1
|
Analysis of Bovine Interferon-tau Gene subtypes Expression in the Trophoblast and Non-trophoblast cells. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
2
|
Ezashi T, Imakawa K. Transcriptional control of IFNT expression. Reproduction 2017; 154:F21-F31. [PMID: 28982936 PMCID: PMC5687277 DOI: 10.1530/rep-17-0330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
Once interferon-tau (IFNT) had been identified as a type I IFN in sheep and cattle and its functions were characterized, numerous studies were conducted to elucidate the transcriptional regulation of this gene family. Transfection studies performed largely with human choriocarcinoma cell lines identified regulatory regions of the IFNT gene that appeared responsible for trophoblast-specific expression. The key finding was the recognition that the transcription factor ETS2 bound to a proximal region within the 5'UTR of a bovine IFNT and acted as a strong transactivator. Soon after other transcription factors were identified as cooperative partners. The ETS2-binding site and the nearby AP1 site enable response to intracellular signaling from maternal uterine factors. The AP1 site also serves as a GATA-binding site in one of the bovine IFNT genes. The homeobox-containing transcription factor, DLX3, augments IFNT expression combinatorially with ETS2. CDX2 has also been identified as transactivator that binds to a separate site upstream of the main ETS2 enhancer site. CDX2 participates in IFNT epigenetic regulation by modifying histone acetylation status of the gene. The IFNT downregulation at the time of the conceptus attachment to the uterine endometrium appears correlated with the increased EOMES expression and the loss of other transcription coactivators. Altogether, the studies of transcriptional control of IFNT have provided mechanistic evidence of the regulatory framework of trophoblast-specific expression and critical expression pattern for maternal recognition of pregnancy.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Bond Life Sciences Center and Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211 USA
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Veterinary Medical Sciences and Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Kim MS, Sakurai T, Bai H, Bai R, Sato D, Nagaoka K, Chang KT, Godkin JD, Min KS, Imakawa K. Presence of Transcription Factor OCT4 Limits Interferon-tau Expression during the Pre-attachment Period in Sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:638-45. [PMID: 25049833 PMCID: PMC4093334 DOI: 10.5713/ajas.2012.12462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/23/2012] [Accepted: 10/18/2012] [Indexed: 11/27/2022]
Abstract
Interferon-tau (IFNT) is thought to be the conceptus protein that signals maternal recognition of pregnancy in ruminants. We and others have observed that OCT4 expression persists in the trophectoderm of ruminants; thus, both CDX2 and OCT4 coexist during the early stages of conceptus development. The aim of this study was to examine the effect of CDX2 and OCT4 on IFNT gene transcription when evaluated with other transcription factors. Human choriocarcinoma JEG-3 cells were cotransfected with an ovine IFNT (-654-bp)-luciferase reporter (-654-IFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with Cdx2, Ets2 and Jun increased transcription of -654-IFNT-Luc by about 12-fold compared with transfection of the construct alone. When cells were initially transfected with Oct4 (0 h) followed by transfection with Cdx2, Ets2 and/or Jun 24 h later, the expression of -654-IFNT-Luc was reduced to control levels. OCT4 also inhibited the stimulatory activity of CDX2 alone, but not when CDX2 was combined with JUN and/or ETS2. Thus, when combined with the other transcription factors, OCT4 exhibited little inhibitory activity towards CDX2. An inhibitor of the transcriptional coactivator CREB binding protein (CREBBP), 12S E1A, reduced CDX2/ETS2/JUN stimulated -654-IFNT-Luc expression by about 40%, indicating that the formation of an appropriate transcription factor complex is required for maximum expression. In conclusion, the presence of OCT4 may initially minimize IFNT expression; however, as elongation proceeds, the increasing expression of CDX2 and formation of the transcription complex leads to greatly increased IFNT expression, resulting in pregnancy establishment in ruminants.
