1
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
2
|
López-Pérez Ó, Otero A, Filali H, Sanz-Rubio D, Toivonen JM, Zaragoza P, Badiola JJ, Bolea R, Martín-Burriel I. Dysregulation of autophagy in the central nervous system of sheep naturally infected with classical scrapie. Sci Rep 2019; 9:1911. [PMID: 30760781 PMCID: PMC6374525 DOI: 10.1038/s41598-019-38500-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
Autophagy is a dynamic cellular mechanism involved in protein and organelle turnover through lysosomal degradation. Autophagy regulation modulates the pathologies associated with many neurodegenerative diseases. Using sheep naturally infected with scrapie as a natural animal model of prion diseases, we investigated the regulation of autophagy in the central nervous system (CNS) during the clinical phase of the disease. We present a gene expression and protein distribution analysis of different autophagy-related markers and investigate their relationship with prion-associated lesions in several areas of the CNS. Gene expression of autophagy markers ATG5 and ATG9 was downregulated in some areas of scrapie brains. In contrast, ATG5 protein accumulates in medulla oblongata and positively correlates with prion deposition and scrapie-related lesions. The accumulation of this protein and p62, a marker of autophagy impairment, suggests that autophagy is decreased in the late phases of the disease. However, the increment of LC3 proteins and the mild expression of p62 in basal ganglia and cerebellum, primarily in Purkinje cells, suggests that autophagy machinery is still intact in less affected areas. We hypothesize that specific cell populations of the CNS may display neuroprotective mechanisms against prion-induced toxicity through the induction of PrPSc clearance by autophagy.
Collapse
Affiliation(s)
- Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain.,Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - Alicia Otero
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - Hicham Filali
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - David Sanz-Rubio
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - Janne M Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - Juan J Badiola
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - Rosa Bolea
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain. .,Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, Zaragoza, 50013, Spain.
| |
Collapse
|
3
|
Fish models in prion biology: underwater issues. Biochim Biophys Acta Mol Basis Dis 2010; 1812:402-14. [PMID: 20933080 DOI: 10.1016/j.bbadis.2010.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 09/11/2010] [Accepted: 09/21/2010] [Indexed: 12/14/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), otherwise known as prion disorders, are fatal diseases causing neurodegeneration in a wide range of mammalian hosts, including humans. The causative agents - prions - are thought to be composed of a rogue isoform of the endogenous prion protein (PrP). Beyond these and other basic concepts, fundamental questions in prion biology remain unanswered, such as the physiological function of PrP, the molecular mechanisms underlying prion pathogenesis, and the origin of prions. To date, the occurrence of TSEs in lower vertebrates like fish and birds has received only limited attention, despite the fact that these animals possess bona fide PrPs. Recent findings, however, have brought fish before the footlights of prion research. Fish models are beginning to provide useful insights into the roles of PrP in health and disease, as well as the potential risk of prion transmission between fish and mammals. Although still in its infancy, the use of fish models in TSE research could significantly improve our basic understanding of prion diseases, and also help anticipate risks to public health. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
|
4
|
Small-ruminant lentivirus enhances PrPSc accumulation in cultured sheep microglial cells. J Virol 2008; 82:9839-47. [PMID: 18684809 DOI: 10.1128/jvi.01137-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sheep scrapie is the prototypical transmissible spongiform encephalopathy (prion disease), which has a fundamental pathogenesis involving conversion of normal cellular prion protein (PrP(C) [C superscript stands for cellular]) to disease-associated prion protein (PrP(Sc) [Sc superscript stands for sheep scrapie]). Sheep microglial cell cultures, derived from a prnp 136VV/171QQ near-term fetal brain, were developed to study sheep scrapie in the natural host and to investigate potential cofactors in the prion conversion process. Two culture systems, a primary cell culture and a cell line transformed with the large T antigen of simian virus 40, were developed, and both were identified as microglial in origin as indicated by expression of several microglial phenotype markers. Following exposure to PrP(Sc), sheep microglial cells demonstrated relatively low levels (transformed cell line) to high levels (primary cell line) of PrP(Sc) accumulation over time. The accumulated PrP(Sc) demonstrated protease resistance, an inferred beta-sheet conformation (as determined by a commercial enzyme-linked immunosorbent assay), specific inhibition by anti-PrP antibodies, and was transmissible in a dose-dependent manner. Primary microglia coinfected with a small-ruminant lentivirus (caprine arthritis encephalitis virus-Cork strain) and PrP(Sc) demonstrated an approximately twofold increase in PrP(Sc) accumulation compared to that of primary microglia infected with PrP(Sc) alone. The results demonstrate the in vitro utility of PrP(Sc)-permissive sheep microglial cells in investigating the biology of natural prion diseases and show that small-ruminant lentiviruses enhance prion conversion in cultured sheep microglia.
Collapse
|
6
|
Tongue SC, Wilesmith JW, Cook CJ. Frequencies of prion protein (PrP) genotypes and distribution of ages in 15 scrapieaffected flocks in Great Britain. Vet Rec 2004; 154:9-16. [PMID: 14725423 DOI: 10.1136/vr.154.1.9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The frequencies of prion protein (PrP) genotypes were investigated in 15 scrapie-affected flocks in Great Britain. The flocks were heterogeneous in the frequencies of different genotypes and alleles, and in their age distributions. The median flock frequency of animals with VRQ-containing genotypes was 21 per cent (range 2 to 82 per cent, mean 25 per cent). The VRQ-containing and other non-ARR genotypes made up 11 to 82 per cent of a flock (median 46 per cent, mean 48 per cent). In comparison with data from the general population the scrapie-affected population had a lower frequency of the ARR/ARR genotype, and so of the ARR allele, and had a higher frequency of VRQ/non-ARR heterozygote genotypes, and thus of the VRQ allele.
Collapse
Affiliation(s)
- S C Tongue
- Scrapie Epidemiology Group, VLA - Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB
| | | | | |
Collapse
|