1
|
The angiotensin type 2 receptor in the human adrenocortical zona glomerulosa and in aldosterone-producing adenoma: low expression and no functional role. Clin Sci (Lond) 2018; 132:627-640. [PMID: 29436482 DOI: 10.1042/cs20171593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 11/17/2022]
Abstract
The angiotensin II (Ang II) type 2 receptor (AT2R) and the angiotensin-(1-7) (Ang-(1-7)) receptor (MasR) play a cardiovascular protective role by counter-regulating Ang II type 1 receptor (AT1R)-mediated effects, but whether this involves blunting of adrenocortical hormone secretion is unknown. We investigated the presence of AT1R, AT2R, and MasR in aldosterone-producing adenoma (APA), a condition featuring hyperaldosteronism, and in APA-adjacent tissue. The effect of Compound 21 (C21), an AT2R agonist, on CYP11B1 (cortisol synthase) and CYP11B2 (aldosterone synthase) gene expression in NCI-H295R and HAC15 cell lines, and in APA and APA-adjacent tissue, was also assessed using the AT1R antagonist irbesartan to ascertain the specificity of C21 effect. We found that the AT1R, AT2R, and MasR were expressed in APA and APA-adjacent tissue, albeit heterogeneously. The gene expression of AT1R and AT2R was lower, and that of the MasR higher in APAs than in APA-adjacent tissue. In steroid-producing NCI-H295R and HAC15 cell lines, and in APA and APA-adjacent tissue, C21 was ineffective at nanomolar concentrations, but increased CYP11B1 and CYP11B2 gene expression at micromolar concentrations through AT1R, as this effect was blunted by irbesartan. The scant expression of the AT2R, along with the lack of any effect of C21 at low concentrations on CYP11B2, do not support the contention that the protective arm of renin-angiotensin system (RAS) blunts aldosterone synthase in the normal adrenal cortex and primary aldosteronism.
Collapse
|
2
|
Vinturache AE, Smith FG. Glomerular and tubular effects of nitric oxide (NO) are regulated by angiotensin II (Ang II) in an age-dependent manner through activation of both angiotensin receptors (AT1Rs and AT2Rs) in conscious lambs. Pflugers Arch 2017; 470:249-261. [PMID: 28861607 DOI: 10.1007/s00424-017-2053-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/23/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023]
Abstract
Renin-angiotensin (RAS) and nitric oxide (NO) systems and the balance and interaction between them are considered of primary importance in maintaining fluid and electrolyte homeostasis. It has been suggested that the effects of NO may be modulated at least in part by the angiotensin (Ang) II, yet the roles of angiotensin receptor type 1 (AT1R) and type 2 (AT2R) are not well understood. Even though both Ang II and NO are elevated at birth and during the newborn period, their contribution to the adaptation of the newborn to life after birth as well as their physiological roles during development are poorly understood. The aim of this study was to determine if NO regulation of renal function during postnatal maturation is modulated by Ang II through activation of AT1R or AT2R or both receptors. Glomerular and tubular effects of either AT1R selective antagonist ZD 7155, AT2R selective antagonist PD 123319, and both antagonists ZD 7155 plus PD 123319, were measured in 1- (N = 9) and 6-week-old (N = 13) conscious, chronically instrumented lambs before and after removal of endogenous NO with L-arginine analogue, L-NAME. Two-way analysis of variance (ANOVA) procedures for repeated measures over time with factors age and treatment were used to compare the effects of the treatments on several glomerular and tubular variables in both groups. This study showed that L-NAME infusion after pre-treatment with ATR antagonists did not alter glomerular function in 1- or 6-week-old lambs. NO effects on electrolytes handling along the nephron during postnatal development were modulated by Ang II through AT1R and AT2R in an age-dependent manner. Selective inhibition of AT1R and AT2R increased excretion of Na+, K+, and Cl- in 6- but not in 1-week-old lambs. In 6-week-old lambs, urinary flow rate increased by 200%, free water clearance increased by 50%, and urine osmolality decreased by 40% after L-NAME was added to the pre-treatment with ZD 7155 plus PD 123319. When L-NAME was added either to ZD 7155 or PD 123319, the same trend in the alterations of these variables was observed, albeit to a lower degree. In conclusion, in conscious animals, during postnatal maturation, Ang II modulates the effects of NO on glomerular function, fluid, and electrolyte homeostasis through AT1Rs and AT2Rs in an age-dependent manner. Under physiological conditions, AT2Rs may potentiate the effects of AT1R, providing evidence of a crosstalk between ATRs in modulating NO effects on fluid and electrolyte homeostasis during postnatal maturation. This study provides new insights on the regulation of renal function during early postnatal development showing that, compared with later in life, newborns have impaired capacity to regulate glomerular function, water, and electrolyte balance.