Collapse
Affiliation(s)
- Min-Su Kim
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rulan Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Daisuke Sato
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Nagaoka
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kyu-Tae Chang
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - James D Godkin
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kwan-Sik Min
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Yang QE, Johnson SE, Ealy AD. Protein Kinase C Delta Mediates Fibroblast Growth Factor-2-Induced Interferon-Tau Expression in Bovine Trophoblast1. Biol Reprod 2011; 84:933-43. [DOI: 10.1095/biolreprod.110.087916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
5
|
Farin CE, Farmer WT, Farin PW. Pregnancy recognition and abnormal offspring syndrome in cattle. Reprod Fertil Dev 2010; 22:75-87. [DOI: 10.1071/rd09217] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of the post-hatching conceptus in ruminants involves a period of morphological expansion that is driven by complex interactions between the conceptus and its intrauterine environment. As a result of these interactions, endometrial physiology is altered, leading to establishment of the pregnancy and continued development of the placenta. Disruption of normal fetal and placental development can occur when embryos are exposed to manipulations in vitro or when inappropriate endocrine sequencing occurs in vivo during the pre- and peri-implantation periods. The present review addresses the development of the post-hatching bovine conceptus, its interactions with the maternal system and changes in development that can occur as a result of in vivo and in vitro manipulations of the bovine embryo.
Collapse
|
6
|
Sakurai T, Sakamoto A, Muroi Y, Bai H, Nagaoka K, Tamura K, Takahashi T, Hashizume K, Sakatani M, Takahashi M, Godkin JD, Imakawa K. Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells. Biol Reprod 2009; 80:1223-31. [PMID: 19211809 DOI: 10.1095/biolreprod.108.073916] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon tau gene (IFNT) is expressed only by mononuclear trophectoderm cells in ruminant ungulates. To our knowledge, its epigenetic regulation and interaction with trophectoderm lineage-specific caudal-related homeobox 2 transcription factor (CDX2) have not been characterized. Herein, we studied differences in chromatin structures and transcription of endogenous bovine IFNT in bovine trophoblast BT-1 and CT-1 cells and in nontrophoblast MDBK cells. Transcripts from endogenous IFNT and CDX2 genes were found in BT-1 and CT-1 cells but not in MDBK cells. Chromatin immunoprecipitation study revealed that CDX2 binding sites exist in proximal upstream regions of IFNT (IFN-tau-c1). Endogenous IFNT transcription in BT-1 cells was increased with CDX2 overexpression but was reduced with short interfering RNA specific for the CDX2 transcript. In chromatin immunoprecipitation studies, histone H3K18 acetylation of IFNT was higher in CT-1 cells than in MDBK cells, while histone H3K9 methylation was lower in CT-1 cells than in nontrophoblast cells. In MDBK cells (but not in CT-1 cells), histone deacetylases were bound to IFNT, which was reversed with trichostatin A treatment; treatment with trichostatin A and CDX2 then increased IFNT mRNA levels that resulted from abundant CDX2 mRNA expression. These data provide evidence that significant increase in endogenous IFNT transcription in MDBK cells (which do not normally express IFNT) can be induced through CDX2 overexpression and high H3K18 acetylation, but lowering of H3K9 methylation could also be required for the degree of IFNT transcription seen in trophoblast cells.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ealy AD, Yang QE. REVIEW ARTICLE: Control of Interferon-Tau Expression During Early Pregnancy in Ruminants. Am J Reprod Immunol 2009; 61:95-106. [DOI: 10.1111/j.1600-0897.2008.00673.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Neira JA, Tainturier D, L'Haridon RM, Martal J. Comparative IFN-tau secretion after hatching by bovine blastocysts derived ex vivo and completely produced in vitro. Reprod Domest Anim 2007; 42:68-75. [PMID: 17214777 DOI: 10.1111/j.1439-0531.2006.00732.