1
|
Mohanty S, Lekven AC. Divergent functions of the evolutionarily conserved, yet seemingly dispensable, Wnt target, sp5. Differentiation 2025; 141:100829. [PMID: 39675112 DOI: 10.1016/j.diff.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The activation of sp5 in response to Wnt/β-catenin signaling is observed in many species during axis patterning, neural crest induction, maintenance and differentiation of stem cells. Indeed, the conserved response of sp5 orthologs to Wnt-mediated activation is the basis for this gene commonly being used as a readout for Wnt signaling activity. However, several seemingly conflicting findings regarding the function of sp5 in the context of Wnt signaling cast this gene in an enigmatic light. In this review, we examine current knowledge of sp5 structure and function, its relationship to Wnt signaling in varied contexts, and present perspectives on how progress on this interesting gene can move forward.
Collapse
Affiliation(s)
- Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA.
| |
Collapse
|
2
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Xiao L, Kovac S, Chang M, Shulkes A, Baldwin GS, Patel O. Induction of gastrin expression in gastrointestinal cells by hypoxia or cobalt is independent of hypoxia-inducible factor (HIF). Endocrinology 2012; 153:3006-16. [PMID: 22593272 PMCID: PMC3380302 DOI: 10.1210/en.2011-2069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporter assay. Exposure to a low oxygen concentration (1%) increased gastrin mRNA concentrations in wild-type AGS cells (AGS) and in AGS cells overexpressing the gastrin receptor (AGS-cholecystokinin receptor 2) by 2.1 ± 0.4- and 4.1 ± 0.3-fold (P < 0.05), respectively. The hypoxia mimetic, cobalt chloride (300 μM), increased gastrin promoter activity in AGS cells by 2.4 ± 0.3-fold (P < 0.05), and in AGS-cholecystokinin receptor 2 cells by 4.0 ± 0.3-fold (P < 0.05), respectively. The observations that either deletion from the gastrin promoter of the putative binding sites for the transcription factor hypoxia-inducible factor 1 (HIF-1) or knockdown of either the HIF-1α or HIF-1β subunit did not affect gastrin promoter inducibility under hypoxia indicated that the hypoxic activation of the gastrin gene is likely HIF independent. Mutational analysis of previously identified Sp1 regulatory elements in the gastrin promoter also failed to abrogate the induction of promoter activity by hypoxia. The observations that hypoxia up-regulates the gastrin gene in AGS cells by HIF-independent mechanisms, and that this effect is enhanced by the presence of gastrin receptors, provide potential targets for gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Lin Xiao
- The University of Melbourne, Department of Surgery, Austin Health, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | |
Collapse
|
4
|
Tsou JH, Chang KY, Wang WC, Tseng JT, Su WC, Hung LY, Chang WC, Chen BK. Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2alpha in phorbol ester-treated non-small cell lung cancer A549 cells. Nucleic Acids Res 2008; 36:217-27. [PMID: 18025046 PMCID: PMC2248756 DOI: 10.1093/nar/gkm1027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/16/2007] [Accepted: 10/29/2007] [Indexed: 01/01/2023] Open
Abstract
The expression of cPLA2 is critical for transformed growth of non-small cell lung cancer (NSCLC). It is known that phorbol 12-myristate 13-acetate (PMA)-activated signal transduction pathway is thought to be involved in the oncogene action in NSCLC and enzymatic activation of cPLA2. However, the transcriptional regulation of cPLA2alpha in PMA-activated NSCLC is not clear. In this study, we found that PMA induced the mRNA level and protein expression of cPLA2alpha. In addition, two Sp1-binding sites of cPLA2alpha promoter were required for response to PMA and c-Jun overexpression. Small interfering RNA (siRNA) of c-Jun and nucleolin inhibited PMA induced the promoter activity and protein expression of cPLA2alpha. Furthermore, PMA stimulated the formation of c-Jun/Sp1 and c-Jun/nucleolin complexes as well as the binding of these transcription factor complexes to the cPLA2alpha promoter. Although Sp1-binding sites were required for the bindings of Sp1 and nucleolin to the promoter, the binding of nucleolin or Sp1 to the promoter was independent of each other. Our results revealed that c-Jun/nucleolin and c-Jun/Sp1 complexes play an important role in PMA-regulated cPLA2alpha gene expression. It is likely that nucleolin binding at place of Sp1 on gene promoter could also mediate the regulation of c-Jun/Sp1-activated genes.