Collapse
Affiliation(s)
- Angela E Vinturache
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Francine G Smith
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Müller-Fielitz H, Lau M, Jöhren O, Stellmacher F, Schwaninger M, Raasch W. Blood pressure response to angiotensin II is enhanced in obese Zucker rats and is attributed to an aldosterone-dependent mechanism. Br J Pharmacol 2012; 166:2417-29. [PMID: 22452651 DOI: 10.1111/j.1476-5381.2012.01953.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Plasma aldosterone levels correlate positively with obesity, suggesting a link between the hypertension associated with obesity and increased mineralocorticoid levels. We tested the hypothesis that aldosterone is involved in the BP response to angiotensin II (AngII) in obese rats. EXPERIMENTAL APPROACH Lean (LZR) and obese (OZR) Zucker rats were treated with AngII (9 µg·h(-1) ; 4 weeks), and BP and plasma AngII and aldosterone were determined. KEY RESULTS Chronic AngII increased the BP in OZR markedly more so than in LZR. Plasma AngII levels in LZR and OZR were similar after AngII treatment. The AngII stimulated a rise in plasma aldosterone that was sixfold more in OZR than in LZR. The thickness of the zona glomerulosa of the adrenal glands was selectively increased by AngII in OZR. Adrenal mRNA levels of CYP11B2 aldosterone synthase and the AT(1B) receptor were selectively increased in AngII-treated OZR. The BP response to chronic AngII stimulation was diminished in OZR after adrenalectomy when plasma aldosterone was absent. Acute bolus injections of AngII did not increase the BP response or aldosterone release in OZR. CONCLUSIONS AND IMPLICATIONS The AngII-induced BP response is enhanced in obesity and this is associated with a specific increase in circulating aldosterone. Due to the AngII-induced growth of the zona glomerulosa in OZR, the AT(1B) receptors and aldosterone synthase may be selectively enhanced in obesity under concomitant AngII stimulation, increasing the adrenal synthesis of aldosterone. Our results confirm functionally that aldosterone plays a major role in obesity-related hypertension.
Collapse
Affiliation(s)
- Helge Müller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Moritz KM, Cuffe JSM, Wilson LB, Dickinson H, Wlodek ME, Simmons DG, Denton KM. Review: Sex specific programming: a critical role for the renal renin-angiotensin system. Placenta 2010; 31 Suppl:S40-6. [PMID: 20116093 DOI: 10.1016/j.placenta.2010.01.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 12/21/2022]
Abstract
The "Developmental Origins of Health and Disease" hypothesis has caused resurgence of interest in understanding the factors regulating fetal development. A multitude of prenatal perturbations may contribute to the onset of diseases in adulthood including cardiovascular and renal diseases. Using animal models such as maternal glucocorticoid exposure, maternal calorie or protein restriction and uteroplacental insufficiency, studies have identified alterations in kidney development as being a common feature. The formation of a low nephron endowment may result in impaired renal function and in turn may contribute to disease. An interesting feature in many animal models of developmental programming is the disparity between males and females in the timing of onset and severity of disease outcomes. The same prenatal insult does not always affect males and females in the same way or to the same degree. Recently, our studies have focused on changes induced in the kidney of both the fetus and the offspring, following a perturbation during pregnancy. We have shown that changes in the renin-angiotensin system (RAS) occur in the kidney. The changes are often sex specific which may in part explain the observed sex differences in disease outcomes and severity. This review explores the evidence suggesting a critical role for the RAS in sex specific developmental programming of disease with particular reference to the immediate and long term changes in the local RAS within the kidney.
