1
|
Chen P, Ni S, Ou-Yang L. Causal inference of inflammatory proteins in infertility: a Mendelian randomization study. Front Endocrinol (Lausanne) 2025; 16:1448530. [PMID: 40070583 PMCID: PMC11893426 DOI: 10.3389/fendo.2025.1448530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background Infertility affects 8-12% of couples globally, manifesting as a complex reproductive disorder with varied causes, negatively impacting emotional, physical, and social well-being. Inflammation is implicated in many diseases, including male and female infertility. Methods This study employed Mendelian randomization (MR) with two-sample, bidirectional, and mediation approaches to explore the relationship between circulating inflammatory proteins and infertility. Causal analysis was conducted using inverse variance-weighted (IVW) and MR-Egger regression, supplemented by enrichment analysis, protein-protein interaction (PPI) network exploration, and drug signature analysis. Results Our findings identified a significant positive correlation between C-X-C motif chemokine 6 (CXCL6) and male infertility, positioning CXCL6 as a potential therapeutic target or biomarker. No causal links were detected between circulating inflammatory proteins and female infertility post-FDR adjustment. Minor mediation effects were observed for metabolites such as androstenediol monosulfate, arachidonoylcholine, and serum phosphate to glycerol ratio. Cytokine-related pathways emerged as significant in both male and female infertility. Gene-drug interaction analysis highlighted the need for further investigation of pioglitazone in treating female infertility. Conclusion This study establishes a potentially causal relationship between CXCL6 and male infertility, suggesting its potential as a drug target or molecular biomarker. The integrative approach combining causal inference with molecular pathway and drug interaction analysis opens new avenues for understanding and treating infertility.
Collapse
Affiliation(s)
| | - Sha Ni
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | | |
Collapse
|
2
|
Wei M, Liu H, Wang Y, Sun M, Shang P. Mechanisms of Male Reproductive Sterility Triggered by Dysbiosis of Intestinal Microorganisms. Life (Basel) 2024; 14:694. [PMID: 38929676 PMCID: PMC11204708 DOI: 10.3390/life14060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The intestinal microbiota, comprised of bacteria, archaea, and phages, inhabits the gastrointestinal tract of the organism. Male reproductive sterility is currently a prominent topic in medical research. Increasing research suggests that gut microbiota dysbiosis can result in various reproductive health problems. This article specifically investigates the impact of gut microbiota dysbiosis on male reproductive infertility development. Gut microbiota imbalances can disrupt the immune system and immune cell metabolism, affecting testicular growth and sperm production. This dysfunction can compromise the levels of hormones produced and secreted by the endocrine glands, affecting male reproductive health. Furthermore, imbalance of the gut microbiota can disrupt the gut-brain-reproductive axis, resulting in male reproductive infertility. This article explores how the imbalance of the gut microbiota impacts male reproductive infertility through immune regulation, endocrine regulation, and interactions of the gut-brain-reproductive axis, concluding with recommendations for prevention and treatment.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Huaizhi Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Yu Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Mingyang Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| |
Collapse
|
3
|
Ali N, Lunenfeld E, Huleihel M. Effect of IL-1β on the Development of Spermatogenesis In Vitro in Normal and Busulfan-Treated Immature Mice. Int J Mol Sci 2024; 25:4926. [PMID: 38732137 PMCID: PMC11084478 DOI: 10.3390/ijms25094926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Gonadotoxic agents could impair spermatogenesis and may lead to male infertility. The present study aimed to evaluate the effect of IL-1β on the development of spermatogenesis from cells isolated from seminiferous tubules (STs) of normal and busulfan-treated immature mice in vitro. Cells were cultured in a 3D in vitro culture system for 5 weeks. We examined the development of cells from the different stages of spermatogenesis by immunofluorescence staining or qPCR analyses. Factors of Sertoli and Leydig cells were examined by qPCR analysis. We showed that busulfan (BU) treatment significantly reduced the expression of testicular IL-1β in the treated mice compared to the control group (CT). Cultures of cells from normal and busulfan-treated immature mice induced the development of pre-meiotic (Vasa), meiotic (Boule), and post-meiotic (acrosin) cells. However, the percentage of developed Boule and acrosin cells was significantly lower in cultures of busulfan-treated mice compared to normal mice. Adding IL-1β to both cultures significantly increased the percentages of Vasa, Boule, and acrosin cells compared to their controls. However, the percentage of Boule and acrosin cells was significantly lower from cultures of busulfan-treated mice that were treated with IL-1β compared to cultures treated with IL-1β from normal mice. Furthermore, addition of IL-1β to cultures from normal mice significantly increased only the expression of androgen receptor and transferrin but no other factors of Sertoli cells compared to their CT. However, the addition of IL-1β to cultures from busulfan-treated mice significantly increased only the expression of androgen-binding protein and the FSH receptor compared to their CT. Adding IL-1β to cultures of normal mice did not affect the expression of 3βHSD compared to the CT, but it significantly reduced its expression in cultures from busulfan-treated mice compared to the CT. Our findings demonstrate the development of different stages of spermatogenesis in vitro from busulfan-treated mice and that IL-1β could potentiate this development in vitro.