Collapse
Affiliation(s)
- Jen-Hui Tsou
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Kwang-Yu Chang
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Chiao Wang
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Joseph T. Tseng
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wu-Chou Su
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Liang-Yi Hung
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chang Chang
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Ben-Kuen Chen
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Subrata LS, Lowes KN, Olynyk JK, Yeoh GCT, Quail EA, Abraham LJ. Hepatic expression of the tumor necrosis factor family member lymphotoxin-beta is regulated by interleukin (IL)-6 and IL-1beta: transcriptional control mechanisms in oval cells and hepatoma cell lines. Liver Int 2005; 25:633-46. [PMID: 15910501 DOI: 10.1111/j.1478-3231.2005.01080.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lymphotoxin-beta (LT-beta) plays an important role in inflammation and its promoter contains a functional nuclear factor-kappaB (NF-kappaB) element, rendering it a likely target of pro-inflammatory cytokines. Inflammatory cytokines play a central role in liver regeneration resulting from acute or chronic liver injury, with interleukin (IL)-6 signaling essential for liver regeneration induced by partial hepatectomy. In hepatic oval cells observed following chronic liver injury, LT-beta levels are upregulated, suggesting a link between LT-beta and liver regeneration. RESULTS The expression of LT-beta in hepatic oval cell and hepatocellular carcinoma cell lines was further investigated, along with its responsiveness to IL-6 and IL-1beta. Key regulatory cis-acting elements of the LT-beta promoter that mediate IL-6 responsiveness (Sp/BKLF, Ets, NF-kappaB and Egr-1/Sp1) and IL-1beta responsiveness (NF-kappaB and Ets) of hepatic LT-beta expression were identified. The novel binding of basic Kruppel-like factor (BKLF) proteins to an apparent composite Sp/BKLF site of the LT-beta promoter was shown to mediate IL-6 responsiveness. Binding of NF-kappaB p65/p50 heterodimers and Ets-related transcription factors to their respective sites mediates responsiveness to IL-1beta. CONCLUSION The identification of IL-6 and IL-1beta as activators of LT-beta supports their involvement in LT-beta signaling in liver regeneration associated with chronic liver damage.
Collapse
Affiliation(s)
- Lily S Subrata
- Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Chung SS, Choi HH, Kim KW, Cho YM, Lee HK, Park KS. Regulation of human resistin gene expression in cell systems: an important role of stimulatory protein 1 interaction with a common promoter polymorphic site. Diabetologia 2005; 48:1150-8. [PMID: 15864531 DOI: 10.1007/s00125-005-1762-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 01/20/2005] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Resistin is an adipokine that might link obesity and insulin resistance. A common polymorphism of the human resistin gene, -420C >G, is a major determinant of plasma resistin concentrations as well as resistin mRNA expression in human adipose tissue. In this study, we investigated the regulatory mechanism by which this polymorphism affects resistin expression. METHODS Electrophoretic mobility shift assay was performed to identify the transcription factors binding to the -420G region. Transient transfection and reporter assay were used to measure promoter activities of the resistin gene. The binding ability of stimulatory protein 1 (Sp1) in response to adipocyte differentiation or high glucose concentrations was also measured. RESULTS Sp1 and stimulatory protein 3 (Sp3) specifically bound to the region around -420G of the human resistin gene. Overexpression of Sp1 increased the promoter activity regardless of -420 genotypes, while the promoter activity of the -420G construct was two-fold higher than that of the -420C construct. In contrast, overexpression of Sp3 scarcely increased the promoter activity. The binding ability of Sp1 to the -420G region was increased in response to adipocyte differentiation. Mithramycin A, an inhibitor of DNA binding of Sp1, reduced the effect of high glucose on transcription induction of the resistin gene in adipocytes. CONCLUSIONS/INTERPRETATION These results suggest that Sp1 is an important factor regulating transcription of human resistin gene. A common polymorphism of the human resistin promoter, -420C >G, is critical for the binding of Sp1 and modulates the transcriptional activity of the resistin gene by changing the binding ability of Sp1. In addition, Sp1 may be involved in the increase of resistin expression by hyperglycaemia.
