix of discrete charges with uniform axial spacing of pairs of charges; (5) a cylindrical array of many parallel charged lines, chosen to simulate a uniformly charged cylinder. In all cases, the computed binding isotherms exhibit qualitatively correct behavior. As m(C) approaches zero, r approaches the Manning limit, r = 1-1/(L(B)/b) where b is the average axial spacing of electronic charges in the array and L(B) is the Bjerrum length. However, beta' varies with polyion geometry, even in the zero salt limit, and matches the Manning value only in the case of a single straight charged line. With increasing m(C), r declines significantly below its limiting value whenever lambda(b) > or approximately equal 0.3, where lambda is the Debye screening parameter. In the case of cylindrical arrays containing either 2 or 100 parallel charged lines, r also decreases, whenever lambda(d) > or approximately equal 2.0, where d is the diameter of the array. In the case of two parallel charged lines, each with axial charge spacing b=3.4 A, which are separated by d = 200 A, r exhibits a plateau value, 0.76, characteristic of the two combined lines, when lambda(d)<<2.0, and declines with increasing m(C) to a shelf value, 0.52, characteristic of either single line, when lambda(d) > or approximately equal 2.0 and the lines become effectively screened from one another. beta' behaves in a roughly similar fashion. In the case of a cylindrical array of charged lines with the diameter and linear charge density of DNA, the r-values predicted by the present theory agree fairly well with those predicted by non-linear Poisson-Boltzmann theory up to 0.15 M uni-univalent salt.
Collapse
Affiliation(s)
- J Michael Schurr
- Department of Chemistry, University of Washington, PO Box 351700, Seattle, WA 98195-1700, USA.
| | | |
Collapse
|
12
|
van Buuren BNM, Hermann T, Wijmenga SS, Westhof E. Brownian-dynamics simulations of metal-ion binding to four-way junctions. Nucleic Acids Res 2002; 30:507-14. [PMID: 11788713 PMCID: PMC99837 DOI: 10.1093/nar/30.2.507] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four-way junctions (4Hs) are important intermediates in DNA rearrangements such as genetic recombination. Under the influence of multivalent cations these molecules undergo a conformational change, from an extended planar form to a quasi-continuous stacked X-structure. Recently, a number of X-ray structures and a nuclear magnetic resonance (NMR) structure of 4Hs have been reported and in three of these the position of multivalent cations is revealed. These structures belong to two main families, characterized by the angle between the two co-axial stacked helices, which is either around +40 to +55 degrees or around -70 to -80 degrees. To investigate the role of metal-ion binding on the conformation of folded 4Hs we performed Brownian-dynamics simulations on the set of available structures. The simulations confirm the proposed metal-ion binding sites in the NMR structure and in one of the X-ray structures. Furthermore, the calculations suggest positions for metal-ion binding in the other X-ray structures. The results show a striking dependence of the ion density on the helical environment (B-helix or A-helix) and the structural family.
Collapse
Affiliation(s)
- Bernd N M van Buuren
- Department of Medical Biosciences, Medical Biophysics, Umeå University, S-90187 Umeå, Sweden.
| | | | | | | |
Collapse
|
13
|
Woods KC, Martin SS, Chu VC, Baldwin EP. Quasi-equivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a three-way Lox DNA junction. J Mol Biol 2001; 313:49-69. [PMID: 11601846 DOI: 10.1006/jmbi.2001.5012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a novel Cre-Lox synapse was solved using phases from multiple isomorphous replacement and anomalous scattering, and refined to 2.05 A resolution. In this complex, a symmetric protein trimer is bound to a Y-shaped three-way DNA junction, a marked departure from the pseudo-4-fold symmetrical tetramer associated with Cre-mediated LoxP recombination. The three-way DNA junction was accommodated by a simple kink without significant distortion of the adjoining DNA duplexes. Although the mean angle between DNA arms in the Y and X structures was similar, adjacent Cre trimer subunits rotated 29 degrees relative to those in the tetramers. This rotation was accommodated at the protein-protein and DNA-DNA interfaces by interactions that are "quasi-equivalent" to those in the tetramer, analogous to packing differences of chemically identical viral subunits at non-equivalent positions in icosahedral capsids. This structural quasi-equivalence extends to function as Cre can bind to, cleave and perform strand transfer with a three-way Lox substrate. The structure explains the dual recognition of three and four-way junctions by site-specific recombinases as being due to shared structural features between the differently branched substrates and plasticity of the protein-protein interfaces. To our knowledge, this is the first direct demonstration of quasi-equivalence in both the assembly and function of an oligomeric enzyme.