Collapse
Affiliation(s)
- Nagham Ali
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Eitan Lunenfeld
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
4
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
5
|
Prihatno SA, Adi YK, Budipitojo T, Priyo TW, Sihotang YAMA. Dried bovine placenta improves spermatozoa count in a rat model of male reproductive aging. Vet World 2021; 14:1602-1607. [PMID: 34316209 PMCID: PMC8304429 DOI: 10.14202/vetworld.2021.1602-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Aim: In the male reproductive system, the aging process can lead to infertility. Recently, placenta and its derivatives have been researched as regenerative agents. This study aimed to describe the basic components of dried bovine placenta powder and its potential effects as a regenerative agent in a rat model of male reproductive aging with D-galactose induction. Materials and Methods: We divided 15 male Wistar rats, 2 months of age, into three groups: A, the health control group; B, the D-galactose induction group, and C, the D-galactose induction and 10% dried bovine placenta supplementation group. We measured epididymal sperm concentration and testicular weight and volume and analyzed these using one-way analysis of variance. Results: Dried bovine placenta was rich in nutrients, with 61.98% protein, 21.25±2.07 carbohydrates, 8.58% water, 4.93% ash, and 3.27% fat. The mean epididymal spermatozoa concentration of the rats in Groups A, B, and C was 3026×106/mL, 1492.8×106/mL, and 2732.5×106/mL, respectively. The average total testicle weights were 2.44 g, 2.72 g, and 2.57 g, respectively. The average total testicle volumes were 2.29 cm3, 2.49 cm3, and 2.33cm3, respectively. Conclusion: Dried bovine placenta powder is rich in nutrients, especially protein. Supplementation with dried bovine placenta can improve epididymal spermatozoa concentration that is important in fertility.
Collapse
Affiliation(s)
- Surya Agus Prihatno
- Department of Reproduction and Obstetric, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yosua Kristian Adi
- Department of Reproduction and Obstetric, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Teguh Budipitojo
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Topas Wicaksono Priyo
- Department of Reproduction and Obstetric, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
6
|
Involvement of Cytokines and Hormones in the Development of Spermatogenesis In Vitro from Spermatogonial Cells of Cyclophosphamide-Treated Immature Mice. Int J Mol Sci 2021; 22:ijms22041672. [PMID: 33562323 PMCID: PMC7914946 DOI: 10.3390/ijms22041672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Aggressive chemotherapy treatment may lead to male infertility. Prepubertal boys do not produce sperm at this age, however, they have spermatogonial stem cells in their testes. Here, we examined the effect of intraperitoneal injection of cyclophosphamide (CP) on the capacity of immature mice (IM) to develop spermatogenesis in vivo and in vitro [using methylcellulose culture system (MCS)]. Our results show a significant decrease in testicular weight, total number of testicular cells, and the number of Sertoli, peritubular, premeiotic, and meiotic/post-meiotic cells, but an increase in the percentages of damaged seminiferous tubules in CP-treated IM compared to control. The functionality of Sertoli cells was significantly affected. The addition of testosterone to isolated cells from seminiferous tubules of CP-treated IM significantly increased the percentages of premeiotic (CD9-positive cells) and meiotic/post-meiotic cells (ACROSIN-positive cells) developed in MCS compared to control. The addition of FSH did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly decreased the percentages of CD9-positive cells and ACROSIN-positive cells. The addition of IL-1 did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly increased the percentages of VASA-positive cells and BOULE-positive cells compared to IL-1 or testosterone. Addition of TNF significantly increased only CD9-positive cells in MCS compared to control, but in combination with testosterone, it significantly decreased ACROSIN-positive cells compared to testosterone. Our results show a significant impairment of spermatogenesis in the testes of CP-treated IM, and that spermatogonial cells from these mice proliferate and differentiate to meiotic/post-meiotic cells under in vitro culture conditions.