Collapse
Affiliation(s)
- S S Chung
- Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
7
|
Suico MA, Koga T, Shuto T, Hisatsune A, Lu Z, Basbaum C, Okiyoneda T, Kai H. Sp1 is involved in the transcriptional activation of lysozyme in epithelial cells. Biochem Biophys Res Commun 2005; 324:1302-8. [PMID: 15504356 DOI: 10.1016/j.bbrc.2004.09.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Indexed: 11/30/2022]
Abstract
Lysozyme protects us from the ever-present danger of bacterial infection. The expression of lysozyme is, in part, regulated by the Ets factor, myeloid elf-1-like factor (MEF). MEF binds to the ETS site of the lysozyme promoter at -46 to -40bp. Closer analysis of the promoter using a series of deletion mutants and point mutants indicated that the region around -75bp is also essential in regulating the activity of lysozyme. The sequences in this region correspond to the Sp1 consensus binding site. Sp1 is known to regulate a variety of house-keeping and tissue-specific genes by itself or with other transcription factors like AP-1 or ETS. We indicate here that Sp1 regulates the lysozyme gene by binding to the GT-core sequences of lysozyme promoter. Treatment with mithramycin A down-regulated the promoter activity and the transfection of anti-sense Sp1 induced a decrease in the endogenous expression of lysozyme.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Holley-Guthrie EA, Seaman WT, Bhende P, Merchant JL, Kenney SC. The Epstein-Barr virus protein BMRF1 activates gastrin transcription. J Virol 2005; 79:745-55. [PMID: 15613302 PMCID: PMC538557 DOI: 10.1128/jvi.79.2.745-755.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BMRF1 gene encodes an early lytic protein that functions not only as the viral DNA polymerase processivity factor but also as a transcriptional activator. BMRF1 has been previously shown to activate transcription of an EBV early promoter, BHLF1, though a GC-rich motif which binds to SP1 and ZBP-89, although the exact mechanism for this effect is not known (D. J. Law, S. A. Tarle, and J. L. Merchant, Mamm. Genome 9:165-167, 1998). Here we demonstrate that BMRF1 activates transcription of the cellular gastrin gene in telomerase-immortalized keratinocytes. Furthermore, BMRF1 activated a reporter gene construct driven by the gastrin promoter in a variety of cell types, and this effect was mediated by two SP1/ZBP-89 binding sites in the gastrin promoter. ZBP-89 has been previously shown to negatively regulate the gastrin promoter. However, ZBP-89 can function as either a negative or positive regulator of transcription, depending upon the promoter and perhaps other, as-yet-unidentified factors. BMRF1 increased the binding of ZBP-89 to the gastrin promoter, and a ZBP-89-GAL4 fusion protein was converted into a positive transcriptional regulator by cotransfection with BMRF1. BMRF1 also enhanced the transcriptional activity of an SP1-GAL4 fusion protein. These results suggest that BMRF1 activates target promoters through its effect on both the SP1 and ZBP-89 transcription factors. Furthermore, as the EBV genome is present in up to 10% of gastric cancers, and the different forms of gastrin are growth factors for gastrointestinal epithelium, our results suggest a mechanism by which lytic EBV infection could promote the growth of gastric cells.