Collapse
Affiliation(s)
- K C Woods
- Section of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
14
|
Jones CE, Mueser TC, Dudas KC, Kreuzer KN, Nossal NG. Bacteriophage T4 gene 41 helicase and gene 59 helicase-loading protein: a versatile couple with roles in replication and recombination. Proc Natl Acad Sci U S A 2001; 98:8312-8. [PMID: 11459969 PMCID: PMC37437 DOI: 10.1073/pnas.121009398] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage T4 uses two modes of replication initiation: origin-dependent replication early in infection and recombination-dependent replication at later times. The same relatively simple complex of T4 replication proteins is responsible for both modes of DNA synthesis. Thus the mechanism for loading the T4 41 helicase must be versatile enough to allow it to be loaded on R loops created by transcription at several origins, on D loops created by recombination, and on stalled replication forks. T4 59 helicase-loading protein is a small, basic, almost completely alpha-helical protein whose N-terminal domain has structural similarity to high mobility group family proteins. In this paper we review recent evidence that 59 protein recognizes specific structures rather than specific sequences. It binds and loads the helicase on replication forks and on three- and four-stranded (Holliday junction) recombination structures, without sequence specificity. We summarize our experiments showing that purified T4 enzymes catalyze complete unidirectional replication of a plasmid containing the T4 ori(uvsY) origin, with a preformed R loop at the position of the R loop identified at this origin in vivo. This replication depends on the 41 helicase and is strongly stimulated by 59 protein. Moreover, the helicase-loading protein helps to coordinate leading and lagging strand synthesis by blocking replication on the ori(uvsY) R loop plasmid until the helicase is loaded. The T4 enzymes also can replicate plasmids with R loops that do not have a T4 origin sequence, but only if the R loops are within an easily unwound DNA sequence.
Collapse
Affiliation(s)
- C E Jones
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | | | |
Collapse
|
15
|
Shlyakhtenko LS, Potaman VN, Sinden RR, Gall AA, Lyubchenko YL. Structure and dynamics of three-way DNA junctions: atomic force microscopy studies. Nucleic Acids Res 2000; 28:3472-7. [PMID: 10982865 PMCID: PMC110733 DOI: 10.1093/nar/28.18.3472] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used atomic force microscopy (AFM) to study the conformation of three-way DNA junctions, intermediates of DNA replication and recombination. Immobile three-way junctions with one hairpin arm (50, 27, 18 and 7 bp long) and two relatively long linear arms were obtained by annealing two partially homologous restriction fragments. Fragments containing inverted repeats of specific length formed hairpins after denaturation. Three-way junctions were obtained by annealing one strand of a fragment from a parental plasmid with one strand of an inverted repeat-containing fragment, purified from gels, and examined by AFM. The molecules are clearly seen as three-armed molecules with one short arm and two flexible long arms. The AFM analysis revealed two important features of three-way DNA junctions. First, three-way junctions are very dynamic structures. This conclusion is supported by a high variability of the inter-arm angle detected on dried samples. The mobility of the junctions was observed directly by imaging the samples in liquid (AFM in situ). Second, measurements of the angle between the arms led to the conclusion that three-way junctions are not flat, but rather pyramid-like. Non-flatness of the junction should be taken into account in analysis of the AFM data.
Collapse
Affiliation(s)
- L S Shlyakhtenko
- Department of Microbiology and Department of Biology, Arizona State University, Tempe, AZ 85287-2701, USA
| | | | | | | | | |
Collapse
|
16
|
Interaction of the Bacteriophage T4 Gene 59 Helicase Loading Protein and Gene 41 Helicase with Each Other and with Fork, Flap, and Cruciform DNA. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61491-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|