Collapse
|
7
|
Rispoli LA, Edwards JL, Pohler KG, Russell S, Somiari RI, Payton RR, Schrick FN. Heat-induced hyperthermia impacts the follicular fluid proteome of the periovulatory follicle in lactating dairy cows. PLoS One 2019; 14:e0227095. [PMID: 31887207 PMCID: PMC6936800 DOI: 10.1371/journal.pone.0227095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
We hypothesized that heat-induced perturbations in cumulus cells surrounding the maturing oocyte may extend to the mural granulosa of the periovulatory follicle in the heat-stressed cow to subsequently the follicular fluid proteome. Lactating Holsteins were pharmacologically stimulated to have a dominant follicle that was capable of responding to a gonadotropin releasing hormone-induced luteinizing hormone surge. Following gonadotropin releasing hormone administration, cows were maintained at ~67 temperature humidity index (THI; thermoneutral conditions) or exposed to conditions simulating an acute heat stress event (71 to 86 THI; heat stress for ~12 h). Dominant follicle collection was conducted in the periovulatory period ~16 h after gonadotropin releasing hormone. Follicular fluid proteome from thermoneutral (n = 5) and hyperthermic (n = 5) cows was evaluated by quantitative tandem mass spectrometry (nano LC-MS/MS). We identified 35 differentially-abundant proteins. Functional annotation revealed numerous immune-related proteins. Subsequent efforts revealed an increase in levels of the proinflammatory mediator bradykinin in follicular fluid (P = 0.0456) but not in serum (P = 0.9319) of hyperthermic cows. Intrafollicular increases in transferrin (negative acute phase protein) in hyperthermic cows (P = 0.0181) coincided with a tendency for levels to be increased in the circulation (P = 0.0683). Nine out of 15 cytokines evaluated were detected in follicular fluid. Heat stress increased intrafollicular interleukin 6 levels (P = 0.0160). Whether hyperthermia-induced changes in the heat-stressed cow's follicular fluid milieu reflect changes in mural granulosa, cumulus, other cell types secretions, and/or transudative changes from circulation remains unclear. Regardless of origin, heat stress/hyperthermia related changes in the follicular fluid milieu may have an impact on components important for ovulation and competence of the cumulus-oocyte complex contained within the periovulatory follicle.
Collapse
Affiliation(s)
- Louisa A. Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - J. Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - Ky G. Pohler
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - Stephen Russell
- ITSI–Biosciences, LLC, Johnstown, PA, United States of America
| | | | - Rebecca R. Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - F. Neal Schrick
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| |
Collapse
|
8
|
Michailov Y, Lunenfeld E, Kapelushnik J, Huleihel M. Leukemia and male infertility: past, present, and future. Leuk Lymphoma 2018; 60:1126-1135. [PMID: 30501544 DOI: 10.1080/10428194.2018.1533126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is the process of the proliferation and differentiation of spermatogonial stem cells (SSCs) to generate sperm. Leukemia patients show impairment in some of the endocrine hormones that are involved in spermatogenesis. They also show a decrease in semen parameters before and after thawing of cryopreserved samples compared to a control. The mechanisms behind these effects have not yet been described. This review summarizes the effect of leukemia on semen parameters from adult patients and highlights feasible suggested mechanisms that may affect impairment of spermatogenesis in these patients. We suggest the possible involvement of leukemia in disturbing hormones involved in spermatogenesis, and the imbalance in testicular paracrine/autocrine factors involved in the formation of SSC niches that control their proliferation and differentiation. Understanding the mechanisms of leukemia in the impairment of spermatogenesis may lead to the development of novel therapeutic strategies mainly for prepubertal boys who do not yet produce sperm.