Collapse
Affiliation(s)
- K M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Gwathmey TM, Shaltout HA, Pendergrass KD, Pirro NT, Figueroa JP, Rose JC, Diz DI, Chappell MC. Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol 2009; 296:F1484-93. [PMID: 19244399 DOI: 10.1152/ajprenal.90766.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Expression of nuclear angiotensin II type 1 (AT(1)) receptors in rat kidney provides further support for the concept of an intracellular renin-angiotensin system. Thus we examined the cellular distribution of renal ANG II receptors in sheep to determine the existence and functional roles of intracellular ANG receptors in higher order species. Receptor binding was performed using the nonselective ANG II antagonist (125)I-[Sar(1),Thr(8)]-ANG II ((125)I-sarthran) with the AT(1) antagonist losartan (LOS) or the AT(2) antagonist PD123319 (PD) in isolated nuclei (NUC) and plasma membrane (PM) fractions obtained by differential centrifugation or density gradient separation. In both fetal and adult sheep kidney, PD competed for the majority of cortical NUC (> or =70%) and PM (> or =80%) sites while LOS competition predominated in medullary NUC (> or =75%) and PM (> or =70%). Immunodetection with an AT(2) antibody revealed a single approximately 42-kDa band in both NUC and PM extracts, suggesting a mature molecular form of the NUC receptor. Autoradiography for receptor subtypes localized AT(2) in the tubulointerstitium, AT(1) in the medulla and vasa recta, and both AT(1) and AT(2) in glomeruli. Loading of NUC with the fluorescent nitric oxide (NO) detector DAF showed increased NO production with ANG II (1 nM), which was abolished by PD and N-nitro-l-arginine methyl ester, but not LOS. Our studies demonstrate ANG II receptor subtypes are differentially expressed in ovine kidney, while nuclear AT(2) receptors are functionally linked to NO production. These findings provide further evidence of a functional intracellular renin-angiotensin system within the kidney, which may represent a therapeutic target for the regulation of blood pressure.
Collapse
Affiliation(s)
- Tanya M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Keller-Wood M, von Reitzenstein M, McCartney J. Is the fetal lung a mineralocorticoid receptor target organ? Induction of cortisol-regulated genes in the ovine fetal lung, kidney and small intestine. Neonatology 2008; 95:47-60. [PMID: 18787337 PMCID: PMC2654587 DOI: 10.1159/000151755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/28/2008] [Indexed: 01/29/2023]
Abstract
BACKGROUND Lung, kidney and small intestine are involved in fetal volume regulation and amniotic fluid secretion and play a pivotal role in the transition from intrauterine to extrauterine life. OBJECTIVE This study was performed to determine the ontogeny of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), and of MR- and GR-regulated genes and proteins, serum and glucocorticoid-induced kinase (Sgk-1), epithelial sodium channel (ENaC alpha), and Na,K-ATPase alpha1. METHODS Lung, renal cortex and medulla, and small intestine were collected from fetuses at 80, 100, 120, 130 and 145 days' gestation and from day 1 and 7 neonatal lambs. Real-time PCR was performed to determine mRNA concentration for MR, GR, the 11 beta-hydroxysteroid dehydrogenases (11 beta-HSD1 and 2), Sgk-1, ENaC alpha, and Na,K-ATPase alpha1. Protein expression of ENaC alpha and Na,K-ATPase alpha1 in whole cell and membrane fractions was determined by immunoblotting. RESULTS Expression of corticosteroid-induced genes in renal cortex increases at term; in small intestine the induction occurs postnatally. In contrast, in lung expression of MR and GR mRNAs were greater at 100 days to term than postnatally and 11 beta-HSD1 peaked at 145 days; the corticosteroid-induced genes also increased prenatally: Sgk-1 and ENaC alpha increased by 120 days, peaking at 145 days, and Na,K-ATPase alpha1 was greatest at 130 days. CONCLUSIONS The expression of high levels of MR and 11 beta-HSD1 in preterm fetal lung suggest low endogenous fetal cortisol may exert actions at the high affinity MR in vivo, leading to increases in expression of sodium channels important in the regulation of lung liquid secretion and reabsorption.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism