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The interferon-tau (IFN-tau) secretion levels after hatching by bovine blastocysts derived from in vitro maturated oocytes (Group A) and from in vivo (Group B) were investigated considering embryo quality. Only very homogeneous blastocysts of excellent or good quality were considered from day 7 of culture (Group A) and day 7 after artificial insemination with frozen-thawed from the same bull used for in vitro fertilization (Group B). All embryos were individually cultured into a 50 microl droplet of synthetic oviduct fluid medium with 10% fetal calf serum. After 24-h culture both Group A (n=44) and B (n=40) secreted <54 pm IFN-tau. After 48-, 72-, 96- and 120-h culture, Group A daily secreted 143 +/- 24 pm IFN-tau (n=19) vs 85 +/- 12 pm IFN-tau (n=21) for Group B (p < 0.01), 491 +/- 128 pm IFN-tau (n=29) vs 216 +/- 37 pm IFN-tau (n=23) (NS), 499 +/- 135 pm IFN-tau (n=26) vs 353 +/- 93 pm IFN-tau (n=21) (NS), 559 +/- 136 pm IFN-tau (n=22) vs 333 +/- 75 pm IFN-tau (n=20) (NS), respectively. Taken all together during 5 days, Group A produced per embryo 1690 +/- 290 pm IFN-tau (n=22) vs 982 +/- 182 pm IFN-tau (n=20) for Group B (p < 0.05). For all culture time there were sizable percentages of embryos that did not produce concentrations of IFN-tau above a certain cut-off level, and as such were not used to compute the means. In respect of the embryo quality whatever the groups after days 7-12 of culture, IFN-tau secretions were 1815 +/- 453 pm (n=10) for the embryos of excellent quality vs 1356 +/- 200 pm (n=28) for those of good quality (NS) and 360 +/- 188 pm (n=4) (p < 0.05) for embryos of fair quality. A positive relationship between IFN-tau production and in vitro development of quality I embryos was observed, whatever the embryos origins and, the embryos completely produced in vitro secreted more IFN-tau than the embryos produced in vivo.
Collapse
Affiliation(s)
- J A Neira
- Programa Nacional de Recursos Genéticos y biotecnología Animal, CORPOICA, Grupo Biología del desarrollo, Universidad de la Salle, Bogotá-DC, Colombia
| | | | | | | |
Collapse
|
9
|
Imakawa K, Kim MS, Matsuda-Minehata F, Ishida S, Iizuka M, Suzuki M, Chang KT, Echternkamp SE, Christenson RK. Regulation of the ovine interferon-tau gene by a blastocyst-specific transcription factor, Cdx2. Mol Reprod Dev 2006; 73:559-67. [PMID: 16489630 DOI: 10.1002/mrd.20457] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of ovine interferon-tau (oIFNtau), a factor essential for the process of maternal recognition of pregnancy in ruminant ungulates, is restricted to the trophoblast. However, the molecular mechanisms by which oIFNtau expression is restricted to the trophectoderm have not been fully elucidated. The objective of this study was to determine whether oIFNtau gene transcription could be regulated through Cdx2 expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. Human choriocarcinoma JEG3 cells were co-transfected with an oIFNtau (-654 base pair, bp)-luciferase reporter (-654-oIFNtau-Luc) construct and several transcription factor expression plasmids. Compared to -654-oIFNtau-Luc alone, transcription of the -654-oIFNtau-Luc increased more than 30 times when this construct was co-transfected with Cdx2, Ets-2, and c-jun. The degree of transcription decreased to 1/4 levels when the upstream region was reduced to -551 bp, and became minimal with further deletions; this was confirmed with the use of the reporter constructs with mutated c-jun, Ets-2, and/or Cdx2 sites. In trophoblast unrelated NIH3T3 cells, which do not support IFNtau gene transcription, the oIFNtau-Luc transcription was enhanced approximately eightfold when the cells were co-transfected with the Cdx2/Ets-2 or Cdx2/Ets-2/c-jun expression plasmids. These findings were confirmed by gel-shift assays examining Cdx binding site on the oIFNtau gene's upstream region, by immunohistochemical study identifying the presence of Cdx2 in day 15 and 17 ovine conceptuses, and by Western blot detecting Cdx2 in day 17 conceptuses. Our results indicate that oIFNtau gene transcription is regulated by Cdx2, and suggest that Cdx2 could be a key molecule in determining oIFNtau gene transcription by the trophectoderm.