Collapse
Affiliation(s)
- Yulia Michailov
- a The Shraga Segal Dept. of Microbiology, Immunology, and Genetics , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,d IVF Unit , Barzilai Medical Center , Ashkelon , Israel
| | - Eitan Lunenfeld
- b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,e Department of Obstetrics and Gynaecology , Soroka Medical Center , Beer-Sheva , Israel
| | - Joseph Kapelushnik
- b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,f Department of Pediatric Oncology and Department of Hematology , Soroka Medical Center , Beer-Sheva , Israel
| | - Mahmoud Huleihel
- a The Shraga Segal Dept. of Microbiology, Immunology, and Genetics , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,g The National Institute for Biotechnology in the Negev , Beer-Sheva , Israel
| |
Collapse
|
9
|
Lee SLJ, Horsfield JA, Black MA, Rutherford K, Fisher A, Gemmell NJ. Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development. BMC Genomics 2017; 18:557. [PMID: 28738802 PMCID: PMC5523153 DOI: 10.1186/s12864-017-3915-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sex hormones play important roles in teleost ovarian and testicular development. In zebrafish, ovarian differentiation appears to be dictated by an oocyte-derived signal via Cyp19a1a aromatase-mediated estrogen production. Androgens and aromatase inhibitors can induce female-to-male sex reversal, however, the mechanisms underlying gonadal masculinisation are poorly understood. We used histological analyses together with RNA sequencing to characterise zebrafish gonadal transcriptomes and investigate the effects of 17α-methyltestosterone on gonadal differentiation. RESULTS At a morphological level, 17α-methyltestosterone (MT) masculinised gonads and accelerated spermatogenesis, and these changes were paralleled in masculinisation and de-feminisation of gonadal transcriptomes. MT treatment upregulated expression of genes involved in male sex determination and differentiation (amh, dmrt1, gsdf and wt1a) and those involved in 11-oxygenated androgen production (cyp11c1 and hsd11b2). It also repressed expression of ovarian development and folliculogenesis genes (bmp15, gdf9, figla, zp2.1 and zp3b). Furthermore, MT treatment altered epigenetic modification of histones in zebrafish gonads. Contrary to expectations, higher levels of cyp19a1a or foxl2 expression in control ovaries compared to MT-treated testes and control testes were not statistically significant during early gonad development (40 dpf). CONCLUSION Our study suggests that both androgen production and aromatase inhibition are important for androgen-induced gonadal masculinisation and natural testicular differentiation in zebrafish.
Collapse
Affiliation(s)
| | - Julia A. Horsfield
- Department of Pathology, University of Otago, Dunedin, Otago New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, Otago New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, Otago New Zealand
| | - Amanda Fisher
- Department of Pathology, University of Otago, Dunedin, Otago New Zealand
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago New Zealand
| |
Collapse
|
10
|
Kiss1 and Kiss1 receptor expression in the rhesus monkey testis: a possible local regulator of testicular function. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0219-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
11
|
Tarulli GA, Stanton PG, Meachem SJ. Is the adult Sertoli cell terminally differentiated? Biol Reprod 2012; 87:13, 1-11. [PMID: 22492971 DOI: 10.1095/biolreprod.111.095091] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
New data have challenged the convention that the adult Sertoli cell population is fixed and unmodifiable. The Sertoli cell has two distinct functions: 1) formation of the seminiferous cords and 2) provision of nutritional and structural support to developing germ cells. For these to occur successfully, Sertoli cells must undergo many maturational changes between fetal and adult life, the main switches occurring around puberty, including the loss of proliferative activity and the formation of the blood-testis barrier. Follicle-stimulating hormone plays a key role in promoting Sertoli cell proliferation, while thyroid hormone inhibits proliferative activity in early postnatal life. Together these regulate the Sertoli-germ cell complement and sperm output