Collapse
Affiliation(s)
- Elizabeth A Holley-Guthrie
- Lineberger Comprehensive Cancer Center, CB # 7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The initiation of transcription is accomplished via interactions of many different proteins with common and gene-specific regulatory motifs. Clearly, sequence-specific transcription factors play a crucial role in the specificity of transcription initiation. A group of sequence-specific DNA-binding proteins, related to the transcription factor Sp1, has been implicated in the regulation of many different genes, since binding sites for these transcription factors (GC/GT boxes) are a recurrent motif in regulatory sequences such as promoters, enhancers and CpG islands of these genes. The simultaneous occurrence of several homologous GC/GT box-binding factors precludes a straightforward deduction of their role in transcriptional regulation. In this review, we focus on the connection between functional specificity and biochemical properties including glycosylation, phosphorylation and acetylation of Sp1-related factors.
Collapse
Affiliation(s)
- Peter Bouwman
- Hubrecht Laboratory/NIOB, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
10
|
Xu Q, Ji YS, Schmedtje JF. Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J Biol Chem 2000; 275:24583-9. [PMID: 10825178 DOI: 10.1074/jbc.m003894200] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) catalyzes prostaglandin synthesis from arachidonic acid and is expressed locally in aortic aneurysm and heart failure. Cellular hypoxia is also found in these conditions. We have previously shown that cox-2 is transcriptionally regulated by hypoxia in human umbilical vein endothelial cells (HUVEC) in culture via the transactivation factor NF-kappaB p65, leading to increased production of prostaglandin E(2), an inhibitor of vascular smooth muscle cell proliferation. Sp1 is a transactivation factor known to be important in the regulation of cytokine expression in association with NF-kappaB. We hypothesized that Sp1 is involved in the induction of cox-2 in hypoxic HUVEC. Electrophoretic mobility shift assays with hypoxic HUVEC nuclear protein showed that both Sp1 and the related protein Sp3 specifically bound to the cox-2 promoter. Immunoblotting demonstrated that hypoxia increased the nuclear localization of Sp1 but did not change the Sp3 content in HUVEC. Overexpression of Sp1 through transfection of HUVEC enhanced cox-2 promoter activity as measured by reporter gene expression and by the production of COX-2. The specificity of the results was confirmed by mutation of the Sp1-binding site in the cox-2 promoter construct and by reproducibility in an Sp-deficient Drosophila SL2 cell line. The regulatory role of Sp1 discovered in this work supports the concept that a mechanistic link exists between vascular cellular hypoxia and mediators of inflammation associated with aortic aneurysm and heart failure.
Collapse
Affiliation(s)
- Q Xu
- Section on Cardiology, Department of Medicine, and Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1045, USA
| | | | | |
Collapse
|
11
|
Hansen TV, Rehfeld JF, Nielsen FC. Function of the C-36 to T polymorphism in the human cholecystokinin gene promoter. Mol Psychiatry 2000; 5:443-7. [PMID: 10889557 DOI: 10.1038/sj.mp.4000705] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholecystokinin (CCK) is the most abundant neuropeptide in the mammalian brain, and in man significant quantities are expressed in all regions of the brain.1,2 Therefore, CCK has been implicated in a variety of CNS functions-such as feeding behavior, anxiety, analgesia and memory functions as well as psychiatric disease like panic disorder and schizophrenia (for review, see2,3). Recently, a number of studies have indicated that a C-36 to T transition in the CCK gene promoter Sp1 element4 (Figure 1) is associated with alcoholism and withdrawal symptoms as well as panic disorder.5-7 Moreover, it has been proposed that the polymorphism plays a direct role in the pathogenesis of the disorders by decreasing the expression and synthesis of CCK peptides. The significance of these findings is still unclear and other studies have failed to demonstrate linkage between the polymorphism and alcoholism.8 In this study we examined the function of the C-36 to T transition in transcription of the human CCK gene. We demonstrate that substitution of the C-36 residue causes a slight reduction of Sp1 and Sp3 binding, but this has no effect on transcription in vivo. Moreover, no difference in the response to physiological stimuli was observed. Taken together the results show that the C to T polymorphism does not play a direct role in the pathogenesis of either alcoholism or panic disorder and that a putative association to these disorders is likely to be the result of co-segregation with a linked mutation.
Collapse
Affiliation(s)
- T V Hansen
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen O, Denmark
| | | | | |
Collapse
|