- Adrenal Cortex Hormones/genetics
- Adrenal Cortex Hormones/metabolism
- Animals
- Animals, Newborn/embryology
- Animals, Newborn/metabolism
- Epithelial Sodium Channels/genetics
- Epithelial Sodium Channels/metabolism
- Fetus/embryology
- Fetus/metabolism
- Gene Expression Regulation, Developmental
- Gestational Age
- Intestine, Small/embryology
- Intestine, Small/metabolism
- Kidney/embryology
- Kidney/metabolism
- Lung/embryology
- Lung/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Sheep
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
7
|
Guan J, Mao C, Feng X, Zhang H, Xu F, Geng C, Zhu L, Wang A, Xu Z. Fetal development of regulatory mechanisms for body fluid homeostasis. Braz J Med Biol Res 2008; 41:446-54. [DOI: 10.1590/s0100-879x2008005000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/14/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
- J. Guan
- Soochow University School of Medicine, China; Bengbu Medical College, China
| | - C. Mao
- Soochow University School of Medicine, China
| | - X. Feng
- Soochow University School of Medicine, China
| | - H. Zhang
- Soochow University School of Medicine, China
| | - F. Xu
- Soochow University School of Medicine, China
| | - C. Geng
- Soochow University School of Medicine, China
| | - L. Zhu
- Soochow University School of Medicine, China
| | - A. Wang
- Soochow University School of Medicine, China
| | - Z. Xu
- Soochow University School of Medicine, China; Loma Linda University School of Medicine, USA
| |
Collapse
|
8
|
Chappellaz ML, Smith FG. Systemic and renal hemodynamic effects of the AT1 receptor antagonist, ZD 7155, and the AT2 receptor antagonist, PD 123319, in conscious lambs. Pflugers Arch 2007; 453:477-86. [PMID: 17051392 DOI: 10.1007/s00424-006-0148-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 07/17/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Experiments were carried out to investigate age- and dose-dependent effects of the selective AT(1) receptor antagonist, ZD 7155, and the selective AT(2) receptor antagonist, PD 123319, on systemic and renal hemodynamics in conscious, chronically instrumented lambs aged approximately 1 and approximately 6 weeks of postnatal life. Mean arterial pressure (MAP), mean venous pressure (MVP), and renal blood flow (RBF) were measured for 10 min before and for 120 min after ZD 7155, PD 123319, or vehicle. In both age groups, administration of ZD 7155 decreased renal vascular resistance (RVR) and increased RBF within 5 min. These responses lasted less than 90 min but were not dose-dependent. MAP decreased by 30 min after administration of ZD 7155 in both age groups at doses >/=400 microg kg(-1); the remaining decreased for up to 120 min, depending upon the dose. Pressor responses to angiotensin II (ANG II) were abolished within 5 min of administration of all doses of ZD 7155, at both 1- and 6 weeks. PD 123319 had no detectable effects on systemic or renal hemodynamics or on the pressor responses to ANG II. Therefore, under physiological conditions in conscious newborn animals, ANG II modulates both resting blood pressure and RVR through activation of AT(1) but not AT(2) receptors.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 2 Receptor Blockers
- Animals
- Animals, Newborn
- Blood Pressure/drug effects
- Consciousness
- Dose-Response Relationship, Drug
- Imidazoles/pharmacology
- Kidney/blood supply
- Kidney/drug effects
- Kidney/metabolism
- Naphthyridines/pharmacology
- Pyridines/pharmacology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Renal Circulation/drug effects
- Sheep
- Time Factors
- Vascular Resistance/drug effects
Collapse
Affiliation(s)
- Mona L Chappellaz
- Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | |
Collapse
|
9
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
10
|