in adulthood. By puberty, the Sertoli cell population is considered to be stable and unmodifiable by hormones. But there is mounting evidence that the size of the adult Sertoli cell population and its maturational status is modifiable by hormones and that Sertoli cells can gain proliferative ability in the spermatogenically disrupted hamster and human model. This new information demonstrates that the adult Sertoli cell population, at least in the settings of testicular regression in the hamster and impaired fertility in humans in vivo and from mice and men in vitro, is not a terminally differentiated population. Data from the hamster now show that the adult Sertoli cell population size is regulated by hormones. This creates exciting prospects for basic and clinical research in testis biology. The potential to replenish an adult Sertoli-germ cell complement to normal in a setting of infertility may now be realized.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | |
Collapse
|
12
|
Winnall WR, Okuma Y, Saito K, Muir JA, Hedger MP. Regulation of interleukin 1alpha, activin and inhibin by lipopolysaccharide in Sertoli cells from prepubertal rats. Mol Cell Endocrinol 2009; 307:169-75. [PMID: 19524137 DOI: 10.1016/j.mce.2009.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 02/06/2023]
Abstract
Bacterial lipopolysaccharide increased the production of interleukin 1alpha and activin A, and reduced production of inhibin B, in Sertoli cells from immature male rats measured by enzyme-linked immunosorbent assay (ELISA). The majority of immunoreactive interleukin 1alpha remained within the Sertoli cell, while both activin A and inhibin B were secreted. Lipopolysaccharide-stimulated expression of two interleukin 1alpha mRNA transcripts, measured by quantitative RT-PCR, but the levels of bioactive interleukin 1alpha in Sertoli cell extracts and medium, measured by in vitro bioassay, were comparatively low to undetectable. A specific antagonist of interleukin 1alpha had no effect on lipopolysaccharide-stimulated activin A or inhibin B responses. These data indicate that, in contrast to Sertoli cells from adult rats, lipopolysaccharide-induced regulation of activin A and inhibin B by prepubertal Sertoli cells does not involve secreted interleukin 1alpha. The data highlight the possibility of a role for intracellular interleukin 1alpha in the Sertoli cell response to inflammation, particularly in the immature testis.
Collapse
Affiliation(s)
- W R Winnall
- Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
13
|
Bagu ET, Gordon JR, Rawlings NC. Post-natal changes in testicular concentrations of interleukin-1 alpha and beta and interleukin-6 during sexual maturation in bulls. Reprod Domest Anim 2009; 45:336-41. [PMID: 19144032 DOI: 10.1111/j.1439-0531.2008.01318.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on observations in laboratory animals interleukins could be regulators of testicular development. The objects of this study were to see if interleukins (IL-1 and IL-6) are present in the developing bull testis and to establish the temporal patterns of concentrations of IL-1 and IL-6 in the bovine testis during development. Separate groups of six bull calves were castrated every 4 weeks from 5 to 33 weeks of age, and at 56 weeks of age. Mean testicular IL-1 alpha concentrations decreased (p < 0.01) from 5 to 9 weeks of age and 13 to 21 weeks of age. Mean testicular IL-1 beta concentrations decreased (p < 0.01) from 13 to 17 weeks of age and from 29 to 33 weeks of age. Mean IL-1 bioactivity increased from 13 to 17 weeks of age, decreased to 21 weeks, increased to 25 weeks, decreased to 29 weeks and decreased from 33 to 56 weeks of age (p < 0.05). Mean testicular IL-6 concentrations decreased (p < 0.05) from 9 to 13 weeks of age, increased (p < 0.05) to 21 weeks, decreased (p < 0.05) to 25 weeks, increased (p < 0.05) to 29 weeks and decreased (p < 0.01) to 56 weeks of age. In conclusion, testicular IL-1 alpha, IL-1 beta and IL-6 were found in the bovine testis and concentrations were age dependent. Testicular IL-1 alpha and IL-1 beta concentrations were highest in the early post-natal period; however, IL-1 bioactivity and IL-6 concentrations were greatest in the immediate pre-pubertal period. These findings suggest a functional role for interleukins in testicular development in the bull.