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Matsuda-Minehata F, Katsumura M, Kijima S, Christenson RK, Imakawa K. Different levels of ovine interferon-τ gene expressions are regulated through the short promoter region including Ets-2 binding site. Mol Reprod Dev 2005; 72:7-15. [PMID: 15971268 DOI: 10.1002/mrd.20329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of interferon-tau (IFNtau) production, a conceptus secretory protein implicated in the process of maternal recognition of pregnancy, has not been fully elucidated. Among more than 10 ovine IFNtau (oIFNtau) gene sequences characterized, approximately 75% of oIFNtau transcripts expressed in utero is derived from oIFNtau-o10 gene and amounts of transcripts from other oIFNtau genes such as oIFNtau-o8 or oIFNtau-o2 are minimal. It was hypothesized that the variation in expression levels exhibited by oIFNtau-o10 and oIFNtau-o8/-o2 genes was due to differences in the proximal promoter regions of these oIFNtau genes. To test this hypothesis, transient transfection experiments with human choriocarcinoma JEG3 cells were executed with deleted and/or mutated 5'-upstream regions of these oIFNtau genes attached to the chloramphenicol acetyltransferase (CAT) reporter gene. Because only the Ets-2 binding site located in the oIFNtau-o10 gene appeared to differentiate the expression levels of these constructs, the 6 base pair (bp) Ets-2 sequence from the oIFNtau-o10 gene inserted into the oIFNtau-o8/-o2 gene-reporter construct was examined. The insertion of this Ets-2 binding site into the oIFNtau-o8/o2-reporter construct failed to increase the degree of transactivation. Rather than this 6 bp sequence, a 22 bp sequence of the proximal promoter region, including the Ets-2 binding site, of the oIFNtau-o10 gene was required for oIFNtau-o8/-o2-reporter transactivation. By electrophoretic mobility shift assay (EMSA), nuclear protein(s) bound to this 22 bp from the oIFNtau-o10 and oIFNtau-o8/o2 genes differed. These results suggest that the short promoter region including the Ets-2 binding site, not the Ets-2 binding region itself, may determine different levels of oIFNtau gene expressions seen in utero.
Collapse
Affiliation(s)
- Fuko Matsuda-Minehata
- Laboratory of Animal Breeding, Implantation Research Group, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
11
|
Matsuda F, Xu N, Kijima S, Tachi C, Christenson RK, Sakai S, Imakawa K. Analysis of Transcriptional Control Elements in the 5′-upstream Region of Ovine Interferon-τ Gene Using Feeder-independent Caprine Trophoblast Cell Line, HTS-1. Placenta 2004; 25:166-75. [PMID: 14972449 DOI: 10.1016/j.placenta.2003.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 08/27/2003] [Accepted: 08/27/2003] [Indexed: 11/30/2022]
Abstract
Interferon-tau (IFNtau) is a protein secreted from the embryonic trophectoderm of ruminant ungulates during peri-implantation period. This protein acts on the uterine endometrium, which indirectly maintains corpus luteum function, and is therefore considered essential for the process of maternal recognition of pregnancy. Transcriptional regulation of IFNtau genes had been examined using human choriocarcinoma cell lines, JEG-3 or JAR, however, molecular mechanisms by which cell and term specific IFNtau expression are regulated have not been elucidated. Recently, a feeder cell free-trophoblast cell line derived from Shiba-goat placenta, termed HTS-1, was established. In the present investigation, the 5'-upstream region of ovine IFNtau (oIFNtau) gene was analysed using this cell line, which would provide a more suitable system for studies of the ovine trophoblast specific gene than human choriocarcinoma cells. Variously modified 5'-upstream sequences of the oIFNtau gene fused to a luciferase reporter gene were transiently transfected into HTS-1 cells, and human JEG-3 cells were used as a control. These results and co-transfection with expression vectors revealed that Ets-2 binding site in the promoter region was important in HTS-1, whereas AP-1 that binds to the enhancer region was a major activator in JEG-3. By electrophoretic mobility shift assay, a nuclear protein from HTS-1 cells was confirmed to bind specifically to the Ets-2 site of oIFNtau promoter region. Differences in amounts of AP-1 and Ets-2 protein were demonstrated in nuclear extracts from HTS-1, JEG-3 and ovine conceptuses. Substantial differences on oIFNtau gene transcriptions found between caprine HTS-1 and human JEG-3 cells suggest that this cell line could be valuable in the elucidation of a molecular mechanism(s) by which oIFNtau gene expression is regulated in a cell specific manner.