Wang JJ, Valego NK, Su Y, Smith J, Rose JC. Developmental aspects of ovine adrenal adrenocorticotropic hormone receptor expression. ACTA ACUST UNITED AC 2004; 11:27-35. [PMID: 14706680 DOI: 10.1016/j.jsgi.2003.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Maturation of adrenocortical function is important because a prepartum increase in fetal plasma glucocorticoids is required for survival after birth. Adrenal maturation may include alterations in the regulation of adrenocorticotropic hormone (ACTH) receptor expression. Therefore, we quantitated ACTH receptor expression in the ovine adrenal cortex during development and after manipulations to better understand the regulation of the adrenal receptor in vivo. METHODS For the ontogeny study, adrenals were obtained from fetuses at different stages of development, and the cortical tissue was stored at -80C until total RNA was extracted. The ACTH binding studies were done on adrenal membranes obtained from fetuses at two different ages using I125 (Phe-2, Nle-4) ACTH as the ligand. Plasma ACTH was measured by two-site immunoradiometric assay, and cortisol was measured by radioimmunoassay. ACTH receptor mRNA was quantitated by ribonuclease protection assay. The data were analyzed by analyses of variance. RESULTS ACTH receptor mRNA level progressively increased in fetal life; relative changes in receptor mRNA and binding were similar (3.0-fold and 2.4-fold, respectively). Physiologic increases in fetal plasma cortisol decreased adrenal ACTH receptor mRNA concentration, and there was a strong (r2=0.76, P<.002) linear relationship between fetal plasma ACTH concentration and receptor mRNA levels. Receptor mRNA stability increased in development, and message half-life was greater in adulthood than in fetal life. CONCLUSION The data suggest that developmental increases in receptor expression are part of the maturation process in the fetal adrenal and that plasma ACTH concentration plays a major role in regulating ACTH receptor mRNA levels in vivo.
Collapse
Affiliation(s)
- J J Wang
- Department of Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
11
|
Gendron L, Oligny JF, Payet MD, Gallo-Payet N. Cyclic AMP-independent involvement of Rap1/B-Raf in the angiotensin II AT2 receptor signaling pathway in NG108-15 cells. J Biol Chem 2003; 278:3606-14. [PMID: 12464615 DOI: 10.1074/jbc.m202446200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The angiotensin II (Ang II) type 2 (AT(2)) receptor is an atypical seven-transmembrane domain receptor. Controversy surrounding this receptor concerns both the nature of the second messengers produced as well as its associated signaling mechanisms. Using the neuronal cell line NG108-15, we have reported previously that activation of the AT(2) receptor induced morphological differentiation in a p21(ras)-independent, but p42/p44(mapk)-dependent mechanism. The activation of p42/p44(mapk) was delayed, sustained, and had been shown to be essential for neurite elongation. In the present report, we demonstrate that activation of the AT(2) receptor rapidly, but transiently, activated the Rap1/B-Raf complex of signaling proteins. In RapN17- and Rap1GAP-transfected cells, the effects induced by Ang II were abolished, demonstrating that activation of these proteins was responsible for the observed p42/p44(mapk) phosphorylation and for morphological differentiation. To assess whether cAMP was involved in the activation of Rap1/B-Raf and neuronal differentiation induced by Ang II, NG108-15 cells were treated with stimulators or inhibitors of the cAMP pathway. We found that dibutyryl cAMP and forskolin did not stimulate Rap1 or p42/p44(mapk) activity. Furthermore, adding H-89, an inhibitor of protein kinase A, or Rp-8-Br-cAMP-S, an inactive cAMP analog, failed to impair p42/p44(mapk) activity and neurite outgrowth induced by Ang II. The present observations clearly indicate that cAMP, a well known stimulus of neuronal differentiation, did not participate in the AT(2) receptor signaling pathways in the NG108-15 cells. Therefore, the AT(2) receptor of Ang II activates the signaling modules of Rap1/B-Raf and p42/p44(mapk) via a cAMP-independent pathway to induce morphological differentiation of NG108-15 cells.
Collapse
Affiliation(s)
- Louis Gendron
- Service of Endocrinology, Faculty of Medicine, University of Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | |
Collapse
|