Collapse
Affiliation(s)
- E T Bagu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
14
|
Sarkar O, Mathur PP, Cheng CY, Mruk DD. Interleukin 1 alpha (IL1A) is a novel regulator of the blood-testis barrier in the rat. Biol Reprod 2007; 78:445-54. [PMID: 18057314 DOI: 10.1095/biolreprod.107.064501] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Throughout spermatogenesis, leptotene spermatocytes must traverse the blood-testis barrier (BTB) at stages VIII-XI to gain entry into the adluminal compartment for continued development. However, the mechanism underlying BTB restructuring remains somewhat elusive. In this study, interleukin 1 alpha (IL1A) was administered intratesticularly to adult rats in order to assess its effects on spermatogenesis. IL1A was shown to perturb Sertoli-germ cell adhesion, resulting in germ cell loss from approximately 50% of seminiferous tubules by 15 days posttreatment. Equally important, the functional integrity of the BTB was compromised when inulin-fluorescein isothiocyanate was detected in the adluminal compartment of the seminiferous epithelium following its administration via the jugular vein. Interestingly, IL1A did not affect the steady-state levels of proteins that confer BTB function, namely OCLN, CLDN1, F11R, TJP1, and CDH2. Instead, the localizations of OCLN, F11R, and TJP1 in the seminiferous epithelium were altered; these proteins appeared to move away from sites of cell-cell contact. Moreover, IL1A was shown to perturb the orderly arrangement of filamentous actin at the BTB and apical ectoplasmic specialization with distinct areas illustrating loss of actin filaments. Taken collectively, these results suggest that IL1A-induced BTB disruption is not mediated via the reduction of target protein levels. Instead, IL1A's primary cellular target appears to be the Sertoli cell actin cytoskeleton. It is possible that localized production of IL1A by Sertoli and/or germ cells in vivo results in BTB restructuring, and this may facilitate the movement of leptotene spermatocytes across the BTB.
Collapse
Affiliation(s)
- Oli Sarkar
- Population Council, Center for Biomedical Research, New York, NY 10065, USA
| | | | | | | |
Collapse
|
15
|
Role for tumor necrosis factor alpha (TNF-alpha) and interleukin 1-beta (IL-1beta) determination in seminal plasma during infertility investigation. Fertil Steril 2007; 87:810-23. [PMID: 17430733 DOI: 10.1016/j.fertnstert.2006.08.103] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the clinical relevance of tumor necrosis factor alpha (TNF-alpha) and interleukin 1-beta (IL-1beta) determination in seminal plasma during infertility investigation. DESIGN Prospective study. SETTING Outpatient infertility clinic of a university-based hospital. PATIENT(S) Randomly chosen asymptomatic males (n = 148) from subfertile couples. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Determination of TNF-alpha and IL-1beta in seminal plasma (SP) by enzyme-linked immunosorbent assay (ELISA). In aliquots of the same ejaculates: 1) evaluation of semen quality with sperm analysis and sperm function testing; 2) determination of antisperm antibodies (ASA) of the immunoglobulin (Ig) G and IgA class; 3) microbial screening; and 4) immunocytochemical round cell differentiation to determine leukocyte counts and ratios. Medical history, clinical examination, and determination of subsequent fertility (after control for female infertility factors). RESULT(S) The concentrations of TNF-alpha and IL-1beta in SP correlated significantly (r = 0.65; P<.0001), and these parameters were significantly related to the leukocyte ratio (%LC) of the seminal round cells (r = 0.36; P<.001) and the leukocyte counts per ejaculate (r = 0.34; P<.001). There was no relationship of TNF-alpha and IL-1beta levels in SP with semen quality or parameters of sperm functional capacity, and there was no association with local ASA of the IgG or IgA class. The concentration of both cytokines was also not related to the outcome of the microbial screening and did not affect subsequent fertility. No correlation of TNF-alpha and IL-1beta levels in SP with the concentration of C-reactive protein in same-day serum samples was found. CONCLUSION(S) The levels of TNF-alpha and IL-1beta in seminal fluid correlate significantly with leukocyte counts and ratios in the same ejaculates, as indicators of silent male genital tract infection/inflammation. However, this is not related to semen cultures in asymptomatic individuals and not associated with clinically relevant parameters of semen quality, including sperm fertilizing capacity.