Collapse
Affiliation(s)
- F Matsuda
- Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Xu N, Takahashi Y, Matsuda F, Sakai S, Christenson RK, Imakawa K. Coactivator CBP in the regulation of conceptus IFNtau gene transcription. Mol Reprod Dev 2003; 65:23-9. [PMID: 12658630 DOI: 10.1002/mrd.10293] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of ovine interferon-tau (oIFNtau) gene regulation, an anti-luteolytic factor produced by conceptuses of the ruminant ungulates, have been carried out, but a definitive mechanism for its spatial-temporal transcription has not been elucidated. Recently, specific binding regions for transcription factors AP-1 and Ets-2 on the oIFNtau gene were identified; however, a molecular mechanism by which these factors regulate oIFNtau gene transcription has not been characterized. In the present study, we investigated the potential relationship between AP-1 and Ets-2, and their association with a coactivator, cAMP-response element binding protein-binding protein (CBP), on oIFNtau gene transcription in a transient transfection system using human choriocarcinoma JEG3 cells. The oIFNtau gene promoter/enhancer (-654 to + 1 bases, wild type)-luciferase reporter construct (pGL3-654) or its mutant at the AP-1 or Ets-2 site was cotransfected with CBP (pRc/RSV-CBP) construct along with c-jun, c-fos, and/or Ets-2 expression plasmid. CBP enhanced transcription of the wild type oIFNtau-reporter construct; however, this coactivator had no effect on the oIFNtau-reporter construct with mutated AP-1 or Ets-2 site. Cotransfection of CBP with c-jun and/or Ets-2, but not with c-fos, further increased oIFNtau gene transactivation although amounts of c-jun and c-fos expression, resulting from expression vectors, were similar. In addition, CBP inhibitor adenovirus 12S E1A (E1A), but not the mutant of E1A without CBP binding domain (Delta2-36), suppressed oIFNtau gene transcription. These observations suggest that c-jun and Ets-2 are the most probable binding partners for CBP in the potentiation of oIFNtau gene transcription. Mol. Reprod. Dev. 65: 23-29, 2003.
Collapse
Affiliation(s)
- Ningchun Xu
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo, Yayoi, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
13
|
YAMAGUCHI H, NAGAOKA K, MATSUDA F, XU N, CHRISTENSON RK, IMAKAWA K, SAKAI S. Regulation of Interferon-.TAU. Gene Expression and the Maternal Recognition of Pregnancy. J Reprod Dev 2001. [DOI: 10.1262/jrd.47.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hirohito YAMAGUCHI
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
- H. Lee Moffitt Cancer Center, University of South Florida
| | - Kentaro NAGAOKA
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | - Fuko MATSUDA
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | - Ningchun XU
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | | | - Kazuhiko IMAKAWA
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | - Senkiti SAKAI
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| |
Collapse
|