Collapse
|
16
|
Dahia CL, Rao AJ. Regulation of FSH receptor, PKIbeta, IL-6 and calcium mobilization: Possible mediators of differential action of FSH. Mol Cell Endocrinol 2006; 247:73-81. [PMID: 16406266 DOI: 10.1016/j.mce.2005.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 10/31/2005] [Indexed: 11/19/2022]
Abstract
Sertoli cells support the development of germ cells by providing a microenvironment in the seminiferous tubules. FSH stimulates Sertoli cell proliferation only during neonatal period till day 18 in the immature rat whereas FSH regulates only functional parameters in the adult rat Sertoli cells. This suggests that FSH exerts differential action in immature and adult Sertoli cells. In an attempt to elucidate the mechanism by which FSH exerts the differential effects, we have carried out both in vivo and in vitro studies using Sertoli cells isolated from immature (7-10 days old) and adult (90 days old) rats. The differential role of FSH was studied at the receptor as well as at the signaling level. Monitoring the level of expression of FSH receptor by RTPCR and northern blot analysis revealed that the expression was more in immature Sertoli cells. Furthermore, it was found that FSH up (1.8-fold) regulates its receptor level only in the immature Sertoli cells and not in the adult. Results also revealed that PKIbeta and calcium, which are the downstream signaling molecules, are involved in FSH regulated Sertoli cells proliferation. It was also observed that FSH up (1.4-fold) regulates the levels of expression of IL-6 mRNA only in the immature rat Sertoli cells suggesting the possibility of its involvement in FSH regulated Sertoli cell proliferation.
Collapse
Affiliation(s)
- Chitra Lekha Dahia
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
17
|
Kanematsu N, Nakajima I, Haga K, Suto M. Transferrin and inhibin mRNA in mature pig Sertoli cells. Reprod Med Biol 2005; 4:259-264. [PMID: 29699229 DOI: 10.1111/j.1447-0578.2005.00116.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aims: There is increasing concern about the effect of environmental toxins and endocrine disrupters on human spermatogenesis but ethical considerations prohibit direct research. Therefore, we developed a method of isolating mature pig Sertoli cells and studying the levels of mRNA of transferrin and inhibin, markers of Sertoli cell function, using real-time polymerase chain reaction analysis. Methods: Sertoli cells from mature Meishan boars were isolated and cultured. The mRNA was isolated from the cells after 3 days of treatment with follicle-stimulating hormone (FSH), testosterone and β-estradiol. The amounts of transferrin and inhibin mRNA were analyzed by real-time polymerase chain reaction and the relative level of mRNA was calculated. Results: FSH tended to increase the levels of transferrin and inhibin mRNA, as did the combinations of FSH and the steroids. The effect of testosterone and β-estradiol alone on the level of mRNA was less than that of FSH. Beta-estradiol treatment resulted in a dose-dependent decrease in mRNA. Conclusion: The Sertoli cell culture used in the present study appears to have a normal secretory function because the mRNA levels of both markers increased after FSH treatment. The suppressive effect of β-estradiol on inhibin mRNA level suggests that β-estradiol has an effect on the function of Sertoli cells. (Reprod Med Biol 2005; 4: 259 -264).
Collapse
Affiliation(s)
| | | | - Kiyonori Haga
- Department of Research Planning and Coordination, National Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Madoka Suto
- Department of Animal Physiology and Nutrition
| |
Collapse
|
18
|
Gerendai I, Banczerowski P, Csernus V. Interleukin 1-beta injected into the testis acutely stimulates and later attenuates testicular steroidogenesis of the immature rat. Endocrine 2005; 28:165-70. [PMID: 16388089 DOI: 10.1385/endo:28:2:165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/17/2005] [Accepted: 08/23/2005] [Indexed: 11/11/2022]
Abstract
The effect of intratesticular administration of interleukin-1beta (IL-1beta) on steroidogenesis was studied in immature and adult rats. In 21-d-old animals local bilateral injection or unilateral administration of 0.1 microg/testis of IL-1beta to hemicastrates resulted in a significant increase in basal testosterone secretion in vitro and serum testosterone concentration one day posttreatment. Six days after treatment the cytokine induced opposite effect in animals with two testes in situ, i.e., it suppressed steroidogenesis. When IL-1beta was combined with hemi-castration, IL-1beta failed to alter the parameters studied. In adult animals subjected to bilateral treatment or to unilateral injection followed by hemicastration, IL-1beta in doses of 1.5 microg/testis or 15 microg/testis did not influence steroidogenesis and serum testosterone concentration. No change in serum LH and FSH concentration could be observed in any experimental group. The data suggest that the proinflammatory cytokine IL-1beta exerts a local action on testicular steroidogenesis, and the effect is age-dependent.
Collapse
Affiliation(s)
- Ida Gerendai
- Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Department of Human Morphology and Developmental Biology, H-1094 Budapest, Tuzoltó u. 58., Hungary.
| | | | | |
Collapse
|
19
|
Halberstadt C, Emerich DF, Gores P. Use of Sertoli cell transplants to provide local immunoprotection for tissue grafts. Expert Opin Biol Ther 2005; 4:813-25. [PMID: 15174964 DOI: 10.1517/14712598.4.6.813] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The recent success of allogeneic islet transplantation for the treatment of type I diabetes has renewed interest in cell therapy for diseases of secretory cell dysfunction. Unfortunately, widespread clinical use of cell transplantation is limited by tissue availability and the need for long-term immunosuppresion. Testicular Sertoli cells can confer local immunoprotection for co-transplanted cells and may provide a means of overcoming the obstacles associated with cell transplantation. Sertoli cell grafts protect islets in animal models of diabetes and can be transplanted into the brain to enhance regeneration and promote the survival of co-grafted tissues. This review describes the role that Sertoli cells normally play in testicular immunology, details the preclinical data using transplanted Sertoli cells in models of diabetes and Parkinson's disease and discusses some of the possible mechanisms involved in this phenomena, as well as the future of this technology.
Collapse
Affiliation(s)
- Craig Halberstadt
- Carolinas Medical Center, General Surgery Research, Cannon Research Center, P.O. Box 32861, Charlotte, NC 28232-2861, USA.
| | | | | |
Collapse
|
20
|
Petersen C, Fröysa B, Söder O. Endotoxin and proinflammatory cytokines modulate Sertoli cell proliferation in vitro. J Reprod Immunol 2004; 61:13-30. [PMID: 15027475 DOI: 10.1016/j.jri.2003.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sertoli cells play a key role in testicular function and their final number in the adult testis determines the capacity of germ cell production. Sertoli cell proliferation, stimulated by FSH and paracrine factors, occurs only in fetal and prepubertal life and may be an important target of pathogenic influences affecting testis development. We used a Sertoli cell proliferation assay to address the question whether if bacterial endotoxin (lipopolysaccharide; LPS) and proinflammatory cytokines could influence early postnatal Sertoli cell development. LPS and tumor necrosis factor-alpha (TNF-alpha) dose-dependently stimulated proliferation of primary cultures of isolated Sertoli cells from 8- to 9-day-old rats, assessed by (3)H-thymidine and BrdU incorporation. LPS also significantly increased the number of living cells in culture, measured by supravital staining. Interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) had no direct effect on Sertoli cell growth, but were found to modulate FSH action. IL-6 increased, while IFN-gamma inhibited, FSH-induced Sertoli cell DNA-synthesis. We conclude that endotoxin and TNF-alpha are potent direct stimulators of Sertoli cell proliferation in vitro, and that IL-6 and IFN-gamma can modulate the mitogenic action of FSH on immature Sertoli cells. This may contribute to the pathogenesis of testicular damage after infections and inflammatory diseases in fetal and early postnatal life, with subsequent disturbance of adult germ cell production.
Collapse
Affiliation(s)
- Cecilia Petersen
- Department of Women and Child Health, Paediatric Endocrinology Unit, Astrid Lindgren Children's Hospital, Karolinska Institutet and Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|